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Abstract

We study the problem of how to train a “personalization-
friendly” model such that given only the task descriptions,
the model can be adapted to different end-users’ needs, e.g.,
for accurately classifying different subsets of objects. One
baseline approach is to train a “generic” model for classi-
fying a wide range of objects, followed by class selection. In
our experiments, we however found it suboptimal, perhaps
because the model’s weights are kept frozen without being
personalized. To address this drawback, we propose Train-
once-for-All PERsonalization (TAPER), a framework that
is trained just once and can later customize a model for
different end-users given their task descriptions. TAPER
learns a set of “basis” models and a mixer predictor, such
that given the task description, the weights (not the pre-
dictions!) of the basis models can be on the fly combined
into a single “personalized” model. Via extensive experi-
ments on multiple recognition tasks, we show that TAPER
consistently outperforms the baseline methods in achieving
a higher personalized accuracy. Moreover, we show that
TAPER can synthesize a much smaller model to achieve
comparable performance to a huge generic model, mak-
ing it “deployment-friendly” to resource-limited end de-
vices. Interestingly, even without end-users’ task descrip-
tions, TAPER can still be specialized to the deployed con-
text based on its past predictions, making it even more
“personalization-friendly”.

1. Introduction

Recent years have witnessed multiple breakthroughs in
visual recognition [10,17,23,25,36], thanks to the advance
in deep learning and the accessibility to large datasets.
Specifically, existing works have shown the possibility to
train a gigantic and versatile “generic”’ model capable of
classifying a wide range of over tens of thousands of
objects [22, 33], rendering the promising future towards
general-purposed Al
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Figure 1. Examples of personalization via task description. We
propose a useful formulation: train-once-for-all personalization.
Our “personalization-friendly” framework TAPER can on the fly
reply to each user’s request with a personalized model promptly

conditioned on the task description only.

However, from an end-user’s perspective, we often do
not need such a versatility ar once. Instead, users more of-
ten look for models that are specialized to their requests,
e.g., for accurately classifying a few but frequently encoun-
tered or safety-critical objects in their environments. Tak-
ing ImageNet-1K [9] as an example, a ResNet-152 classi-
fier [17] can achieve around 80% accuracy in recognizing
each of the 1K objects, which, while exciting to the vision
community, may sound terrible to a visually-impaired user
who seeks to smoothly interact with a handful of everyday
objects. A better solution for end-users is perhaps to con-
struct “personalized” models dedicated to their needs, e.g.,
train a 20-way classifier for everyday objects to attain an ac-
curacy closer to 100%. Importantly, a personalized model
usually requires a smaller capacity/size than a generic one,
making it easier to deploy to resource-limited devices.

Personalization is by no means a new concept. A naive
way to achieve it is to retrain a new model upon request,
using the corresponding data. Doing so, however, is hardly
scalable from a service provider’s point of view: the com-
putation for training simply grows linearly with the number
of users and their requests. The training latency can also de-
grade the user experience. Suppose the service provider has
sufficient data and is capable of training a generic model, re-
training may just sound superfluous: if the objects the end-
user cares about are already seen in training the generic
model, why bother training on them again for personaliza-
tion? In this paper, we therefore ask:
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Can we train a “personalization-friendly” model such that
after deployed, it can be easily specialized and rapidly
condensed based on the end-user’s task description,
without further training?

To begin with, we investigate a fairly simple idea, which
is to train a (large) generic model, followed by class se-
lection for personalization — chopping off the classes that
are not of the user’s interest from the classification head.
While extremely straightforward without further training,
this idea can already boost the aforementioned ResNet-152
to 95% accuracy on recognizing 20 classes. Nevertheless,
this approach does not condense the model for computa-
tion and memory efficiency. One may resolve this problem
by training a smaller generic model like ResNet-18, whose
size is roughly % of ResNet-152. However, with limited ca-
pacity, ResNet-18 after class selection can only attain 92%
accuracy on classifying 20 classes. We hypothesize if we
can somehow personalize the backbone weights as well, the
model will be able to better utilize its capacity to tackle the
shrunken scope of end-users’ tasks.

To address these deficiencies while keeping the per-
sonalization process simple, we propose Train-once-for-
All PERsonalization (TAPER), a novel framework that
is trained just once and can later head-to-toe customizes a
condensed model on the fly for different end-users and re-
quests, given their task descriptions.

At the core of TAPER is a set of shareable “basis”” mod-
els inspired by [5, 12], and a “mixer” predictor. The basis
models have the same neural network architecture, each of
which is expected to capture a certain specialty and there-
fore can be smaller in size than a large generic model. The
mixer predictor then takes the user’s task description (e.g.,
“Classify bicycle, pedestrian, tree, obstacle for me.”) as
input, and produces coefficients to linearly combine the
weights (not predictions!) of the basis models, condensing
them into a “personalized” model on the fly. As TAPER
adapts to users by predicting corresponding coefficients, not
by adjusting the bases, it requires no retraining and enjoys
parameter efficiency (e.g., for cloud services). Moreover,
since the resulting personalized model is just like a basis
model in size, it enjoys computation and memory efficiency
during inference and is suitable for edge deployment.

We introduce a stage-wise training procedure to effec-
tively learn the bases and the mixer predictor. We found
that naive end-to-end training for optimizing personalized
accuracy often results in inferior bases that either general-
ize poorly or are not specialized. We thus dedicate each
stage to one desired property, starting with training each
basis to generically classify all classes, followed by special-
izing them to different but fixed portions of data. The final
stage then jointly refines the bases, together with learning
the mixer predictor, to synthesize classifiers for randomly
sampled tasks on the fly to optimize personalized accuracy.

We validate TAPER on three visual recognition datasets,
including ImageNet [9], iNaturalist [39], and Domain-
Net [31], each of which captures a different personalization
scenario. TAPER consistently outperforms the baselines
in achieving a higher personalized accuracy. For instance,
on ImageNet, TAPER is able to synthesize a ResNet-18 to
achieve 96% accuracy on classifying 20 classes, 4% higher
than ResNet-18 with class selection. The accuracy is even
higher than ResNet-152 with class selection while using é
of the model size. Interestingly, even without end-users’
task descriptions, we show that TAPER can still be “self-
specialized” to the deployed environment conditioned on
its past predictions. Most importantly, none of these im-
provements require further training, making TAPER truly
“personalization-friendly.”

2. Related Work

Personalization. Unlike the standard machine learning
(ML) learns a generic model to serve many users, personal-
ization acknowledges users’ characteristics and learns each
a dedicated model. Its practical value is shown in many ap-
plications such as pose estimation [0], ads predictions [2],
speech recognition [43], medical ML [15,40], etc. More
recently, personalization is studied in the context of fed-
erated learning, which focuses on how the users collabo-
rate while training their own models under privacy con-
cern [21,29,37]. Differently, our goal is to train a single
“personalization-friendly” model. This concept is related
to meta-learning [ 13, 18], while it mainly learns to adapt to
many new tasks with few-shot data from unseen classes, not
for train-once-for-all (each task still needs fine-tuning).

Conditional neural networks. Our implementation is in-
spired by recent architectures that dynamically adapt the
networks based on the inputs [7,41,44]. Another approach
is Mixture-of-Experts (MoE) [34, 35] that scales a model
to be powerful and computational-heavy with a group of
networks/layers. Given an input, MoE routes it to the re-
lated experts and combines their predictions. Our goal is
to collapse into a compact model for each task. The mo-
tivations of these methods are different from ours. They
specialized the network during the inference of an individ-
ual input (e.g., “this image looks like an animal”), while we
specialize based on the overall knowledge of the test envi-
ronment a user prefers (e.g., “I’'m in a jungle”). We believe
these different levels of personalization (inputs vs. tasks)
are complimentary to each other for future consideration.
Another possible implementation is by a HyperNet-
work [16] that learns another network to predict the high-
dimensional personalized parameters directly. It remains
challenging for modern deep networks due to the large out-
put size and training difficulty [45]. Ours learns to combine
several bases instead as a special case of HyperNetwork.
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Ensembles and model interpolation. Combining sev-
eral specialized models to serve more versatile inputs is a
widely-used concept. For instance, model ensemble [ 1, 26,
] combines several models’ predictions for better preci-
sion or generalization. Recently, researchers found similar
benefits by combining models on the weight space instead
of on the outputs [20], motivated by less training cost. We
extend the concept to personalize many tasks at once by
predicting to combine the basis model parameters.

Other train-once-for-all tasks. Besides our train-once-
for-all personalization, the idea of training once and getting
several models is a practical approach in other contexts as
well. For example, [4,27] propose to train a model that
later can serve on various platforms of different system re-
sources, significantly reducing the training efforts for neu-
ral architecture searches. [19] snapshots the intermediate
models in one pass of training and uses them for ensem-
ble. [11] trains a single model that can dynamically adjust
the strengths towards multiple loss functions in test time.

3. Approach
3.1. Problem definition

Define a task ¢ as classification over a subset of classes
Y, C Y. The goal of personalization is to learn a pre-
dictor f; : X +— ). To handle many tasks at the same
time, we further assume we have the task description d; for
Y+, and we want to build a framework h(d;) where given
d;, it will output f;. Generally, the task description should
provide information about the classes within the task in the
form of vector representation. We will leave the realizations
and choices of d; in subsection 3.5. We consider using a
large-scale dataset with many classes covering )/, to learn
the personalized-friendly function f; = h(d;;V) parame-
terized by V. h inferences on the task description as guid-
ance for synthesizing a personalized model without further
optimization, essentially train-once-for-all personalization.

Personalization in a server-user system As a motivating
application of train-once-for-all personalization, the person-
alized model generator h(-,V) is useful for cloud service
deployments in that the server learns ) on a large-scale
dataset and maintains it for serving many future users.

The users are ultimately performing the tasks on end de-
vices such as mobile phones, laptops, drones, etc. The com-
putation resource is often quite limited. This constrains the
memory, power, and FLOPs budgets thus making it unfa-
vorable for the users to train or inference large models on
their ends. Specifically, train-once-for-all personalization
enjoys the following aspects.

* Scalability. We propose a principle way based on a model

generator to summarize a large number of tasks (in prac-
tice, possibly over millions) as a more scalable approach.

* On-the-fly personalization. By modeling h(d,V) as a
translation from task descriptions to the model weight
space, it allows a user to generate a personalized model
without any training but just inference. This essentially
bypasses the bottleneck of training cost and makes such a
personalization system to be closer to a real-time API.

* Condensed personalized models. Our formulation pro-
vides an advantage that decouples the number of param-
eters of model generator || and the output personalized
models. We can in theory use more parameters in ) for a
powerful generator and condense it into lightweight per-
sonalized models for final deployment.

3.2. A strong baseline: classifier selection

Given an input x, we consider f as a general neural net-
work f(a; ) that consists of a feature extractor parameter-
ized by 1 with a linear classifier w = [w™), ..., w(YD] of
| V| vectors for output predictions over all classes in )). We
denote by 8 = {1, w}. Let the task specified by a user be
a few-way classification task t.

One strong baseline to personalize and fulfill the aspects
in subsection 3.1 is to assume a generic, non-personalized
feature extractor is sufficient and build a personalized clas-
sifier w, on top of it by selecting only the row vectors in
w for the relevant classes. That is, the personalized pa-
rameters for task ¢ are 8; = {¢,w;}. As will be shown
in section 4, by training a generic feature extractor along
with w in a standard way followed by classifier selection
to retrieve wy, it can largely outperform a non-personalized
classifier. It serves as a surprisingly strong baseline for the
train-once-for-all personalization.

However, we found it suboptimal since the features may
also need to be personalized to focus on more dedicated re-
lationships between the classes within a task. As we dis-
cussed in the introduction, there are two baseline solutions,
to adapt and save 1), for every ¢, or not to personalize 1) but
to use a larger and more powerful feature extractor. They
both have obvious drawbacks — the former is not scalable
in training cost for many tasks, and the latter is computa-
tionally unfavorable for end devices — contradicting the
requirements of a cloud service system.

To this end, we are thus motivated in resolving such a
dilemma. That is, can we have train-once-for-all personal-
ization for the whole compact network?

3.3. Proposed TAPER: personalization with bases

Formulation: basis models. We propose TAPER to im-
plement 6; = h(-,V) for personalizing the whole network
as 0; = {1, w;}. Inspired by multi-task learning [12],
we assume the tasks share similarity (e.g., superclasses, do-
mains, styles, etc) — it is likely that we can represent each
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Task description: {“Lhasa, Bulldog, Husky, Shih Tzu"}
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Figure 2. Overview of TAPER architecture. A user first provides the task description (e.g., a few classes of interest), which will be
encoded into text embedding and fed into the mixer predictor to generate the mixers. The parameters of each layer are linear combinations
of the basis models based on the mixers. The final outcome is a single basis personalized model, followed by classifier selection.

of the personalized model weight vectors 8, with combina-
tions of a much smaller set of basis vectors {v1,...,v0},
|v| = |0|. In our experiments, @ is typically small (e.g., 10)
compared to the number of tasks it possibly can handle (e.g.,
for 20-way classification, there are (l%‘) combinations).
For every task, {v,} are combined into a personalized

model 8; with a combination vector o, we call it mixers,

0:(o,V) = Zat[Q] X Vg, (D
q

where the mixers a; € A?~1! is a (Q-dimensional vector on
the (Q — 1)-simplex for convexly combining the basis mod-
els into a personalized model. Both o and V are learned.

By adjusting only the mixers for a user, we can then
quickly condense the bases into a compact personalized
model for the user’s future use. We note that the bases
are trained to be combined layer by layer element-wisely
on weights, not on the activation. This is starkly differ-
ent from the mixture of experts [35] that maintains several
experts and aggregates their predictions, where the model
size and computation cost scale with the number of experts.
In contrast, TAPER outputs a single basis model of size
|@] = |v| and does not scale with Q). TAPER fulfills the
requirements in subsection 3.1: scalable, on-the-fly person-
alization, and lightweight. Unlike the baseline, it adapts the
whole network, governs by the mixers over the set of bases.
An overview of the architecture is provided in Figure 2. We
will discuss training TAPER in subsection 3.4.

Mixer predictor. Our goal is to generate 8, = h(d;,V)
given the task description. The task description vector is
translated into the mixers by a mixer predictor network
a; = g(dy; @), parameterized by ¢, for selecting the rel-
evant bases dedicated to the task and combining them into a
condensed personalized model. We adopt a simple 4-layer
multilayer perceptron (MLP) which is shared by all tasks.

Block-wise mixers. So far, we assume to use a single
mixers vector oy for the whole network. A slight relax-
ation is to allow each component of the network to have its
own mixers such that it provides more freedom for o and V
to jointly learn to combine layer-wisely. In our experiments
on ResNet-18, we use one mixer vector for each of the 4
blocks, i.e., now |a;| = 4Q) instead of Q.

3.4. Training TAPER

Objective. Building upon Equation 1, let the loss of a task
to be L, we define TAPER objective function as

T
1
min e Et(Ot),
ov={v}2, T ;

where 0; = Z ailg]l x vy, oy =o0(g(dy; ), (2

q

where we implement « to be a convex combination by a
softmax function o(+) in our experiments, as a form of reg-
ularization [12] to avoid it becoming unbounded. Both the
basis models and the mixer predictor are to be learned.

Naive approach. Equation 2 can be optimized end-to-end
in standard deep learning frameworks (e.g., Tensorflow) by
initializing each basis with different random weights'. One
concern is that an individual basis does not learn much
about the general knowledge since each basis is likely se-
lected by a few tasks and not trained on enough data, result-
ing in poor generalization. To better leverage the capacity of
more bases, we provide a simple multi-stage training recipe.

Improved three-stage training. A better strategy is to
first have each base be generally knowledgeable and then

'We note that the bases {vg} cannot all be initialized with the same
weights otherwise it reduces to a single basis network.
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specialize them. This is inspired by the recent practice of

few-shot learning [38, 42], which shows it is very impor-

tant to initialize the model which will be specialized by a

well-trained backbone. The training is in three stages.

» Stage 1: single basis pre-training. We begin with a sin-
gle network 6(9) to learn the general representation of the
whole dataset in a standard way, e.g., with cross-entropy.

e Stage 2: specialized basis models. Next, we want to
prepare () specialized networks as the initialization for
the () bases. We split the dataset into () shards based on
classes or domains. For each shard, we copy 0 as the
initialization, fine-tune it, and collect the “expert” model
as v,. We note that the purpose is just to burn in each
basis different domain knowledge as warm starts.

 Stage 3: learning to mix the bases for tasks. We jointly
learn both the bases {vq}qul and the mixer predictor
g(d; ¢) to combine them for all the tasks, guided by the
task descriptions. Note that, we use the classifier w; se-
lected for each task, building upon subsection 3.2.

Despite its simplicity, we found it crucial for addressing

the dilemma in the naive approach when more bases are

used. It warm-starts TAPER with well-pre-trained special-
ized bases thus the mixer predictor only needs to learn to

“mix” them for a few epochs. This makes the developed

cycles much shorter and more flexible. For instance, when

the developers collect a new dataset for augmenting the ex-
isting bases, it only requires fine-tuning from 0©), adding
it as a new basis, and re-train the mixer predictor.

3.5. Task descriptions

In subsection 3.1, we assume the personalized model
generator h takes a vector representation of the task and
outputs the corresponding personalization model. This is
realistic for some applications where (1) the users may not
have training data while (2) the task that the user wants to
perform can beforehand be pre-defined by the user’s prefer-
ence. The task descriptions not only instruct h(d, V) what
kind of personalized model it should generate but also more
importantly, for the h(d, V) to leverage the relationships be-
tween tasks during training.

The task description can be a flexible design choice.
As an example, considering a classification task from Im-
ageNet, a simple way is to create the bag-of-word (BoW)
vector for a task, i.e., a 1000-way binary vector with the bits
turned on for the corresponding class indexes. The mixer
g(dy; @) in TAPER can gradually realize the relationships
among classes during training.

Another way is to explicitly leverage the semantics of the
classes by extracting the “textual class names” (e.g., “Red
wolf” or “Buckeye”), encode each of them into a text em-
bedding via an external pre-trained language model, and
average over classes into a vector representation d;. In
our experiments, we pre-compute the 1024-dim text embed-

Table 1. Summary of the datasets in experiments.

Dataset ‘ Train/Val Size #Class Task

ImageNet 1.3M/50K 1K
iNaturalist-21| 2.7M/100K 10K
DomainNet 410K/177K 345

General object recognition
Species classification
Object recognition with domains

ding for each class following the prompt ensemble approach
in [32] and keep them frozen. Using textual embedding
takes the advantage of large-scale language modeling and
is more convenient as a compact fixed-dimension represen-
tation, unlike BoW depends on the class size. We provide
experiments on the choice of task descriptions in subsec-
tion 4.5. Interestingly, we show in subsection 5.1 that it
also allows the users to use flexible free language descrip-
tions (e.g., “A fish of deep water having a light organ”)
instead of specifying the class name (“flashlight fish”).

4. Experiments
4.1. Settings

Datasets. To validate the effectiveness of TAPER on
three large-scale visual recognition datasets, including Im-
ageNet [9], iNaturalist (2021) [39], and DomainNet [31],
each of which captures a different personalization scenario.
All of them are single-label classification tasks and the res-
olution is 224 x 224. The summary is in Table 1. For
each dataset, we construct the tasks as 20-way classifica-
tion by sampling from the label space ). Each image from
the training/validation set is randomly assigned with a task
description as discussed in subsection 3.5 for training (sam-
pled every epoch) and evaluation, respectively. The goal is
to accurately predict the labels from the whole ) and the
metric is the standard top-1 accuracy. More details for each
dataset are provided in the corresponding subsections.

Implementation details. We use the training process
similar to the standard on ImageNet [ 17] for all the datasets,
including data pre-processing/augmentation and learning
rate schedule (initial learning rate is 0.1 and decay by 0.1
every 30 epochs). We use the SGD optimizer with mo-
mentum = 0.9, batch size = 128, and weight decay =
0.0001. Our experiments are implemented using JAX [3].
We train on randomly-initialized ResNet-18 networks [17]
with cross-entropy by default.

For TAPER, each of the basis models uses the same ar-
chitecture, and each layer is linearly combined via the mix-
ers. The mixer predictor is a 4-layer MLP (with batchnorms
and ReLU non-linearity between each layer) which maps
the 1024-dim task description text embedding to the block-
wise mixers, as discussed in subsection 3.3. For our pro-
posed three-stage training in subsection 3.4, we train each
stage sequentially for 100/5/20 epochs, for the 3 stages, re-
spectively. For a fair comparison, we, therefore, train 125
epochs for the baseline approaches (subsection 3.2). We
provide more details in the supplement materials.
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4.2. Train-once-for-all on ImageNet

We first use ImageNet to develop our method. In real-
ity, the tasks may not be random combinations of classes
but somehow have correlations depending on the use case.
For instance, a user in a driving scene may ask “Classify
bicycle, pedestrian, tree, obstacle for me.” Another user
may ask for a classifier for a kitchen or for different types
of electronics; e.g., “coffee pot” and “espresso maker” are
more likely in the same task. To simulate this more realis-
tic/meaningful scenario without losing generality, we assign
each image a k-way task (k = 20 by default) by sampling
from classes that are the nearest 2k synsets in the Word-
Net knowledge graph [30] based on its ground-truth label
(which is included in the task as well”). We use 10 bases
for ImageNet experiments. For stage 2 of TAPER training,
we simply divide the dataset into 10 chunks by sharding the
1000 classes (i.e., 100 classes per chunk). It is just to ini-
tialize the bases as slightly different specialists.

We then train the mixer predictor jointly with bases to
personalize conditioned on the task description. The results
of TAPER and the baseline approaches using different sizes
of networks are in Table 2.

Personalization is valuable. Our first observations of the
two baseline approaches in subsection 3.2 are: (1) increas-
ing the network depths without personalization (ignoring
the tasks) improves the accuracy but saturates at around
80%, while (2) simply post-processing a ResNet-18 with
classifier selection already achieves 92.2%, i.e., a +22.3%
gain. This demonstrates the importance of personalization
and the feasibility of train-once-for-all personalization.

TAPER outperforms the strong baseline, with much
smaller networks. The baselines keep the features
frozen. Our TAPER better leverages the model capacity
and outputs a fully-personalized network for every task —
the adapted ResNet-18 outperforms the classifier selection
with a ResNet-152, using only roughly % of parameters. We
note that, although the baseline uses a single feature extrac-
tor, it does not have an advantage on parameter efficiency
from the users’ perspective since it still needs to be copied
and delivered to each user’s end device. TAPER’s ResNet-
18 outperforms the baseline counterpart by 3.6%.

Different number of classes in a task. Before we extend
our study to other datasets, we first verify the effects of the
number of classes in a task. TAPER takes a task vector
representation as input and in theory, can handle tasks with
different class sizes in one network. In Table 3, we con-
sider training and cross-evaluate TAPER in two scenarios:

2Note that, we encode each class and average over classes as the task
embedding thus it will not leak the ground-truths.

Table 2. Accuracy (%) on ImageNet with 20-way tasks.

Method Network #Parameters Classiﬁer Accuracy
per task selection

Baseline ResNet-152  60.4M X 78.4
ResNet-152  58.4M 95.1 (+16.7)

Baseline ResNet-101  44.7M X 77.6
ResNet-101  42.7M 94.8 (+17.2)

Baseline ResNet-18 11.4M X 69.9
ResNet-18 10.9M 92.2 (+22.3)

TAPER ResNet-18  10.9M |95.8

Table 3. TAPER on ImageNet with different classes per task.

Training/Evaluation ‘Fixed 20-Way‘Dynamic [5,100])-way

Baseline ‘ 92.2 +0.36 ‘ 88.5 +0.78
Fixed 20-way 95.8 +0.45 93.6 10.85
Dynamic [5,100]-way| 95.2 +0.71 95.0 +0.68

Table 4. Accuracy (%) on iNaturalist with 20-way tasks.

Method Network #Parameters Classiﬁer Accuracy
pertask  selection
Baseline ResNet-101  63.1M X 84.3
ResNet-101  42.7M 97.7 (+13.4)
Baseline ResNet-18 16.0M X 72.3
ResNet-18 10.9M 90.8 (+18.5)
TAPER ResNet-18 10.9M ‘95.9

the tasks are either fixed 20-way or dynamically drawn with
5 ~ 100 ways. We observe that TAPER can handle all the
cases reasonably well, where it is slightly better if training
and evaluation are matched on the same scenario. For sim-
plicity, later we will focus on the fixed 20-way scenario.

4.3. Fine-grained species classification

Another concrete use case of personalization is fine-
grained predictions in a specific topic. For instance, an en-
tomologist might want to classify different kinds of moths.
TAPER is particularly helpful for supporting scientific re-
search in the wild that has constraints on computation re-
sources or Internet bandwidth. We simulate such a scenario
on the iNaturalist (2021) datasets that have 10, 000 species
from 11 super-categories such as “Mammals” and “Rep-
tiles”. We construct each image a 20-way task description
by sampling other classes from the same super-category.
We use Q = 3 x 11 bases for TAPER here.

In Table 4, we again see TAPER’s superiority — com-
parable performance and fewer parameters compared to the
baseline. Notably, here we see the clear benefits of classi-
fier selection. When the number of classes is large, cutting
the classes that are not likely of the user’s interest can save
significant parameters and achieve higher accuracy.
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Table 5. Personalization with tasks specifying both classes and domains. Test accuracy on DomainNet per domain is reported.

Method Network #Parameters Classi_ﬁer Real Painting Clipart Quickdraw Infograph Sketch Avg. over
per task selection domains
Baseline ResNet-101  43.4M X 75.1 61.0 739 70.0 34.1 62.5 |62.8
ResNet-101  42.7M 93.5 858 92.1 94.3 63.2 85.6 |85.8 (+23.0)
Baseline ResNet-18  11.1M X 742 594 721 69.8 32.0 62.1 61.6
ResNet-18  10.9M 93.3 848 91.1 94.0 61.4 84.5 |84.9 (+23.3)
TAPER (1 basis/domain) ResNet-18  10.9M 96.0 909 94.6 96.7 74.0 90.6 |90.5
TAPER (3 bases/domain) ResNet-18  10.9M 96.7 924 95.7 97.5 77.6 91.9 (92.0

Table 6. Ablation study for different design choices of TAPER. The indentation with different symbols denotes adding (+) / removing
() acomponent, or using a variant (o). We report the mean+std based on 3 runs on ResNet-18. " Accuracy here is averaged over examples.

Design . . . . « Avg.

choices Methods / Datasets (#Bases Q) ‘ ImageNet (10) iNaturalist (33) DomainNet* (18) Accuracy
@ Standard, w/o personalization 69.9 1+0.25 72.3 +0.52 65.8 +0.23 69.3
@ + Classifier selection: a strong baseline 92.2 +0.36 90.8 +0.75 88.4 10.54 90.5
@ TAPER w/ naive training & classifier Selection‘ 81.8 1245 75.7 +3.01 78.6 41.44 78.7
@ TAPER at Stage 1 69.8 +0.34 72.3 10.46 65.8 10.26 69.3
@ + Stage 2 & classifier selection 91.2 +1.56 89.3 +2.45 88.5 +1.16 89.7
@ + uniform weight average 86.1 +1.52 15.8 4755 87.2 1266 63.0
@ + fine-tuning w/o task description 92.1 +0.56 91.0 40.76 88.4 10.44 90.5
+ Stage 3 (complete TAPER) 95.8 +0.45 95.9 +0.72 94.1 +0.63 95.3
©® o BoW task description 94.9 1051 93.1 +0.81 93.5 +0.74 93.8
— Block-wise mixers 94.0 +0.24 93.1 +1.20 91.7 +0.39 92.9
@ — classifier selection 84.3 +o0.57 81.0 £1.75 87.5 +0.64 84.3

4.4. Personalization with domain description

The task information passed to the TAPER mixer pre-
dictor can be a flexible description of the tasks of users’
interest. We go beyond classes and consider if the users
provide domain information related to the image styles. For
instance, a user may ask: “help me classify flowers in paint-
ings” or “I want a cartoon animals classifier”.

We investigate such a use case on the DomainNet dataset
that provides 6 domains of image styles over 345 common
objects. Here, we prepare the task descriptions by attaching
the domain name before each of the class names, e.g., “This
is a sketch airplane.”, encoding each class to retrieve the
textual embedding, and averaging over the classes within
the task. Each task is from one domain but with different
20 class combinations. We perform stage 2 training on the
division of domains. The test accuracy per domain is sum-
marized in Table 5. We see TAPER consistently outper-
forms the baselines for all the domains, more on the harder
domains (e.g., Infograph and Sketch). This echo to why
TAPER improves by using 1 basis per domain (intuitively,
it may depend more on domains) — the ideal features are
likely domain-specific. By adding up to 3 bases per domain,
TAPER can further improve since it has more freedom to
personalize by considering both the domains and classes.

4.5. Remarks on design choices

Here we verify our design choices proposed in subsec-
tion 3.3 and subsection 3.4. Please refer to the indexes
in Table 6. We observe:

» TAPER with naive training (3) outperforms a non-
personalized network ((D) but not the classifier selection
baseline (Q), even Q) is attached with classifier selec-
tion already. We hypothesize the bases are not properly
trained and poor in generalization.

 As sanity checks, TAPER’s stage 1 (@) is basically
@ but trained less (i.e., training more cannot improve).
Stage 2 () is slightly worse than Q) as expected since
the models are specialized on a shard of the dataset. Sim-
ply averaging them on weights (®) will not become a
stronger model but fine-tuning it (D) can recover it to Q.

* From (® to @, TAPER leverages task descriptions to
personalize the features by the mixer predictor thus out-
performing the baseline (2)). Text embedding is better
for task descriptions compared to BoW vectors (). It is
preferred to have mixers block-wise ().

* Removing classifier selection from TAPER (@) has a
big impact. However, comparing (1) to D and @, we
validate that TAPER indeed learns personalized features.

» Complete TAPER (®) performs the best consistently.
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Table 7. Free languages descriptions of classes.

Users’ free languages

“Did you mean this?”

WordNet Definitions ‘ Class names
“a drinking glass with a base and stem” “goblet”
“live associated with sea anemones” “anemones fish”
“a tall elegant chest of drawers” “chiffonier”

5. Applications, Discussions, and Conclusion

We consider practical use cases and discussions. We pro-
vide more studies and evaluations in the supplementary ma-
terials, including the effects of the number of bases/tasks.

5.1. Class descriptions in free languages

So far we use a pre-trained language encoder to embed
the class names via prompts. Since the language encoder
can handle general textual descriptions, this allows the users
to enjoy more flexibility in their descriptions. To demon-
strate such an advantage, we still train TAPER with class
name descriptions, but in evaluation, we replace them with
free languages that do not describe the class names explic-
itly for encoding, by using the definitions in the WordNet
dictionary. See examples in Table 7. Perhaps surprisingly,
TAPER is robust to such replacement. In ImageNet exper-
iments, it achieves 94.2% accuracy, slightly dropped from
95.8% in Table 2. We also compared the mixers predicted
from class names and free languages for each class — we
see a high 0.92 cosine similarity; they select similar bases.

5.2. Self-improvement without task descriptions

So far, we have assumed that the task description is pro-
vided for personalization. We show TAPER can provide
some training-free personalization even without a descrip-
tion but given the unlabeled test data of the task. This is
useful in some scenarios such as a smart surveillance cam-
era keeps collecting images from the same environment and
wants to refine its classifier for future predictions. Con-
cretely, assuming we have trained the TAPER model,

1. Begin with a standard, non-personalized classifier (e.g.,
the stage 1 model) to predict a batch of test data.

2. Extract the top most common pseudo labels and use
them to construct the task description.

3. Use the mixer predictor to combine a personalized model
and repeat from (2) over time.

We demonstrate with a case of a 20-way task sampled
from ImageNet in Figure 3: it can gradually estimate the
task and improve along with seeing more test data.

5.3. Analysis

Visualization. To understand if the bases and the mixers
are learned to tailor different tasks, we visualize their mix-
ers oy, and pairwise cosine similarity of the parameters of

7s Non-personalized

Test accuracy

Figure 3. Self-improvement without task descriptions. In each
step, we predict the top common classes in the test batch, retrieve
the task embedding, and re-generate the personalized model.
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Figure 4. Visualization. (a) Predicted mixers of tasks contain
“Bird” and “Cat” in ImageNet (each task colored by the sum of
sorted class IDs). (b) Similarity matrix of the basis parameters
learned on DomainNet. One basis for each domain.

(b) Bases cosine similarity

bases V in Figure 4. We see different tasks indeed leverage
different specialized bases.

Limitations: the price of personalization. Given the
text embedding of the class names, can TAPER extend to
classes not in training? To construct the classifier for unseen
classes, we follow the zero-shot learning literature [14] to
learn an extra mapping from the image feature space to the
text embedding space on seen classes in ImageNet-1K, and
evaluate unseen classes from ImageNet-21K. We observe it
can hardly have such free lunch — using 10 bases is worse
than using one. We hypothesize two reasons: (1) plainly
fitting seen classes (better) inevitably degrades unseen per-
formance, consistent with previous studies [8,24]. (2) The
relationships between text and vision may not be learned
yet in training or have changed significantly in new classes.
For instance, it might learn both “Crown” and “Daisy” in
training, but “Crown daisy” is visually different from them.
This will be our future study. Practically, developers might
consider expanding the training dataset, using text with de-
tailed visual descriptions, or augmenting TAPER with ad-
vanced optimization that promotes generalization.

5.4. Conclusion

We propose a new framework, train-once-for-all person-
alization, named TAPER, that is trained just once and can
support many end-users given their task descriptions only.
TAPER is simple and general. Personalization with TA-
PER is scalable, training-free, compact, and effective on
various applications we evaluated.
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