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Figure 1. We decompose a dynamic human into 3D UV Volumes along with a 2D texture. The disentanglement of appearance and geometry
enables us to achieve (a) high-fidelity real-time novel view synthesis guided by (b) a smooth UV avatar, (c) retexturing of a 3D human by
editing a 2D texture, (d) reshaping and (e) reposing by changing the parameters of a human model while keeping the texture untouched.

Abstract

Neural volume rendering enables photo-realistic render-
ings of a human performer in free-view, a critical task in
immersive VR/AR applications. But the practice is severely
limited by high computational costs in the rendering pro-
cess. To solve this problem, we propose the UV Volumes,
a new approach that can render an editable free-view video
of a human performer in real-time. It separates the high-
frequency (i.e., non-smooth) human appearance from the
3D volume, and encodes them into 2D neural texture stacks
(NTS). The smooth UV volumes allow much smaller and
shallower neural networks to obtain densities and texture
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coordinates in 3D while capturing detailed appearance in
2D NTS. For editability, the mapping between the parame-
terized human model and the smooth texture coordinates al-
lows us a better generalization on novel poses and shapes.
Furthermore, the use of NTS enables interesting applica-
tions, e.g., retexturing. Extensive experiments on CMU
Panoptic, ZJU Mocap, and H36M datasets show that our
model can render 960 × 540 images in 30FPS on average
with comparable photo-realism to state-of-the-art methods.
The project and supplementary materials are available at
https://fanegg.github.io/UV-Volumes.

1. Introduction

Synthesizing a free-view video of a human performer
in motion is a long-standing problem in computer vision.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Early approaches [4] rely on obtaining an accurate 3D mesh
sequence through multi-view stereo. However, the com-
puted 3D mesh often fails to depict the complex geome-
try structure, resulting in limited photorealism. In recent
years, methods (e.g., NeRF [33]) that make use of volumet-
ric representation and differentiable ray casting have shown
promising results for novel view synthesis. These tech-
niques have been further extended to tackle dynamic scenes.

Nonetheless, NeRF and its variants require a large
number of queries against a deep Multi-Layer Perceptron
(MLP). Such time-consuming computation prevents them
from being applied to applications that require high ren-
dering efficiency. In the case of static NeRF, a few meth-
ods [10, 42, 58] have already achieved real-time perfor-
mance. However, for dynamic NeRF, solutions for real-time
rendering of volumetric free-view video are still lacking.

In this work, we present UV Volumes, a novel frame-
work that can produce an editable free-view video of a hu-
man performer in motion and render it in real-time. Specif-
ically, we take advantage of a pre-defined UV-unwrapping
(e.g., SMPL or dense pose) of the human body to tackle
the geometry (with texture coordinates) and textures in two
branches. We employ a sparse 3D Convolutional Neu-
ral Networks (CNN) to transform the voxelized and struc-
tured latent codes anchored with a posed SMPL model
to a 3D feature volume, in which only smooth and view-
independent densities and UV coordinates are encoded. For
rendering efficiency, we use a shallow MLP to decode the
density and integrate the feature into the image plane by
volume rendering. Each feature in the image plane is then
individually converted to the UV coordinates. Accordingly,
we utilize the yielded UV coordinates to query the RGB
value from a pose-dependent neural texture stack (NTS).
This process greatly reduces the number of queries against
MLPs and enables real-time rendering.

It is worth noting that the 3D Volumes in the proposed
framework only need to approximate relatively “smooth”
signals. As shown in Figure 2, the magnitude spectrum
of the RGB image and the corresponding UV image indi-
cates that UV is much smoother than RGB. That is, we only
model the low-frequency density and UV coordinate in the
3D volumes, and then detail the appearance in the 2D NTS,
which is also spatially aligned across different poses. The
disentanglement also enhances the generalization ability of
such modules and supports various editing operations.

We perform extensive experiments on three widely-used
datasets: CMU Panoptic, ZJU Mocap, and H36M datasets.
The results show that the proposed approach can effec-
tively generate an editable free-view video from both dense
and sparse views. The produced free-view video can be
rendered in real-time with comparable photorealism to the
state-of-the-art methods that have much higher computa-
tional costs. In summary, our major contributions are:

UV magnitude spectrumUV imageRGB magnitude spectrumRGB image

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. Discrete Fourier Transform (DFT) for RGB and UV
image. In the magnitude spectrum, the distance from each point
to the midpoint describes the frequency, the direction from each
point to the midpoint describes the direction of the plane wave,
and the value of the point describes its amplitude. The distribution
of the UV magnitude spectrum is more concentrated in the center,
which indicates that the frequency of the UV image is lower.

• A novel system for rendering editable human perfor-
mance video in free-view and real-time.

• UV Volumes, a method that can accelerate the render-
ing process while preserving high-frequency details.

• Extended editing applications enabled by this frame-
work, such as reposing, retexturing, and reshaping.

2. Related Work
Novel View Synthesis for Static Scenes. Novel view
synthesis for static scenes is a well-explored problem. Early
image-based rendering approaches [2, 6, 7, 14, 24] utilize
densely sampled images to obtain novel views with light
fields instead of explicit or accurate geometry estimation.
The learning-based methods [8, 16, 23, 32, 47] apply neural
networks to reuse input pixels from observed viewpoints.
In recent years, dramatic improvements have been achieved
by neural volume rendering techniques. For instance,
NeRF [33] represents a static scene using a deep MLP,
mapping 3D spatial locations and 2D viewing directions
to volumetric density and radiance. For computation effi-
ciency, rendering high-resolution scenes via NeRF is time-
consuming since it requires millions of queries to obtain the
density and radiance. Subsequent works [9,10,17,35,42,58]
attempt to accelerate the inference of vanilla NeRF in var-
ious ways, some of which achieve real-time rendering per-
formance, but only for static scenes. For editability, the
generative models, FENeRF [49] and IDE-3D [48], exploit
semantic masks to edit the synthesized free-view portraits,
but they are not compatible with the free-view performance
capture task. NeuTex [56] also employs the UV-texture to
store the appearance and enables editing on the texture map.
Unfortunately, it can only tackle static objects.

Free-View Video Synthesis. Early methods [5, 34] rely
on accurate 3D reconstruction and texture rendering cap-
tured by dome-based multi-camera systems to synthesize

16622



Neural Texture Stack (NTS)

Volume 
Generator

UV Volumes

Texture 
Generator

Texture Stack

UVDensePoseUV RGBFeature Map RGBGT

Figure 3. Overall pipeline of proposed framework. Our model has two main branches: 1) Based on a human pose θ, a volume generator
constructs UV volumes involving the feature of UV information. Then a feature map can be rendered via differentiable raymarching and
decoded to texture coordinates (UV) pixel-by-pixel. 2) A texture generator produces a pose-dependent Neural Texture Stack(NTS) E that
encodes the highly-detailed appearance information. The UV coordinates and the texture embedding interpolated from NTS are passed
into an MLP to predict the color Ĉ at the desired ray direction d.

novel views of a dynamic scene. Recently, various neural
representations have been employed in differentiable ren-
dering to depict dynamic scenes, such as voxels [29], point
clouds [55], textured meshes [1, 31, 50], and implicit func-
tions [25,27,36,37,39,40]. Particularly, DyNeRF [25] takes
the latent code as the condition for time-varying scenes,
while NeuralBody [39] employs structured latent codes an-
chored to a posed human model. Other deformation-based
NeRF variants [26, 36, 37, 40, 51] take as input the monoc-
ular video, as a result, they fail to synthesize the free-
view spatio-temporal visual effects. Besides, they also suf-
fer from the high computational cost in inference and the
lack of editing abilities. Geometric constraints and dis-
crete space representation are exploited in methods [44,59],
and a hybrid scene representation is used for efficiency in
[30, 43]. The method [53] employs Fourier PlenOctree to
accelerate rendering, but the photorealism is harmed by
the shared discrete representation across the time sequence.
Furthermore, all these models are still non-editable.

Editable Free-View Videos. There exist previous works
that focus on the problem of producing editable free-view
videos or animatable avatars. ST-NeRF [60] exploits the
layered neural representation in order to move, rotate and
resize individual objects in free-view videos. Some meth-
ods [38, 54, 57] decompose a dynamic human into a canon-
ical neural radiance field and a skeleton-driven warp field
that backward maps observation-space points to canonical
space. However, learning a backward warp field is highly

under-constrained since the backward warp field is pose-
dependent [3]. Textured Neural Avatars [45] proposes uti-
lizing the texture map to improve novel pose generalization,
whereas employing a 2D rendering neural network prevents
it from consistent novel view synthesis. Neural Actor [28]
takes the texture map as latent variables. Nevertheless, the
requirement of the ground-truth texture map limits their ap-
plication in many cases. In contrast, our approach esti-
mates the texture map end-to-end, and can produce editable
(including reposing, reshaping and retexturing) free-view
videos in real-time from both dense and sparse views.

3. Method

Given multi-view videos of a performer, our model gen-
erates an editable free-view video that supports real-time
rendering. We use the availability of an off-the-shelf SMPL
model and the pre-defined UV unwrap in Densepose [15] to
introduce proper priors into our framework. In this section,
we describe the details of our framework, which is shown
in Figure 3. The two main branches in our framework
are presented in turn. One is to generate the UV volumes
(Sec. 3.1), and the other is the generation of NTS (Sec. 3.2).
Then we provide a more detailed description of the training
process in Sec. 3.3.

3.1. UV Volumes

Neural radiance fields [33] have been proven to produce
free-viewpoint images with view consistency and high fi-
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delity. Nonetheless, capturing the high-fidelity appearance
in a dynamic scene is time-consuming and difficult. To this
end, we propose the UV volumes in which only the density
and texture coordinate (i.e., UV coordinate) are encoded in-
stead of human appearance. Given the UV image rendered
by ray casting, we can use the UV coordinates to query the
corresponding RGB values from the 2D NTS by employing
the UV unwrap defined in Densepose.

We utilize the volume generator to construct UV vol-
umes. First, the time-invariant latent codes anchored to a
posed SMPL model are voxelized and taken as the input.
Then we use the 3D sparse CNN to encode the voxelized
latent codes to a 3D feature volume named UV volumes,
which contains UV information.

Given a sample image I of multi-view videos, we pro-
vide a posed SMPL parameterized by human pose θ and a
set of latent codes z anchored on its vertices and then query
the feature vector f(x, z, θ) at point x from the generated
UV volumes. The feature vector is fed into a shallow MLP
Mσ to predict the volume density:

σ(x) =Mσ(f(x, z, θ)) . (1)

We then apply the volume rendering [22] technique to
render the UV feature volume into a 2D feature map. We
sample Ni points {xi}Ni

i=1 along the camera ray r between
near and far bounds based on the posed SMPL model in 3D
space. The feature at the pixel can be calculated as:

F(r) =

Ni∑
i=1

Ti (1− exp(−σ(xi) δi)) f(xi, z, θ) ,

where Ti = exp

−
i−1∑
j=1

σ(xj) δj

 ,

(2)

and δi = ∥xi+1 − xi∥2 is the distance between adjacent
sampled points. An MLP Muv is then used to individually
decode all the pixels in the yielded view-invariant feature
map to their corresponding texture coordinates and generate
the UV image. In specific, the texture coordinates can be
represented as:(

P̂(r), Û(r), V̂(r)
)
=Muv(F(r)) , (3)

where P̂ and Û , V̂ are the corresponding part assignments
and UV coordinates, respectively.

3.2. Neural Texture Stack

Given the generated UV image, we employ the continu-
ous texture stack encoded in the implicit neural representa-
tion to recover the color image. To extract the local relation
of the neural texture stack with respect to the human pose,

DensePose Ours DensePose Ours Ground-truth Ours

(a) UV images (b) Semantic labels (c) RGB images

Figure 4. Given noisy UV and semantic labels (e.g., red circles),
we can recover proper UV volumes (e.g., blue circles) under the
intrinsic multi-view constraint of minimizing the photometric er-
ror between renderings and ground-truth (e.g., green circles).

we use a CNN texture generator G to produce the pose-
dependent NTS:

Ek = G(θ,k) , (4)

where we subdivide the body surface into Nk = 24 parts,
and k is a one-hot label vector representing the k-th body
part. At a foreground pixel, the part assignments P̂ pre-
dicted from UV volumes (referred in Equation (3)) can be
interpreted as the probability of the pixel belonging to the
k-th body part, which is defined as

∑Nk

k=1 P̂k(r) = 1. For
each human body part k, the texture generator generates the
corresponding neural texture stack Ek. We forward propa-
gate the generator network G once to predict the neural tex-
tures with a batch size of 24. Let Ûk and V̂k denote the pre-
dicted UV coordinates of the k-th body part. We sample the
texture embeddings at non-integer locations (Ûk(r), V̂k(r))
in a piecewise-differentiable manner using bilinear interpo-
lation [19]:

ek(r) = Ek
[
Ûk(r), V̂k(r)

]
. (5)

To model the high-frequency color of human perfor-
mances, we apply positional encoding γ(·) [41] to UV co-
ordinates and the viewing direction, and pass the encoded
UV map along with the sampled texture embedding into an
MLPMc to decode the view-dependent color Ĉk(r) of cam-
era ray r at the desired viewing direction d:

Ĉk(r) =Mc

(
γ(Ûk(r), V̂k(r)), ek(r),k, γ(d)

)
. (6)

Following that, the color Ĉ(r) at each pixel is recon-
structed via a weighted combination of decoded colors at
Nk body parts, where the weights are prescribed by part
assignments P̂k:

Ĉ(r) =
Nk∑
k=1

P̂k(r) Ĉk(r). (7)
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Figure 5. The novel view synthesis of our model on various human performances, which achieves high-fidelity renderings in real-time.

3.3. Training

Collecting the results of all rays {Ĉ(r)}H×W , we denote
the entire rendered image as Î ∈ RH×W×3. To learn the
parameters of our model, we optimize the photometric error
between the renderings Î and the ground-truth images I:

Lrgb =
∥∥∥Î − I

∥∥∥2
2
. (8)

Benefiting from our memory-saving framework that dis-
entangles appearance and geometry, we can render an
entire image during training instead of sampling image
patches [33, 39]. Thus, we also compare the rendered im-
ages against the ground-truth using perceptual loss [11, 20,
52], which extracts feature maps by a pretrained fixed VGG
network ψ(·) [46] from both images and minimizes the L1-
norm between them:

Lvgg =
∥∥∥ψ(Î)− ψ(I)

∥∥∥
1
. (9)

To warm-start the UV volumes and regularize its solution
space, we leverage the pre-trained DensePose model as an
auxiliary supervisor. In particular, we perform the Dense-
Pose network on the training data and utilize the outputs of
Denspose as pseudo supervision, such that we can regular-
ize UV volumes by semantic loss Lp and UV-metric loss
Luv between DensePose outputs and our UV images:

Lp =

Nk∑
k=1

Pk log(P̂k),

Luv =

Nk∑
k=1

Pk

(∥∥∥Ûk − Uk

∥∥∥2
2
+
∥∥∥V̂k − Vk

∥∥∥2
2

)
,

(10)

where Nk is the number of body parts, and Pk and P̂k are
respectively the multi-class semantic probability at the k-
th part of DensePose outputs and UV images. Similarly,
Uk,Vk and Ûk, V̂k are the predicted UV coordinates at the

k-th part of DensePose and UV images, respectively. Lp is
chosen as a multi-class cross-entropy loss to encourage ren-
dered part labels to be consistent with provided DensePose
labels, and Luv promotes to generate inter-frame consistent
UV coordinates.

We present the UV images predicted by our UV volumes
and the pseudo supervision of DensePose in Figure 4. Given
noisy semantic and UV labels (e.g., the red circles), we can
reconstruct proper UV volumes (e.g., the blue circles) un-
der the intrinsic multi-view constraint of RGB loss (e.g., the
green circles). As shown in the second row of Figure 4, it
can be observed that UV volumes successfully recover the
UV images even though the provided DensePose supervi-
sion is incorrect.

Given the binary human mask S for the observed image
I, we propose a silhouette loss to facilitate UV volumes
modeling a more fine-grained geometry:

T (r) = exp

−
Ni−1∑
j=1

σ(xj)δj

 ,

Ls =
∑
r∈R

(S(r)(1− T (r)) + (1− S(r))T (r)) ,
(11)

where T (r) is accumulated transmittance. Here we define
the value of mask S(r) in the foreground as zero, and the
background as one.

We combine the aforementioned losses and jointly train
our model to optimize the full objective:

L = Lrgb + λvggLvgg + λpLp + λuvLuv + λsLs. (12)

4. Experiments
To demonstrate the effectiveness and efficiency of our

method, we perform extensive experiments. We report
quantitative results using four standard metrics: PSNR,
SSIM, LPIPS, and FPS1. And the qualitative experiments

1The sparse CNN output is pre-computed for the reported framerates.
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Datasets
View synthesis quality Efficiency

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
DN NB AN w/o Lp Ours DN NB AN w/o Lp Ours DN NB AN w/o Lp Ours DN NB AN Ours

CMU
(960×540)

p1 30.04 29.78 27.12 30.09 30.38 0.968 0.962 0.936 0.963 0.966 0.088 0.099 0.135 0.055 0.036 1.01 0.76 0.21 44.76
p2 25.56 25.68 26.13 28.51 28.78 0.939 0.942 0.903 0.952 0.953 0.137 0.139 0.204 0.062 0.044 1.45 1.28 0.34 37.30
p3 27.04 27.12 24.20 29.36 29.38 0.955 0.956 0.874 0.962 0.962 0.154 0.142 0.259 0.062 0.047 2.12 1.28 0.33 34.60

ZJU
(512×512)

313 29.67 28.82 27.50 28.44 29.11 0.958 0.952 0.939 0.956 0.958 0.084 0.088 0.124 0.068 0.053 2.07 1.51 0.62 51.39
377 27.13 28.12 25.71 26.18 26.28 0.933 0.949 0.923 0.931 0.930 0.112 0.088 0.152 0.094 0.085 2.41 2.02 0.76 38.70
386 30.29 30.12 28.51 28.38 28.48 0.938 0.939 0.915 0.919 0.916 0.122 0.112 0.163 0.103 0.078 3.00 4.89 0.91 35.88

H36M
(500×500)

s9p 21.53 25.11 26.08 26.03 26.19 0.824 0.912 0.917 0.915 0.916 0.242 0.136 0.139 0.085 0.084 1.06 2.19 0.30 40.00
s11p 21.27 24.39 25.21 25.20 25.82 0.828 0.899 0.906 0.905 0.911 0.313 0.193 0.174 0.118 0.111 1.18 1.02 0.67 33.41
s1p 18.91 23.24 23.43 23.83 23.98 0.781 0.909 0.901 0.911 0.911 0.332 0.149 0.162 0.094 0.093 1.38 0.97 0.50 41.43

Table 1. Quantitative results of novel view synthesis. We present competitive PSNR and SSIM while outperforming baselines on LPIPS
(agrees well with human visual perception [61]) and achieve 30 FPS (pre-computed sparse CNN) available for real-time applications.
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Figure 6. Qualitative results of novel view synthesis on CMU Panoptic
and ZJU Mocap. Benefiting from spatially aligning the appearance across
different poses in a 2D texture, our method produces high-fidelity novel
view synthesis, while baselines suffer from blurs (at letters and wrinkles).
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Figure 7. Qualitative results of novel pose synthesis on
CMU Panoptic, ZJU Mocap. Benefiting from the disentan-
glement of appearance and geometry, our method performs
better on novel poses, especially for preserving sharp details.

further illustrate that our method produces photo-realistic
images in different tasks, e.g., novel view synthesis, repos-
ing, reshaping, and retexturing.
Dataset. We perform experiments on several types of
datasets which consist of calibrated and synchronized
multi-view videos. We use 26 and 20 training views on
CMU Panoptic dataset [21] with 960 × 540 resolution and
ZJU Mocap dataset [39] with 512× 512 resolution, respec-
tively. The most challenging one is the H36M dataset [18]
with 500 × 500 resolution, where only three cameras are
available for training. We obtain the binary human mask by
[13]. The evaluation is done on the hold-out cameras (novel
views) or hold-out segments of the sequence (novel poses).
Baselines. To validate our method, we compare it against

several state-of-the-art free-view video synthesis tech-
niques: 1) DN: DyNeRF [25], which takes time-varying
latent codes as the conditions for dynamic scenes; and 2)
NB: NeuralBody [39], which takes as input the posed hu-
man model with structured time-invariant latent codes and
generates a pose-conditioned neural radiance field; 3) AN:
Animatable-NeRF [38], which uses neural blend weight
fields to generate correspondences between observation and
canonical space.
Novel View Synthesis. For comparison, we synthesize im-
ages of training poses in hold-out test views. Table 1 shows
the comparison of our method against baselines, which
demonstrates that our method performs best LPIPS and FPS
among all methods. Specifically, we achieve rendering free-
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Method CMU (960×540) ZJU (512×512) H36M (500×500)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 25.94 0.918 0.146 24.51 0.918 0.120 25.54 0.884 0.170
AN 23.65 0.883 0.208 24.55 0.911 0.153 25.00 0.873 0.170
Ours 26.20 0.927 0.073 23.69 0.910 0.104 25.04 0.874 0.141

Table 2. Quantitative results of novel pose synthesis. We achieve
competitive PSNR and SSIM while outperforming baselines on
LPIPS, which agrees well with humans [61].

view videos of human performances in 30FPS with the help
of UV volumes. Note that LPIPS agrees surprisingly well
with human visual perception [61], which indicates that our
synthesis is more visually similar to ground-truth.

Figure 6 presents the qualitative comparison of our
method with baselines. Baselines fail to preserve the sharp
image details, whose rendering is blurry and even split. In
contrast, our method can accurately capture high-frequency
details like letters, numbers and wrinkles on shirts and the
belt on pants benefiting from our NTS model. Furthermore,
we show the view synthesis results of dynamic humans in
Figure 5, which indicate that our method generates high-
quality appearance results even with rich textures and chal-
lenging motions. Note that the rightmost example is from
the H36M dataset with only 4 views. Please refer to the
supplementary material for more results.
Reposing. We perform reposing on the human performer
with novel motions. As DyNeRF is not designed for edit-
ing tasks, we compare our method against NeuralBody and
Animatable-NeRF. As shown in Table 2, quantitative results
demonstrate that our method achieves competitive PSNR
and SSIM while outperforming others on LPIPS.

The qualitative results are shown in Figure 7. For novel
human poses, NeuralBody gives blurry and distorted ren-
dering results, while Animatable-NeRF even produces split
humans due to a highly under-constrained backward warp
field from observation to canonical space. In contrast, syn-
thesized images of our method exhibit better visual qual-
ity with reasonable high-definition dynamic textures. The
results indicate that using smooth UV volumes in 3D and
encoding texture in 2D has better controllability on the
novel pose generalization than directly modeling a pose-
conditioned neural radiance field.
Reshaping. We demonstrate that our approach can edit the
shape of reconstructed human performance by changing the
shape parameters of the SMPL model. We illustrate the
qualitative results in Figure 1 and Figure 8. NeuralBody
fails to infer the reasonable changes of the cloth, while our
method generalizes well on novel shapes.
Retexturing. With the learned dense correspondence of
UV volumes and neural texture, we can edit the 3D cloth
with a user-provided 2D texture, as shown in Figure 9. Vi-
sually inspected, the rich texture patterns are well preserved
and transferred to correct semantic areas in different poses.
Moreover, our model supports changing textures’ style and

Original Fat Slim Large
NB Ours NB Ours NB Ours NB Ours

Figure 8. Qualitative results of reshaping. By changing the SMPL
parameters β, we can conveniently make the human performer fat-
ter, slimmer, or larger. The result of NeuralBody is shown on the
left of each image pair, while ours is on the right. Obviously, more
details and consistency are preserved by ours in varying shapes.

Figure 9. Qualitative results of retexturing. The disentanglement
of appearance and geometry allows us to conveniently edit the tex-
ture by drawing patterns on the NTS. The rich texture patterns are
well preserved and transferred to correct semantic areas in differ-
ent poses, which demonstrates that the texture is not only changed
as expected under the edited frame, but also transferred to a novel
frame with the modeled dynamics.

appearance, which are presented in Figure 10. Thanks to
the style transfer network [12], we can perform arbitrary
artistic stylizations on 3D human performance. Given any
fabric texture, we can even dress the performer in various
appearances, which enables 3D virtual try-on in real-time.

4.1. Ablation Studies

We conduct ablation studies on performer p1 of the
CMU dataset. As shown in Table 3, we analyze the ef-
fects of different losses for the proposed approach by re-
moving warm-start loss, perceptual loss and silhouette loss,
respectively. Then, we analyze the time consumption of
each module. We encourage the reader to see the supple-
ment for additional ablations, discussion of model design,
and other experimental results.
Impact of warm-start loss. We present using semantic and
UV-metric loss to warm-start the UV volumes and constrain
its solution space. To prove the effectiveness of this pro-
cess, we train an ablation (No Warm-start Loss) built upon
our full model by eliminating the warm-start loss. It gives a
lower performance in all metrics, especially the LPIPS in-
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(a) Texture transfer (b) Try-on

Texture Style Transferred texture Texture Appearance New texture

Figure 10. Given any arbitrary artistic style or cloth appearance,
we can render (a) a 3D dynamic human with the transferred texture
or perform (b) a 3D virtual try-on in real-time.

Ablations Novel View Synthesis Novel Pose Generation
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

No Warm-start Loss 30.37 0.964 0.060 26.14 0.917 0.076
No Perceptual Loss 30.09 0.963 0.055 26.05 0.919 0.079
No Silhouette Loss 17.47 0.874 0.207 16.95 0.860 0.218
Complete Model 30.38 0.966 0.036 26.20 0.927 0.073

Table 3. Ablation study about different objective functions.

creased a lot when rendering novel views. This comparison
indicates that the warm-start loss yields better information
reuse of different frames by transforming the observation
XYZ coordinates to canonical UV coordinates defined by
the consistent semantic and UV-metric loss.
Impact of perceptual loss. In contrast to sampling image
patches as baselines, we can render an entire image during
training, allowing us to use perceptual loss. Table 3 shows
that using the same model but training without the percep-
tual loss (No Perceptual Loss) gives a lower performance
in all metrics, especially the PSNR and LPIPS. It demon-
strates that the perceptual loss is of critical importance to
improving the visual quality of synthesized images, which
is also reflected in Table 1 (w/o Lp).
Impact of silhouette loss. To facilitate the UV volumes
modeling a more fine-grained geometry, we employ a sil-
houette loss by using the 2D binary mask of the human per-
former. We present an ablation (No Silhouette Loss) built
upon our full model by eliminating the silhouette loss, as
shown in Table 3. It is obvious that No Silhouette Loss gives
the worst performance in all metrics among all ablations.
This comparison shows that our geometry does benefit from
the silhouette loss, which can be seen in the supplement to
get an intuitive visual impression.

4.2. Time Consumption

We analyze the time consumption of each module in
our framework and the corresponding module in Neural-

Method
Novel Pose Generation

Sparse CNN
Novel View Synthesis

Density Color Model Rendering

Ours 48.78 7.08
UV NTS RGB

1.731.53 7.52 1.60
9.12
19.46

68.23

NB 52.04 84.38 546.81 32.65
663.84

715.88

Table 4. Time consumption of each module in milliseconds(ms).

Body [39] on ZJU Mocap performer 313, as shown in Table
4. On average, it takes 48.78 ms for us to obtain the UV vol-
umes from the posed human model. Then, our method takes
only 19.46 ms (51FPS) to access the free-view renderings,
which benefits from the smooth UV volumes that allow us-
ing much smaller and shallower MLP to obtain densities
and texture coordinates in 3D while capturing detailed ap-
pearance in 2D NTS. On the contrary, NeuralBody spends
663.84 ms (1.5FPS) to synthesize novel views, which pre-
vents it from being used in applications that require running
in real-time. Even on the novel pose generalization task, our
method can reach 68.23 ms per frame (14FPS) as well. All
experiments are run on a single NVIDIA A100 GPU.

4.3. Limitation

Our method leverages the SMPL model as a scaffold and
DensePose as supervision. Consequently, our method can
handle clothing types that roughly fit the human body, but
fails to correct the prediction from DensePose when han-
dling long hair, loose clothing, accessories, and photore-
alistic hands. Therefore, the future work is to utilize ex-
plicit cloth models and extra hand tracking. While we use
time-invariant structured latent codes to encourage tempo-
rally consistent UV, a little perturbation caused by the vol-
ume generator may occur in the dynamic human (e.g., some
unnatural sliding on the trouser when retexturing the per-
former). It might be improved by adding temporal consis-
tency loss. Replacing the volume representation with other
sparse structures for efficiency is also promising.

5. Conclusions
We present the UV volumes for free-view video synthe-

sis of a human performer. It is the first method to generate
a real-time free-view video with editing ability. The key
is to employ the smooth UV volumes and highly-detailed
textures in an implicit neural texture stack. Extensive ex-
periments demonstrate both the effectiveness and efficiency
of our method. In addition to improving efficiency, our ap-
proach can also support editing, e.g., reposing, reshaping,
or retexturing the human performer in the free-view videos.
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