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Abstract

We revisit and advance visual prompting (VP), an input
prompting technique for vision tasks. VP can reprogram a
fixed, pre-trained source model to accomplish downstream
tasks in the target domain by simply incorporating univer-
sal prompts (in terms of input perturbation patterns) into
downstream data points. Yet, it remains elusive why VP
stays effective even given a ruleless label mapping (LM)
between the source classes and the target classes. Inspired
by the above, we ask: How is LM interrelated with VP? And
how to exploit such a relationship to improve its accuracy
on target tasks? We peer into the influence of LM on VP
and provide an affirmative answer that a better ‘quality’ of
LM (assessed by mapping precision and explanation) can
consistently improve the effectiveness of VP. This is in con-
trast to the prior art where the factor of LM was missing.
To optimize LM, we propose a new VP framework, termed
ILM-VP (iterative label mapping-based visual prompting),
which automatically re-maps the source labels to the target
labels and progressively improves the target task accuracy
of VP. Further, when using a contrastive language—image
pretrained (CLIP) model for VP, we propose to integrate
an LM process to assist the text prompt selection of CLIP
and to improve the target task accuracy. Extensive exper-
iments demonstrate that our proposal significantly outper-
forms state-of-the-art VP methods. As highlighted below,
we show that when reprogramming an ImageNet-pretrained
ResNet-18 to 13 target tasks, ILM-VP outperforms base-
lines by a substantial margin, e.g., 7.9% and 6.7% accuracy
improvements in transfer learning to the target Flowers102
and CIFARIO0O0 datasets. Besides, our proposal on CLIP-
based VP provides 13.7% and 7.1% accuracy improvements
on Flowers102 and DTD respectively. Code is available at
https://github.com/OPTML-Group/ILM-VP.

1. Introduction

When learning new knowledge, humans typically start to
compare and connect it with the knowledge that they were
familiar with. The same idea is also applied in ML. For ex-
ample, in the ‘pretraining + finetuning’ paradigm, an ML
model (e.g., deep neural network or DNN) is first trained
on a (usually large) source dataset. When a relevant down-
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Fig. 1. Overview of VP pipelines (prior art [1,2] and our proposal termed
ILM-VP) and accuracy improvement achieved by ILM-VP on target image
classification tasks at-a-glance. Generally speaking, VP aims to generate
a universal input perturbation template (i.e., ‘visual prompt’) and lever-
age a source-target LM (label mapping) in order to drive the fixed source
model (e.g., pretrained on ImageNet-1K) to conduct a target task (e.g.,
Flowers102 image classification). Compared to the prior art, our proposal
(ILM-VP) couples the design of LM with VP training. The resulting LM-
VP co-design improves target task accuracy across a variety of target image
classification tasks using a fixed ImageNet-pretrained source model.
stream task is present, the pre-trained model is then fine-
tuned over the target dataset. This learning paradigm has
been predominant in the classical transfer learning [3-8] as
well as in the recent deep representation learning [9—13].
However, finetuning the pre-trained model requires ei-
ther partial or entire model modifications. If the pre-
trained model is of large size, then it becomes too costly
to store a modified copy of the pre-trained model for each
downstream task. In contrast, visual prompting (VP) (see
Fig. 1), also known as model reprogramming or adversar-
ial reprogramming, provides a new alternative to finetun-
ing [1,2, 14-17]. Instead of directly modifying the pre-
trained source model, VP integrates an input transforma-
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tion and/or an output transformation to reprogram the fixed
source model to accomplish a new target task; see an il-
lustration of existing VP framework in Fig. 1. The input
transformation is typically realized by incorporating (data-
agnostic) input perturbations (i.e., prompts) into input sam-
ples, and the output transformation is given by a function
that maps source labels to target labels, known as label map-
ping (LM). Recently, VP has shown great promise in var-
ious applications of foundation models, ranging from pre-
trained vision models [1, 14, 15, 17-20] to language-vision
models [2,21-23].

The idea of prompt learning originated from in-context
learning or prompting in natural language processing (NLP)
[24-26]. However, when it is introduced to the vision do-
main [1, 2], new questions arise. First, the recent work
[1,14,27] showed that VP remains powerful even if the tar-
get task largely deviates from the source domain. For exam-
ple, a new performance record on target medical datasets
is achieved in [1] when using VP to reprogram the fixed,
ImageNet pre-trained source model. The ‘mystery’ in this
example is that LM is conducted between two seemingly
irrelevant source and target domains. Despite the lack of
interpretability, VP can still leverage such connected source
labels and the source model to effectively predict target data
points. This raises the first open question: What is the ratio-
nality behind LM and how to explore its influence on VP?
Second, unlike prompt learning in the NLP domain, input
prompts in the vision domain are typically given by ‘noisy’
perturbations to image pixels; see illustration in Fig. 1. To-
gether with the lack of interpretability of LM, the second
open question is: How to interpret LM and the seemingly
random perturbation pattern in VP?

As mentioned above, the lack of understanding of
LM and the poor interpretability of VP drive our stud-
ies in this work. We develop a new visual prompting
framework, termed ILM-VP (iterative label mapping-based
visual prompting), which provides an interactive and ex-
plainable design between LM and prompt learning (i.e.,
input prompt generation); see Fig.1 for the schematic
overview. Our proposal can automatically adjust LM be-
tween the source domain and the target domain by taking
both mapping precision and explanation into consideration,
and can leverage the optimized LM to further improve the
accuracy and the explainability of prompt learning. Al-
though some prior work [ 1, 17,27] attempted to improve the
quality of LM as well as the overall performance of VP, they
are different from our proposal in two major aspects. First,
none of the prior work co-designed LM and VP. For exam-
ple, the prior art [ 1] used a pre-prompt prediction frequency
to determine the LM function. However, we find signifi-
cant inconsistency between the pre-prompt and post-prompt
prediction frequency of the same source model, which ex-
plains the sub-optimality of the current VP methods due to

the lack of mapping precision. Second, to the best of our
knowledge, VP is still treated as a ‘black box’ in the prior
work. Yet, our design can provide graceful visual explana-
tions to the underlying mechanisms of VP. Third, we for
the first time show that LM can provide a unified solution
to improving the accuracy of VP to re-purpose both vision
and language-vision source models. Our contributions are
unfolded below.

® We revisit the LM problem in VP and uncover the
deficiencies of existing LM methods: the lack of mapping
precision and the lack of explanation.

@ Given the importance of LM, we propose the first LM-
VP co-design framework, termed ILM-VP, through a novel
bi-level optimization viewpoint.

® Beyond LM for vision models, we show that LM can
also be generalized to assist the text prompt selection of
CLIP (contrastive language—image pretraining) and to im-
prove the target task accuracy of VP using the CLIP model.

@ We empirically demonstrate the accuracy and expla-
nation merits of our proposal across multiple source models
and target datasets.

2. Related Work

Prompting in NLP. Prompting is used to prepend lan-
guage instruction to the input text for a language model
to better accomplish a given task [28]. While prompting
makes a significant contribution to the generalization abil-
ity of large pre-trained language models (e.g., GPT-3) [24],
it requires hand-crafting prompt design by experts. Recent
work proposed to directly optimize the prompting embed-
dings through gradients together with lightweight finetun-
ing the model, which is called prompt tuning [25,29]. It
is shown that this method is effective and efficient, which
achieves competitive performance to the finetuning of the
full language model.

Visual prompting and model reprogramming. VP was
first defined in [2] to mimic the prompting idea in NLP.
Prior to that, a very similar idea was used in computer vi-
sion (CV) but with a different name, known as model repro-
gramming or adversarial reprogramming [14—17,30-33].
They both focus on re-purposing a fixed, pre-trained vision
model for a new task by leveraging a universal input pat-
tern and an output LM function. Although not outperform-
ing full fine-tuning in transfer learning, VP yields an ad-
vantage of parameter-efficient fine-tuning, which requires
a much smaller parameter storage space. Furthermore, the
smaller parameter space requires less training data to con-
verge. Beyond traditional pre-trained vision models, the
work [2] studied the effectiveness of VP in the language-
vision model CLIP for the first time. Assisted by CLIP,
VP can generate a prompting pattern of image data with-
out resorting to source-target label mapping. In [23], VP
and text prompt are jointly optimized in the CLIP model,
which leads to better performance. Furthermore, unadver-
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sarial learning [34] also enjoys the similar idea to VP, while
it focuses on generating class-wise prompts with the goal of
improving the out-of-distribution generalization ability of a
pre-trained model.

VP is gaining increasing attention. In [I], it is applied
to re-purpose black-box source models [35] and achieves
state-of-the-art (SOTA) performance on different target
datasets. Besides, in data-scarce regimes like the biochem-
ical domain, it is shown in [15, 17,27] that VP can enable
effective cross-domain transfer learning. Other than transfer
learning, VP is also used in in-domain settings to improve
different metrics like adversarial robustness [33] and fair-
ness [32]. Although input prompting is the most commonly-
used prompt learning method in the vision domain, gener-
alization to learning prompting parameters at intermediate
layers of a source model is also developed in [19-21, 36].
The resulting technique is called visual prompt tuning and
is typically restricted to vision transformers.

3. Problem Statement

In this section, we begin by providing some background
information on VP. Based on that, we will then present the
problem of our interest—-LM (label mapping)-which defines
how a visual prompt maps a source model prediction label
to a target data class. This is the first question encountered
in VP across domains but was typically overlooked in the
literature. By reviewing the commonly-used LM methods,
we will point out several open questions raised by LM.
Preliminaries on visual prompting. The technology of
VP addresses the problem of how to adapt a pre-trained
source model (e.g., the ImageNet-1K-pre-trained ResNet-
18) to a target downstream task (e.g., flower classifica-
tion over the Flowers102 dataset) without any task-specific
model modification (e.g., finetuning). Throughout the pa-
per, we focus on input-based VP (also known as model
reprogramming) [1, 2, 14-17, 27, 37], which incorporates
a carefully-designed universal perturbation pattern to the
raw target images so as to enforce the transferability of
the source model to the target domain. We refer readers
to Fig. 1 for the schematic overview.

To be concrete, let S and T denote the source dataset
and the target dataset, respectively. And let fg, denote a
source model with pre-trained parameters 0. Suppose fg,
is a supervised classifier, then it defines a mapping from the
input data x € R™s to the source label space ) € R%s, i.e.,
fo.(x) = ys € Vs, where Ny is the dimension of a source
datapoint, K is the number of source data classes, and ys is
the source class label. We have fy_ trained based on S, e.g.,
via empirical risk minimization. The goal of VP is to re-
program the source model fp_ to accomplish the target task
defined in 7, without making task-specific finetuning over
fo.. To this end, VP modifies the target data x, (of N di-
mensions) by injecting a task-designated input perturbation
pattern . This leads to the input prompting operation

with the generic form:
x'(8) = h(x,8) e RN, x, e R™ (1)

where x; is the target datapoint, and h(-,-) is an input trans-
formation that integrates x; with the input perturbation &
and produces a modified datapoint x'(d) with the source
data dimension Ng. It was shown in [1] that h can be spec-
ified as an additive perturbation model that pads & outside
the target data sample (see Fig. 1 for an example as well).

Given the input prompting model (1), VP then seeks the
optimal § to improve the target task accuracy when using
the pre-trained source model fg_. This raises a prompt gen-
eration problem, which is typically cast as

minimize  Ex, g o7, [fve(fo.(x'(8)):9)], (@)

where 7, denotes a supervised training set in 7~ with fea-
ture x; and label y, for a training sample, and ¢y p(-) is a vi-
sual prompting loss function that we will define later given
the prompted input x’(d) and the ground-truth target label
yt. To solve problem (2), the standard stochastic gradient
descent (SGD) method can be used. At inference, we will
integrate the designed 4 into test-time target datapoints and
call the source model fg, for downstream prediction in 7
(see Fig. 1 and a more detailed description in Fig. A1).
Label mapping: Existing methods and questions. Al-
though the input prompting operation (1) converts the origi-
nal x; to the source dimension-aligned datapoint x’ that the
source model can use, the successful realization of VP (3)
needs to map the source model’s prediction (in the source
label space Y with K classes) to the target task’s data label
(in the target label space ); with K; classes). In the ‘pre-
training + finetuning’ paradigm, we typically have K < K.
Therefore, the problem of LM (label mapping) arises:

(LM problem) Given the source model fp_, how to
build a mapping from the source label space ) to
the target label space ) so that the model’s predic-
tion directs to the correct target label?

Clearly, the desired prompt generation (2) heavily relies

on the LM scheme, which defines the one-to-one correspon-
dence between the source model’s prediction fo_(x'(6))
and the target data class y;. Yet, nearly all the existing
work neglects its influence on the prompt generation and
adopts either @ the simplest random mapping [2, 4] or @ a
pre-defined, one-shot frequency-based mapping [, | 5]. We
elaborate on the above two schemes below.
@® Random label mapping (RLM): RLM does not use any
prior knowledge or source model information to guide the
LM process. The mapped source labels (to the target do-
main) could be even random. For example, in the case of
‘ImageNet (source) + CIFAR-10 (target)’ [2, 14], existing
VP methods coded CIFAR-10 labels using the top 10 Ima-
geNet indices, i.e., ImageNet label : — CIFAR-10 label i,
despite the lack of interpretation.
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Fig. 2. V1suahzat10ns of RLM and FLM using the source dataset
ImageNet-1K and the pretrained ResNet-18, as well as the target dataset
Flowers102. In FLM, the pre-prompt label mapping using (3) selects
source labels different from FLM. Yet, the post-prompt label mapping us-
ing (3) at 8" in (4) shows many newly-selected source labels, indicating
(1) the dynamics of LM in the source domain, and (2) the pre-promp LM is
sub-optimal (i.e., mis-selecting the best-matching label) after VP training.

@ Frequency-based label mapping (FLM): FLM matches
target labels to source labels based on the source model’s
prediction frequencies on zero-padded target datapoints,

e., fo.(x'(8)) with § = 0. Here recall from (1) that
x'(0) = h(x¢,0). More concretely, a target label y; is
mapped to the source label y; following

Pr {Top-1 prediction of fo_(h(x¢,0))
iSyS|VXt Ent}

y; (yt) = arg ma’XyS (3)

where y7(y) explicitly expresses the dependence of the
mapped source label on the target label, 7, denotes the tar-
get data set in the class y;, and Pr{-} is the probability of
the event that the top-1 prediction of fg_ is the source class
ys under the zero-padded target data points in 7, .

As shown in Fig.2, FLM results in a mapping scheme
different from that of RLM. However, it is still difficult to
interpret the obtained LM results, and remains elusive how
the quality of LM impacts the performance of VP. In the rest
of the work, we will shed light on how to improve VP by
carefully designing the LM scheme and when and why LM
matters at different source and downstream tasks.

4. Method: Iterative Label Mapping-based VP

In this section, we uncover the hidden dynamics of LM
existing in the source task domain of VP, which was ne-
glected by the prior art. This finding then motivates us to
develop a novel VP framework, which we call Iterative LM-
based VP (ILM-VP). Compared to existing VP methods,
ILM-VP closes the loop between LM and prompt genera-
tion (2), and improves VP’s explanation and target task ac-
curacy simultaneously.

The ‘missing” dynamics of LM in the source domain.
As shown in Sec. 3, a prompt learning pipeline mainly in-
volves three steps: (A1) input prompt modeling (1), (A2)
LM (from the source label set Vs to the target label set V),
and (A3) prompt generation (2). The prior art follows the
pipeline (A1)—(A2)—(A3) to generate the desired prompt
6", which drives the source model to accomplish target
tasks. However, in the viewpoint of the source domain, the
prompt updating from § = 0 to 6" induces the prediction
dynamics of the source model fg_. That is,

fo.(x'(0)) > fo.(x'(8")), (©)

where x’(9) has been defined in (1), which refers to the §-
perturbed target data with the same dimension as the source
datapoint. As will be evident later, it is important to un-
derstand the dynamics (4) as it reflects the stability of the
selected source labels when mapping to the target labels.

Fig. 2 instantiates the dynamics of (4) in the scenario of

‘ImageNet (source) + Flowers102 (target)’ when the FLM-
oriented VP approach (3) is used [|]. Prior to prompt
generation, the Flowers102 target labels are first mapped
to the ImageNet source labels using the FLM method
(3), corresponding to step (A2) in prompt learning. This
yields the pre-prompt target-source mapping, denoted by
fo.(x'(0)) ' Y,. Similarly, after generating the prompt &
following (A3), we can obtain the post-prompt target-source
mapping, fg_(x'(8")) '), using the FLM method. Fig. 2
shows that there exists a significant discrepancy between
the pre-prompt LM and the post-prompt LM, evidenced
by the newly-selected source labels (‘Cardoon’, ‘Egret’,
‘Daisy’, ‘Paper Towel’) in the post-prompting phase. This
justifies the dynamics of (4) in LM. However, it also raises
a new concern that the pre-prompt target-source LM is sub-
optimal for prompt generation (2) given the existing dynam-
ics of LM in the source domain.
ILM-VP: A bi-level optimization viewpoint of VP. The
dynamics of LM inspire us to re-think the optimality of the
current VP pipeline: (A1)—(A2)—(A3). To improve it, we
propose to take the LM dynamics into the prompt learn-
ing process. This modifies the conventional VP pipeline to
(A1)—(A2)2(A3), where LM and prompt generation are in
a closed loop. Since the design of LM will interact with the
design of the prompt iteratively, we call the proposed new
design ILM-VP.

Next, we formally present ILM-VP through the lens
of bi-level optimization (BLO). Generally speaking, BLO
provides a hierarchical learning framework involving two
levels (i.e., upper and lower levels) of optimization tasks,
where one task is nested inside the other (i.e., the objec-
tive and variables of an upper-level problem depend on the
optimizer of the lower-level problem). In the context of
ILM-VP, we regard the prompt generation problem (2) as
the upper-level optimization task and the LM problem (3)
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as the lower-level problem. This yields

minimize B, yers, [0, ('(8)), 2 ()]

Upper-level prompt optimization ( 5)
subject to (v ) is obtained by (3) at (non-zero) prompt &

Lower-level LM design at current prompt & for every target label y¢

where the visual prompt & denotes the upper-level variable,
£ is the cross-entropy loss, and the mapped source label yg
is a lower-level variable for each given target label y; at the
current prompt . We also note that there exists a lower-
level constraint in (5) to ensure that if a source class has
been mapped to a target class, it will then be excluded when
mapping to a new target class. Further, it is clear from (5)
that the design of visual prompt 6 and LM y (vs. y) are
intertwined with each other.

To solve problem (5), we employ the alternating op-
timization (AO) method, which alternatively executes the
upper-level prompt generation and the lower-level LM. We
summarize the algorithm details in Algorithm 1 and provide
a schematic overview in Fig. A2.

Algorithm 1 The proposed ILM-VP algorithm

1: Initialize: Given target training set 7., pre-trained
model fg_, prompt pattern initialization §¢, and upper-
level learning rate A for SGD

2: for Epochn =0,1,...,do

3: Lower-level label mapping: Given §,,_1, call LM

for each target class y; in Tty

4: Upper-level prompt learning: Given LM, call

SGD to update prompt §,, < 05,1

5: end for

An interpretation merit of ILM-VP. In the literature, it
is quite difficult to interpret why VP can reprogram a source
model to conduct target tasks. The main hurdle of inter-
preting VP lies in the LM phase: It remains elusive why
the semantics-irrelevant source labels should be mapped to
target labels. However, we find that ILM-VP can alleviate
this interpretation difficulty to a large extent. We show the
explanation merit of ILM-VP through an empirical study
in Fig.3, where the target dataset is instantiated by Flow-
ers102 and the source dataset is ImageNet-1K. We list the
target labels, the mapped source labels using the baseline
FLM method [1], and the identified source labels using
ILM-VP, together with image examples under each label.
As we can see, an inferpretable target-source mapping is
found by ILM-VP, even if the target label and the source
label describe different subjects. For example, target im-
ages in the label ‘Spear Thistle’ share a similar color and
object shape with the source images in the label ‘Cardoon’.
The same observations can also be drawn from other target-
source label mappings together with their data instances.
This finding is quite encouraging and is in sharp contrast to

( Source data: ImageNet-1K ]
( FLM ) ( ILM )

TigerShark Cardoon

Target data

Flowers102

OxeyeDaisy

k3

)(

OxfordPets

)

DTD

)(

Food101

Fig. 3. Interpretation merit of ILM (ours) vs. FLM, visualized by LM
results in VP to re-purpose an ImageNet-pretrained source model (ResNet-
18) to conduct target image classification tasks on the target datasets Flow-
ers102, OxfordPets, DTD, and Food101. ILM consistently finds more
interpretable target-source label mappings than FLM, in terms of colors,
scenes, shapes, and textures. See Fig. A3 for more examples.

FLM. As will be evident in Sec. 5, the BLO-oriented ILM-
VP (5) would enforce a convergence of LM as the alternat-
ing optimization proceeds. As a result, source labels and
target labels, which share the most similar concepts (like
colors, scenes, shapes, and materials), will be identified.
We also show that the improved interpretation of LM con-
sistently enhances the target task accuracy of the VP.

5. Experiments

In this section, we empirically demonstrate the effective-
ness of our proposed ILM-VP method by comparing it with
a variety of baselines across multiple datasets, models, and
learning paradigms.

5.1. Experiment setups

Datasets and models. In the source domain, we will con-
sider the source models ResNet-18 and ResNet-50 [38]
pre-trained on ImageNet-1K [39], and the source model
ResNeXt-101-32x8d [40] pre-trained on Instagram [41].
In the target domain, we will evaluate the performance of
ILM-VP over 13 target datasets: Flowers102 [42], DTD
[43], UCF101 [44], Food101 [45], GTSRB [46], SVHN
[47], EuroSAT [48], OxfordPets [49], StanfordCars [50],
SUN397 [51], CIFAR10/100 [52], ABIDE [53].
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Source Model ‘ ResNet-18 (ImageNet-1K) ‘

ResNet-50 (ImageNet-1K) |

ResNeXt-101-32x8d (Instagram)

Method ‘ Ours ‘ Prompt baseline Finetuning ‘ Ours ‘ Prompt base. Finetuning ‘ Ours | Prompt base. Finetuning
ILM-VP | RLM-VP FLM-VP LP FF ILM-VP FLM-VP LP FF ILM-VP FLM-VP LP FF

Parameter Size \ 0.05M \ 0.05M 0.05M \ 0.51M 11.7M \ 0.05M \ 0.05M \ 0.51M 25.6M \ 0.05M \ 0.05M \ 0.51M 88.8M
Flowers102 27.9:0.7 | 11.0:0.5  20.0:0.3 | 88.0:0.5 97.1:0.7 | 24.6+0.6 20.3+0.3 90.9:0.4 97.9:0.7 | 27.9:0.3 22.5+0.5 89.1:0.2  99.2:0.5
DTD 35.3:0.9 | 16.3:0.7  32.4:05 | 60.0:0.6 65.5:0.9 | 40.5:0.5 36.9:0.8 67.6:0.3 69.7:0.9 | 41.4:0.7 40.3:0.5 69.7:0.2  69.1x1.0
UCF101 23.9:0.5 | 6.6+0.4 18.9:0.5 | 63.2+0.8 73.0:0.6 | 34.6+0.2 33.9+0.4 70.8:0.3 78.0:0.8 | 43.1:0.8 41.9+0.6 76.9:0.5  79.1:0.7
Food101 14.8:0.2 | 3.8:0.3 12.8:0.1 | 50.6:0.3 75.4x0.8 | 17.0+0.3 15.320.2 57.6:0.5 80.3:0.9 | 23.0:0.4 20.50.5 76.0:0.4 82.5:0.3
GTSRB 52.0:1.2 | 46.1:1.3  45.5:1.0 | 77.4+12 98.0£0.3 | 52.5+1.4 47.6+1.1 77.8:0.7  97.6+1.0 | 59.9:1.0 56.2+0.6 73.5£0.7  97.6£0.9
EuroSAT 85.2:0.6 | 82.4:04  83.8:0.2 | 93.8:0.3 98.8:0.5 | 83.6+0.7 84.8+0.3 95.7+0.2  98.9:0.6 | 86.2+0.8 87.8+0.4 93.4:0.3 98.9:0.7
OxfordPets 65.4:0.7 | 9.3:0.4 62.9:0.1 | 87.2:0.6 87.8+0.5 | 76.2+0.6 76.4:0.2 90.4:0.3 91.9:0.4 | 78.9:0.8 76.8+0.6 93.6:0.4  90.1x0.9
StanfordCars 4.5:0.1 0.9:0.1 2.7+0.1 33.8:0.2 81.0:0.1 | 4.7:0.2 4.2:0.3 40.6:0.1 86.4:0.3 | 7.0x0.2 4.6:0.1 64.7:0.1  92.5:0.2
SUN397 13.0+0.2 1.00.1 10.4:0.1 | 46.1:0.2 53.2:0.2 | 20.3:0.2 19.8+0.1 53.5:0.1  59.0:0.1 | 23.7+0.2 21.6+0.3 62.3:0.1  61.0:0.2
CIFAR10 65.5:0.1 | 63.0:0.1  65.7:0.6 | 85.9:0.5 96.5:0.4 | 76.6+0.3 74.8+0.5 90.1:0.1  96.6:0.2 | 81.7:0.3 80.3+0.3 94.1:0.1  97.10.1
CIFAR100 24.8:0.1 | 12.9:0.1 18.1:0.2 | 63.3x0.8 82.5:1.2 | 38.9:0.3 32.0+0.4 70.7:0.7  83.4:0.9 | 45.9:0.2 39.7+0.2 76.2:0.9 84.6+1.2
SVHN 75.2:0.2 | 73.5:0.3  73.1:0.2 | 65.0:0.2 96.5:0.3 | 75.8+0.4 75.6+0.2 63.5:0.2  96.9:0.3 | 81.4:0.1 79.0+0.5 51.0:0.2  97.1:0.3
ABIDE 76.9+2.1 | 74.0:22  73.1:16 | 654238 60.6:4.2 | 63.5:2.2 64.4:3.4 55.8+2.6 70.2:2.5 | 67.3:2.6 65.7+3.4 54.8:3.4  73.1x4.2

Tab. 1. Performance overview of our proposed VP method (ILM-VP), prompt baseline methods (RLM-VP and FLM-VP), and finetuning methods (LP and
FF) over 13 target image classification datasets using 3 pretrained source models (ResNet-18 on ImageNet-1K, ResNet-50 on ImageNet-1K, and ResNeXt-
101-32x8d on Instagram). In each cell, a+b refers to the mean and standard deviation of target task accuracies (%) over 3 independent trials. The highest
accuracy across VP-based methods is marked in bold. ‘Parameter Size’ refers to the number of trainable parameters in the input prompt or model finetuning.
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Fig. 4. ILM-VP’s class-wise accuracy improvements over FLM-VP us-
ing ImageNet-1K pre-trained ResNet-18 under the target dataset (a) Flow-
ers102, (b) OxfordPets. Target classes with * refer to those with updated
source labels compared to the prompting baseline method FLM-VP.

Baselines and evaluations. In the VP paradigm, our
baseline methods include the random LM-based VP (RLM-
VP) [2, 14], and the frequency LM-based VP (FLM-VP)
[1,15]. We highlight that VP is a finetuning-free method
to drive the source model to conduct target image classi-
fication tasks. When implementing VP baselines, we fol-
low their official repository setups. We also refer readers to
Appendix D for detailed implementations of ILM-VP and
baseline methods. In addition to prompting methods, we
also cover finetuning-based methods, including linear prob-
ing (LP) and end-to-end full finetuning (FF). Since finetun-
ing modifies source model parameters, it requires training
more parameters and is more computationally intensive.
We evaluate the performance of all the methods by the
target task accuracy at the testing time and the efficiency
in terms of the parameter size that VP or finetuning needs
to handle. We also leverage a post-hoc model explanation
method, known as Explanation-by-Example (EBE) [54],
to assess the quality of visual explanation of different VP
methods. The core idea of EBE is to find train-time data
points that have the most similar feature representations to
that of a queried test datapoint so as to use these identified
training samples to explain the model’s prediction on this
test sample. In the context of VP, EBE can aid us to find the
source training samples explainable for model prediction on
prompted target test data, like source examples in Fig. 3.

5.2. Experiment results
Overall performance of ILM-VP. Tab.1 shows the ef-

fectiveness of our proposed ILM-VP method vs. VP base-
lines (RLM-VP and FLM-VP) on diverse source models
and target datasets. For comparison, we also present the
model finetuning performance on target datasets using LP
or FF. It is worth noting that FLM-VP typically outperforms
RLM-VP as the latter only uses a random label mapping to
guide the learning of prompts [1]. Thus, we only show the
results of RLM-VP when using ResNet-18.

As shown in Tab. 1, our proposed method (ILM-VP)
consistently outperforms other VP baselines by a large mar-
gin in nearly all the data-model setups, e.g., 7.9%, 6.7%
and 6.5% accuracy improvement over FLM-VP in the target
dataset Flowers102, CIFAR100, GTSRB, respectively. In
addition, we note that model finetuning is typically more ef-
fective in transfer learning than prompting methods, consis-
tent with existing work [2]. This is not surprising as source
models are allowed for modification, and the trainable pa-
rameter size increases (as evidenced by ‘Parameter Size’ in
Tab. 1). As will be evident in Sec. 6, the accuracy of VP can
be further improved if a language-vision source model is
used. Nonetheless, in the target dataset ABIDE, prompting
methods can outperform the full model finetuning method
(FF). Compared to other standard transfer learning tasks for
image classification, ABIDE was a newly-proposed medi-
cal dataset in [ 1], which converts the original 1D numerical
medical input sequences to image-alike data formats (i.e.,
brain-regional correlation graphs). The size of this dataset
is extremely small due to the high cost of collecting data
in the medical area, which restricts the performance of LP
and FF. In contrast, VP is uniquely suited for this setting.
Lastly, in the model finetuning paradigm, a source model
with larger capacity typically yields a better target task ac-
curacy, e.g., the finetuning results of ResNet-50 vs. ResNet-
18. However, this belief might not hold in the VP paradigm.
As we can see, the prompting-induced target accuracy de-
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Fig. 5. ILM-VP training dynamics from epoch 0 to 200. Rows show: (1) VP pattern vs. epoch number; (2-4) Learned source label mapping with respect
to target label ‘Marigold’, “White Lily’, and ‘Tree Poppy’, together with EBE-identified source training examples to explain each re-purposed target label;
(5) Convergence of training loss and LM difference between adjacent epochs measured by Hamming distance.

creases under ResNet-50 in the target datasets Flowers102,
EuroSAT, CIFAR100, and ABIDE.

Additionally, Tab. A2 in Appendix shows that ILM-VP
takes a bit more run time than FLM-VP and LP, but is faster
than FF. This is not surprising since the former adopts al-
ternating optimization with a bit higher computation com-
plexity than ordinary single-level minimization. Recently,
the concurrent work [55] shows that properly re-sizing im-
ages before integrating with a VP could further boost the
performance on a downstream task. We also find the same
benefit of image re-sizing to VP on CIFAR10/100, GTSRB,
and SVHN datasets (e.g., up-scaling the original image size
to 128 x 128) However, for ease of comparison with existing
VP baselines (RLM-VP [14]), our experiments do not apply
the image re-sizing trick to VP.

LM is key to improving the accuracy of VP. Next, we
peer into the influence of LM on target prediction accu-
racy per class when using ILM-VP. In Fig. 4, we demon-
strate the testing accuracy improvements (over the FLM-
VP baseline) of prompt-injected datapoints, belonging to 10
classes with the highest improvements selected from the tar-
get datasets Flowers102 and OxfordPets, respectively. Note
that OxfordPets shares the most similar label space with Im-
ageNet (e.g. they both have beagles, boxers, bassets, etc.).
We use = in Fig. 4 to mark target data classes whose source
labels are remapped during ILM-VP, and list non-* marked
target data classes whose source labels retain the same as
FLM-VP. We observe that target classes with large accuracy
improvements typically require ILM. This justifies the ben-
efit of target-source label re-mapping during prompt learn-
ing. In addition, we note that the source labels of target
classes (e.g., ‘yorkshire’ in OxfordPets) are not re-mapped,
but ILM-VP can still bring in accuracy improvements. This

implies that LM has a coupling effect on all classes and the
BLO framework (5) enables us to improve LM as well as
prompt learning in an interactive manner.

Further, Fig. 5 shows the training dynamics of ILM-VP
vs. training epoch number and its convergence to the sta-
ble, high-explainable, and high-accurate visual prompt. As
we can see, the mapped source label for a target class is up-
dated at the early training epochs of ILM-VP, but tends to
converge at the later training phase. A similar trend holds
for the convergence of LM difference between two adjacent
epochs and the VP training loss. In addition, we can see that
the VP pattern and the LM are updated jointly. Furthermore,
the explainability of mapped source labels grows as the
training proceeds. For example, the target label ‘Marigold’
shares a similarity with the source label ‘Orange’ in color
and shape, as visualized by EBE-identified examples. It is
worth mentioning that EBE facilitates us to directly link the
source dataset and the target dataset, and thus helps us to
better understand the rationale behind VP. We refer readers
to Appendix C for more EBE results.

How target dataset scale affects VP? Through our ex-
periments over a large number of target datasets, we find
that ILM-VP becomes more powerful when it comes to
tasks with a larger target label space. For example, Fig. 6
shows the target datasets with at least 3% accuracy improve-
ment using ILM-VP compared with FLM-VP on ResNet-
18. As we can see, target datasets with the highest number
of target classes correspond to the most significant accuracy
improvement brought by ILM-VP. Next, we fix the target
dataset and study how VP behaves at different downstream
training dataset sizes. Here we choose GTSRB as the target
task since GTSRB contains a sufficient amount of training
data and thus facilitates us to conduct training dataset par-
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tition. Fig.7 compares the performance of ILM-VP with

FLM-VP vs. target training dataset size (training from 20%
to 100% of the entire set). As we can see, ILM-VP consis-
tently outperforms the baseline FLM-VP and the improve-
ment becomes more significant as the data scale grows.

6. Extension: LM in Text Domain for CLIP

In the previous sections, we show that LM could play a
vital role in VP when reprogramming a pre-trained vision
model to conduct downstream targeted vision tasks. In this
section, we shift our focus from the vision source model
to the vision-language model, specific to CLIP (contrastive
language—image pretraining), which has received increas-
ing attention in the area of VP [2]. We will show that al-
though CLIP does not require source-target mapping across
image labels (due to its multi-modal learning architecture),
the proposed idea on iterative LM can be extended to con-
duct text prompt selection to improve target task accuracy.
LM for CLIP. Different from the vision-only model,
CLIP can directly take target data labels as its textual inputs
so as to mitigate the issue of source-target label mapping;
see Fig. A5 for an illustration. In this setting, LM seems re-
dundant. However, this is only applied to VP in the image
domain. We argue that CLIP still needs implicit LM for text
labels, considering the diversity of text prompts (TPs) [26].
That is, CLIP can incorporate a text label into different con-
text prompt templates (81 templates) suggested in [26] to
create multiple text label instances. For example, the tar-
get label ‘dog’ can be combined with context prompts ‘A
photo of a big {label}’ and ‘A photo of a small {label} .
Thus, given m context prompts and K} target data labels,
we can create m K ‘virtual source labels’, which should be
mapped to K target labels. Thus, the LM problem arises,
and its optimal solution characterizes the optimal prompt
selection in the text domain for prompted image data. Sim-
ilar to the BLO method (5), we can bake iterative LM into
VP using the CLIP model by replacing the lower-level im-
age label mapping with the context-fused text label map-
ping. BLO then gives a unified prompt learning framework
that can be easily compatible with CLIP. We refer readers
to Appendix E for more implementation details.

[8)

LM improves VP’s accuracy using CLIP. In Tab.2, we
demonstrate the performance of the VP-driven CLIP model
on several challenging target tasks shown in Tab.1, e.g.,
Flowers102 and DTD. We term our method ‘VP+TP+LM’,
where the BLO-enabled LM method is called to map ‘vir-
tual source labels’ (i.e., the combination of context prompt
template and target label) to realistic target image labels.
For comparison, we also present the performance of the
baseline method termed ‘VP + TP’ [2], which uses a pre-
defined, fixed context prompt template ‘This is a photo of a
{label}’ when generating a visual prompt for CLIP. As we
can see, our proposal consistently outperforms the baseline
by a substantial margin. For example, we obtain 13.7% and
7.1% accuracy gain in Flowers102 and DTD respectively.
In addition, we find that LM brings in the interpretability
merit: Our selected context prompt templates have better
semantic meaning than the one used by the baseline. For ex-
ample, VP for Flowers102 selects the text prompt ‘a close-
up photo of a {}” instead of “This is a photo of {}” for the
target image with the label ‘buttercup’. Another example is
that VP for CIFARI10 prefers the text prompt ‘a pixelated
photo of a {}’. In particular, we observe that in domain
shift datasets (ImageNet-R and ImageNet-Sketch), the se-
lected prompts can exhibit the domain information. More
explainable results can be found in Fig. A6.

Methods ‘ VP+TP Ours (VP+TP+LM)
i Acc(%) | Acc(%) Examples of context prompt template — target label
Flowers102 70.0 83.7 a close-up photo of a {} — buttercup
DTD 56.8 63.9 graffiti of a {} — blotchy
UCF101 66.0 70.6 a {} in a video game — baseball pitch
Food101 789 79.1 a photo of the dirty {} — crab cake
SVHN 89.9 91.2 aphotoofa {} -7
EuroSAT 96.4 96.9 a pixelated photo of a {} — river
StanfordCars 572 57.6 the toy {} — 2011 audi s6 sedan
SUN397 60.5 61.2 a photo of a large {} — archive
CIFAR10 93.9 94.4 a pixelated photo of a {} — ship
ImageNet-R 67.5 68.6 arendition of a {} — gold fish
ImageNet-Sketch 385 39.7 a sketch of a {} — eagle

Tab. 2. Results of our CLIP-based prompt learning ‘VP+TP+LM’ and
the baseline “VP+TP’ [2] (restricted to using text prompt template “This
is a photo of a {}”) over 11 target datasets. In each cell, the target task
accuracy (%) is shown along with examples of LM in the text domain. Our
method with higher accuracy than SOTA is marked in bold.

7. Conclusion

This paper unveils LM’s importance in the VP frame-
work. Inspired by the prediction dynamics in optimizing
VP, we formalize the VP problem through the lens of BLO
(bi-level optimization). Upon our formalization, we pro-
pose a novel ILM-VP algorithm to jointly optimize the input
pattern training and the LM function. Across 13 datasets,
we show our method’s significant accuracy improvement
over the SOTA VP baselines with graceful interpretabil-
ity. Further, we extend our method to CLIP to improve its
downstream task performance.
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