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Abstract

Dominant pre-training works for image-text retrieval
adopt “dual-encoder” architecture to enable high effi-
ciency, where two encoders are used to extract image and
text representations and contrastive learning is employed
for global alignment. However, coarse-grained global
alignment ignores detailed semantic associations between
image and text. In this work, we propose a novel proxy
task, named Visual-Language Error Modeling (ViLEM), to
inject detailed image-text association into “dual-encoder”
model by “proofreading” each word in the text against the
corresponding image. Specifically, we first edit the image-
paired text to automatically generate diverse plausible neg-
ative texts with pre-trained language models. ViLEM then
enforces the model to discriminate the correctness of each
word in the plausible negative texts and further correct the
wrong words via resorting to image information. Further-
more, we propose a multi-granularity interaction frame-
work to perform ViLEM via interacting text features with
both global and local image features, which associates lo-
cal text semantics with both high-level visual context and
multi-level local visual information. Our method surpasses
state-of-the-art “dual-encoder” methods by a large margin
on the image-text retrieval task and significantly improves
discriminativeness to local textual semantics. Our model
can also generalize well to video-text retrieval.

1. Introduction

Pre-training vision-language models on massive image-
text pairs to learn transferable representations for image-
text retrieval has attracted a lot of attention in recent
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Figure 1. Illustration of image-text contrastive learning (ITC) and
visual-language error modeling (ViLEM). ITC learns image-text
global alignment by distinguishing paired data from unpaired data.
ViLEM establishes detailed image-text association via discrimi-
nating and correcting wrong words in plausible negative texts.

years. Previous dominant methods [11, 29, 38] adopt “dual-
encoder” architecture to enable efficient retrieval, where
two separate encoders are used to extract image and text
representations. They learn a joint image-text embedding
space via constraining the coarse-grained alignment be-
tween global image and text features. However, the coarse-
grained alignment constraint ignores the capture of detailed
image and text semantics, and associations between them,
impeding the performance improvement of image-text re-
trieval.

Humans achieve accurate image-text matching by care-
fully discriminating whether there exists semantic diver-
gence between image and text, i.e., determining whether
each word can be precisely grounded to the image, which
requires a comprehensive perception of each modality and
well association between them. Humans can also elimi-
nate semantic divergence effortlessly by correcting text er-
rors through their powerful semantic association capability.
Inspired by these, we propose a novel proxy task, named
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Visual-Language Error Modeling (ViLEM), for image-text
retrieval. As shown in Figure 1, compared with image-text
contrastive learning for global alignment, ViLEM enforces
the model to discriminate and eliminate the local seman-
tic divergence by “proofreading” plausible negative texts
against image information, which enhances fine-grained se-
mantic perception and establishes detailed image-text asso-
ciation. Collaborating with image-text contrastive learning,
ViLEM significantly improves the retrieval performance of
“dual-encoder” architecture.

ViLEM is divided into two sub-tasks: text error detec-
tion and text error correction. Given an image and a plau-
sible negative text, the goal of error detection is training
the model to exhaustively discriminate the correctness of
each word in the form of binary classification. Meanwhile,
error correction enforces the model to predict the correct
words for the wrong ones from a fixed vocabulary under
the condition of image information. However, finding plau-
sible negative text for images and obtaining corresponding
labels of error detection and correction requires high human
annotation costs. Thus, we propose to automatically con-
struct plausible negative texts and corresponding labels with
a pre-trained language model BERT [12], where we exploit
its rich linguistic knowledge to edit the image-paired texts
and generate local text errors. The generated errors can be
related to objects, actions, scenes, relationships, etc. (as
shown in Figure 1), with which the model can learn various
fine-grained semantics. The detection and correction labels
can also be obtained by comparing generated negative texts
with image-paired texts.

To further leverage ViLEM’s ability to establish seman-
tics associations, we propose a multi-granularity interaction
framework to enable effective interaction between visual
and textual encoders while maintaining high retrieval effi-
ciency. Specifically, global visual features and local visual
features are both fully exploited for text error detection and
correction. For global visual features, we inject them into
the local text representations to provide visual conditions
for discriminating and correcting text errors, which asso-
ciates local text information with high-level visual context
and enhances the discriminativeness to fine-grained text se-
mantics. For local visual features, we employ additional
cross-attention modules to adaptively aggregate them into
word-related visual concepts for error detection and cor-
rection, which establishes the association between detailed
text semantics with multi-level local visual information and
facilitates fine-grained image-text alignment. The cross-
attention modules will be removed in the inference, intro-
ducing no additional computation cost and parameters com-
pared with vanilla “dual-encoder”.

The contributions of this work are listed as follows:

(1) We introduce a novel proxy task, Visual-Language
Error Modeling (ViLEM), to inject detailed seman-

tic association between images and texts into “dual-
encoder” architecture.

(2) We propose a multi-granularity interaction framework
to further leverage the ability of ViLEM while main-
taining the high retrieval efficiency, which enhances
the capture of fine-grained semantics and associates lo-
cal text semantics with both high-level visual context
and multi-level local visual information.

(3) The extensive experimental results show that our
method surpasses previous state-of-the-art “dual-
encoder” methods by a large margin on the image-
text retrieval task and significantly improves the dis-
criminativeness to local text semantics. Moreover, our
model can also generalize well to video-text retrieval.

2. Related Work

Pre-training for Image-text Retrieval. Previous pre-
training works for image-text retrieval can be divided into
two categories, i.e., “joint-encoder” methods and “dual-
encoder” methods. “Joint-encoder” methods [4, 16–18, 22,
42] contain a multi-modal encoder to enable fine-grained
feature interaction between image and text. The binary
classification objective is utilized to predict whether the in-
put image and text are matched. Despite their promising
performance, every image-text pair needs to be fed into
the joint encoder, leading to extreme inefficiency. “Dual-
encoder” methods [11, 21, 29, 34, 38] adopt two individual
encoders to extract the image and text features separately,
and project global representations into a shared embedding
space. These methods allow the pre-computing of global
image and text features and achieve efficient retrieval by
calculating dot product between features. The contrastive
learning [25] is leveraged to distinguish paired image-text
data from unpaired data. However, imposing contrastive
objectives only on the global features leads to the under-
exploitation of local semantics of images and texts.
Association Enhancement for Dual-encoder. Recent
works [21, 34] introduce Masked Language Modeling
(MLM) [12] to facilitate image-text association of dual-
encoder, where a proportion of words are randomly masked
and the model is trained to recover the masked words with
global visual features. These works ignore the association
between local text semantics and local visual information,
hindering the learning of fine-grained image-text alignment.
Moreover, the MLM task only considers a proportion of
words (e.g., 15%) and may ignore visual features to predict
the masked words with only textual context, affecting the
efficiency and effectiveness for the learning of image-text
association. On the contrary, our ViLEM task enforces the
model to fully exploit detailed image and text semantics to
determine the correctness of each word in the text and cor-
rect the wrong words. Furthermore, we perform ViLEM by
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Figure 2. The illustration of ViLEM and multi-granularity interaction framework. ViLEM is performed via interacting text features with
global and local visual features respectively. The model is trained with three objectives: image-text contrastive learning, ViLEM with high-
level global visual features, and ViLEM with multi-level local visual features. We adopt a pre-trained language model (BERT) to generate
plausible negative texts with local errors. We only show the edition process of one word and omit momentum encoders for simplicity.

interacting text features with both global and local visual
features, associating local text semantics with both high-
level visual context and multi-level local visual information.
Text Error Correction. Text error correction has an im-
portant application area named Grammatical Error Correc-
tion (GEC) [24, 30, 35]. GEC task takes a potentially erro-
neous sentence as input and is expected to correct different
kinds of linguistic errors in text such as spelling, punctu-
ation, grammatical, etc. Another work [5] pre-trains lan-
guage model with the task of word detection. They train a
generator with MLM task to corrupt natural sentences and
a discriminator to detect whether the words are corrupted.
The generator and discriminator both learn rich linguistic
knowledge through the adversarial training procedure. On
the contrary, we adopt a pre-trained language model to gen-
erate plausible but visual-incorrect texts, which serve as
training samples for ViLEM. Moreover, we detect and cor-
rect text errors via resorting to visual features, aiming at
facilitating image-text association and further improving re-
trieval performance.

3. Method
In this work, we propose a novel proxy task ViLEM and

a multi-granularity interaction framework to effectively in-
ject detailed image-text association into the “dual-encoder”
architecture. We first revisit the image-text pre-training for

dual-encoder in Sec. 3.1, then introduce the proposed proxy
task ViLEM with multi-granularity interaction in Sec. 3.2
and the learning objectives in Sec. 3.3.

3.1. Revisiting Pre-training for Dual-encoder

As shown in Figure 2, the dual-encoder contains a vi-
sual encoder fv(·) and a textual encoder f t(·). Both en-
coders consist of multiple transformer blocks [37] and each
block mainly contains a multi-head self-attention and a
feed-forward network. We additionally employ cross atten-
tion modules in the first M1 layers of the textual encoder
to enable local image-text interaction for ViLEM. But the
cross attention modules are deactivated during the image-
text contrastive learning for maintaining high retrieval ef-
ficiency. Given an input image vi and its paired text ti,
the [CLS] token is concatenated with inputs for feature ag-
gregating, and the global representations hv

i and ht
i are en-

coded by the visual encoder and textual encoder respec-
tively. Then the global representations are projected into
a shared semantic embedding space as zv

i and zt
i with two

linear transformations. The similarity between image and
text is measured with dot product between zv

i and zt
i .

The momentum contrastive learning [9,21] is adapted for
global feature alignment between images and texts. Two
momentum updated encoders f̂v(·) and f̂ t(·) are main-
tained to produce consistent momentum features ẑv , ẑt,
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which serve as negative samples for current input images
and texts. The parameters of momentum encoders are up-
dated as:

θ̂v = m · θ̂v + (1−m) · θv, (1)

θ̂t = m · θ̂t + (1−m) · θt, (2)

where m is momentum coefficient. θv , θt, θ̂v and θ̂t denote
the parameters of fv(·), f t(·), f̂v(·), f̂ t(·) respectively.

Moreover, we maintain two queues Qv = {ẑv
j }

Nq
j=1 and

Qt = {ẑt
j}

Nq
j=1 to keep the momentum features ẑv and ẑt

from previous iterations. The introduction of queues dra-
matically increases the number of negative samples, which
is vital for contrastive learning. Given each image in the
current mini-batch, its paired text is regarded as a positive
sample. Its unpaired texts in the mini-batch and all samples
in the Qt are regarded as negative samples. The InfoNCE
loss [25] is utilized to maximize the similarity between pos-
itive image-text pairs and minimize the similarity between
negative pairs, which is defined as follows:

LI2T = − 1

B

B∑
i=1

log
exp(zv

i , ẑ
t
i , τ)∑B+Nq

j=1 exp(zv
i , ẑ

t
j , τ)

, (3)

where exp(x,y, τ) = ex
Ty/τ , τ is the temperature hyper-

parameter, and B is the batch size.
Similarly, given each text in the current mini-batch, the

contrastive loss is defined as:

LT2I= − 1

B

B∑
i=1

log
exp(zt

i , ẑ
v
i , τ)∑B+Nq

j=1 exp(zt
i , ẑ

v
j , τ)

. (4)

The total loss for image-text contrastive learning is de-
fined as:

Lalign = (LI2T + LT2I)/2. (5)

3.2. Visual-Language Error Modeling

3.2.1 Knowledge-based Text Edition

ViLEM facilitates the learning of local semantic association
by detecting and correcting local text errors from plausible
negative texts. However, it is difficult to find corresponding
plausible negative texts for a given image, and obtaining
training labels requires expensive human annotation to lo-
cate and correct the wrong words that do not match with im-
age content. To automatically construct training samples for
ViLEM, we propose to leverage the rich linguistic knowl-
edge of the pre-trained language model BERT [12] to edit
the image-paired text and generate local text errors.

Given a text composed of n tokens ti = [ti1, ti2, ..., tin],
we first randomly select a set of positions to edit ei =
[ei1, ...eik] and replace the tokens in the selected position
with [MASK] to obtain the masked text tmask

i . BERT then
takes the tmask

i as input and reasons with textual context
to predict possible candidate words for each masked posi-
tion. To ensure the reasonableness and semantic richness of

the predicted words, we randomly sample words from the
top-k candidates to generate the final edited text tediti . We
also avoid sampling the original words to ensure that text er-
rors are generated at each mask position. Through the text
editing process, the ground-truth error detection label ydet

i

and error correction label ycor
i can be inherently obtained

as follows:

ydetij =

{
0, if j ∈ ei,

1, if j /∈ ei.
(6)

ycorij =

{
tij , if j ∈ ei,

none, if j /∈ ei,
(7)

where ycorij = none indicates we don’t calculate loss on the
j-th token of tediti . It is worth noting that the synonyms
may be sampled to replace the original word, which intro-
duces noise in the training process. Fortunately, the number
of synonyms per word is relatively small, and most of the
sampled words have different semantics from the original
word, ensuring the effectiveness of our method.

3.2.2 ViLEM with Global Visual Feature

We first perform ViLEM with global visual feature to as-
sociate local text information with high-level visual context
and enhance the discriminativeness to fine-grained text se-
mantics. It is worth noting that the textual encoder also
serves as a textual decoder to predict correct words, which
may interfere with the encoding of text features. Thus, we
perform ViLEM with only the first M1 layers of the textual
encoder, which essentially divides the textual encoder into a
sub-decoder and a sub-encoder, and decouples the encoding
and decoding functions of the textual encoder to mitigate in-
terference.

As shown in Figure 2, given an image vi and its corre-
sponding edited text tediti , we extract the global image fea-
ture hv

i and add it to the word embeddings of tediti , provid-
ing visual condition for text error detection and correction.
Then we feed word embeddings into the first M1 layers of
the textual encoder to discriminate the correctness of each
word and predict the corresponding correct words. We take
the output features from the textual encoder’s M1 layer to
compute error detection loss Ldet and correction loss Lcor,
which are formulated as:

Ldet(h
v) = E

( n∑
j=1

−log P j
det(y

det
ij |tediti ,hv

i )
)
, (8)

Lcor(h
v) = E

(
− log P j

cor(y
cor
ij |tediti ,hv

i )
)
, (9)

where Ldet(h
v) and Lcor(h

v) indicates the text error de-
tection and correction are performed under the condition of
global visual feature hv . P j

det and P j
cor are predicted prob-

ability distributions of error detection and error correction
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for j-th token. The final loss for ViLEM with global visual
features is formulated as:

LEMG = Ldet(h
v) + Lcor(h

v). (10)

3.2.3 ViLEM with Local Visual Feature

We also perform ViLEM with local visual features to asso-
ciate local text semantics with multi-level local visual in-
formation and facilitate fine-grained image-text alignment.
To enable interactions between local image and text fea-
tures, we activate cross-attention modules in the first M1

layer of the textual encoder. Given the image vi and its cor-
responding edited text tediti , we extract local image patch
features from all intermediate layers Hv

i = {Hv
il}Nl=1,

where l is the layer index of visual encoder. Then we feed
edited text tediti into a textual encoder. In the m-th layer
(m ∈ {1, 2, ...,M1}), the cross attention module takes inter-
mediate word features as queries and image patch features
from the lm-th layer as keys and values to aggregate word-
related visual concept. The lm is calculated as follows:

lm = ⌊ N

M1
⌋(m− 1) + 1, (11)

which ensures that image patch features of all levels are uni-
formly utilized for ViLEM.

At last, we take the output features of the M1-th layer to
perform binary classification on each word feature to detect
the correctness of each word and predict the corresponding
correct word for each wrong word. The loss for ViLEM
with local visual features is formulated as:

LEML = Ldet(Hv) + Lcor(Hv), (12)
where Ldet(Hv) and Lcor(Hv) are computed following
Equations 8 and 9 but text error detection and correction are
performed with multi-level local visual features Hv instead
of global visual feature hv .

3.3. Pre-training Objectives

We train the network with three losses jointly to facilitate
global image-text alignment, and establish detailed associ-
ations between local text semantics and multi-granularity
visual features. The total loss is formulated as:

L = Lalign + λ1LEML + λ2LEMG, (13)
where λ1 and λ2 are hyper-parameters to adjust the effect
of ViLEM losses.

4. Experiments
4.1. Datasets

Pre-training Datasets. We pre-train our model with two
image-text datasets: (1) CC4M contains 4 million images
and 5.1 million captions from Conceptual Captions (CC3M)
[32], SBU [26], MSCOCO [19] and Visual Genome [14].
(2) CC13M consists of CC4M and CC12M [2] (about 3.3

million image URLs are now invalid for us), which contains
13M images and 14.1M captions in total. Details are shown
in the supplementary materials.
Downstream Datasets. We conduct downstream image-
text retrieval evaluation on two widely used datasets:
MSCOCO [19] and Flick30K [28]. In addition, we vali-
date the effectiveness of ViLEM on improving the discrim-
inativeness to local text semantics with Winoground [36]
dataset. To further demonstrate the generalization ability of
our model to video-text tasks, we conduct experiments on a
public video-text retrieval dataset MSR-VTT [39]. The de-
tails of these downstream datasets and the evaluation met-
rics can be found in the supplemental material.

4.2. Implementation Details

Our model adopts BERTbase [12] as textual encoder
and a ViT-B/16 [6] initialized with weights pre-trained on
ImageNet-1k as the visual encoder. We randomly replace
word tokens with 15% probability for the knowledge-based
text edition. We use the AdamW [20] optimizer with a
weight decay of 0.02. The learning rate is warmed-up to
3e−4 in the first 2000 iterations and decays to 1e−5 fol-
lowing a cosine schedule. We pre-train the model for 20
epochs with a batch size of 2048 on 32 NVIDIA A100
GPUs. We take the image resolution of 256× 256 for pre-
training and increase the image resolution to 384× 384 for
fine-tuning. The momentum coefficient for updating mo-
mentum encoders is set as 0.995, and the queue size Nq is
set as 65536. The learnable temperature hyper-parameter
for contrastive loss is initialized to 0.07. The loss weight λ1

and λ2 are set as 0.8 and 0.2 respectively. More implemen-
tation details can be found in the supplementary materials.

4.3. Image-Text Retrieval

Comparison with the State-of-the-Art. We compare
with state-of-the-art methods on Flickr30K and MSCOCO
datasets. As shown in Table 1, under a fair comparison
experimental setting (excluding VSE∞∗† and COOKIE∗†

as they use 940M tagged images for visual-encoder pre-
training), our method surpasses all dual-encoder methods
by a large margin under all evaluation metrics. Specifically,
compared with the current state-of-the-art dual-encoder
method COTS [21] with 5.3M pre-training data, our method
with 5.1M pre-training data achieves higher performance
by 4.2% and 2.9% on the R@1 of image-to-text and text-
to-image retrieval of Flickr30K dataset. On the MSCOCO
dataset, we also surpass COTS (5.3M) by 2.1% on the R@1
of both image-to-text and text-to-image retrieval. More-
over, our method (5.1M) outperforms COTS pre-trained on
15.3M image-text pairs with only 1/3 data. The perfor-
mance of our method is further improved when leverag-
ing a larger pre-training dataset CC13M, even outperform-
ing VSE∞∗† and COOKIE∗†. Furthermore, our method
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Table 1. Comparative results for fine-tuned image-text retrieval results on the Flickr30K (1K) test set and MSCOCO (5K) test set. We make
comparisons with both dual-encoder methods and joint-encoder methods. Our method surpasses previous state-of-the-art dual-encoder
methods by a large margin and achieves comparable performance but much faster inference speed w.r.t. latest joint-encoder methods. (64×
and 7240× faster than ALBEF and VinVL-base.) Higher R@K indicates better performance. PT Pairs: the number of image-text pairs
for pre-training. † is ensemble result of two models. ∗ models use 940M tagged images for visual encoder pre-training.

Model PT Pairs
Flickr30K (1K test set) MSCOCO (5K test set)

image→text text→image R@S image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Joint-Encoder:
Pixel-BERT-X152 [10] 5.6M 87.0 98.9 99.5 71.5 92.1 95.8 544.8 63.6 87.5 93.6 50.1 77.6 86.2 458.6
Unicoder-VL [15] 3.8M 86.2 96.3 99.0 71.5 91.2 95.2 539.4 62.3 87.1 92.8 48.4 76.7 85.9 453.2
UNITER-base [4] 9.6M 85.9 97.1 98.8 72.5 92.4 96.1 542.8 64.4 87.4 93.1 50.3 78.5 87.2 460.9
ERNIE-ViL-base [41] 3.8M 86.7 97.8 99.0 74.4 92.7 95.9 546.5 – – – – – – –
VILLA-base [7] 9.6M 86.6 97.9 99.2 74.7 92.9 95.8 547.1 – – – – – – –
Oscar-base [18] 6.5M – – – – – – – 70.0 91.1 95.5 54.0 80.8 88.5 479.9
ViLT [13] 9.9M 83.5 96.7 98.6 64.4 88.7 93.8 525.7 61.5 86.3 92.7 42.7 72.9 83.1 439.2
VinVL-base [42] 8.9M – – – – – – – 74.6 92.6 96.3 58.1 83.2 90.1 494.9
ALBEF [16] 5.1M 94.3 99.4 99.8 82.8 96.7 98.4 571.4 73.1 91.4 96.0 56.8 81.5 89.2 488.0

Dual-Encoder:
VSE∞∗† [3] – 88.7 98.9 99.8 76.1 94.5 97.1 555.1 68.1 90.2 95.2 52.7 80.2 88.3 474.7
COOKIE∗† [38] 5.9M 89.0 98.9 99.7 75.6 94.6 97.2 555.0 71.6 90.9 95.4 54.5 81.0 88.2 481.6
LightningDOT [34] 9.5M 83.9 97.2 98.6 69.9 91.1 95.2 535.9 60.1 85.1 91.8 45.8 74.6 83.8 441.2
COOKIE [38] 5.9M 84.7 96.9 98.3 68.3 91.1 95.2 534.5 61.7 86.7 92.3 46.6 75.2 84.1 446.6
COTS [21] 5.3M 88.2 98.5 99.7 75.2 93.6 96.5 551.7 66.9 88.8 94.0 50.5 77.6 86.1 463.9
COTS [21] 15.3M 90.6 98.7 99.7 76.5 93.9 96.6 556.0 69.0 90.4 94.9 52.4 79.0 86.9 472.6
Ours 5.1M 92.4 99.2 99.7 78.1 94.6 97.0 561.0 69.0 90.7 95.1 52.6 79.4 87.2 474.0
Ours 14.1M 93.6 99.0 99.7 80.5 96.0 98.0 566.8 73.2 91.8 95.9 54.5 80.6 88.2 484.2

Table 2. Comparison for image-text retrieval results (without fine-
tuning) on the MSCOCO (5K) test set.

Model image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10

CLIP [29] 58.4 81.5 88.1 37.8 62.4 72.2 400.4
ALIGN [11] 58.6 83.0 87.9 45.6 69.8 78.6 423.5
COTS [21] 60.4 84.7 91.7 43.8 71.6 81.3 433.5
Ours 65.6 88.0 93.8 47.7 75.2 84.5 454.8

also achieves comparable performance with the latest joint-
encoder methods VinVL-base and ALBEF while having
much higher retrieval efficiency. Specifically, we measure
the inference time for performing image-text retrieval on
the MSCOCO 5K test set. Our method is 64× and 7240×
faster than ALBEF and VinVL-base. More details of infer-
ence time measurement are shown in the suppl. materials.
Comparison of Retrieval Results without Fine-tuning.
Following previous works [13, 21], we report the retrieval
performance without fine-tuning on the MSCOCO dataset
and make comparisons with recent powerful dual-encoder
methods. As shown in Table 2, with a similar pre-training
data size, we surpass the COTS [21] by 5.2% and 3.9%
on the R@1 of image-to-text retrieval and text-to-image re-
trieval. Moreover, our method also outperforms CLIP [29]
and ALIGN [11], which utilize 28× and 128× pre-training
data than our method respectively.
Zero-shot Text-to-Video Retrieval. We perform zero-shot
text-to-video retrieval to validate the generalization ability
of our image-text model to the video-text task. Specifically,
we uniformly sample 8 frames per video and use the mean
frame features as global video features. The video-text sim-

Table 3. Zero-shot text-to-video retrieval results on the MSRVTT
(1K) test set. Lower MedR indicates better performance.

Model PT Pairs R@1 R@5 R@10 MedR↓
MIL-NCE [23] Video 120M 9.9 24.0 32.4 29.6
TACo [40] Video 120M 9.8 25.0 33.4 29.0
SupportSet [27] Video 120M 12.7 27.5 36.2 24.0
Frozen [1] Image 3M+Video 2.5M 18.7 39.5 51.6 10.0
BridgeFormer [8] Image 3M+Video 2.5M 26.0 46.4 56.4 7.0
Ours Image 14.1M 27.6 49.8 60.7 6.0

ilarity scores can be calculated by the dot product between
global video features and global text features. Text-to-video
retrieval results on the MSR-VTT dataset are reported in
Table 3. It can be seen that our pure image-text model out-
performs previous state-of-the-art video-text methods even
without complex temporal modeling of video.

4.4. Vision-linguistic Stress Testing

To validate the effectiveness of ViLEM on improv-
ing discriminativeness to local text semantics, we perform
vision-linguistic stress testing on the Winoground dataset.
Each sample in the Winoground dataset consists of two
image-text pairs with only minor differences between them.
The model needs to correctly match the two image-text
pairs, which requires a powerful discrminativeness to local
image and text semantics. We report the text score in Table
4 following [36], which reflects the proportion of samples
where both images are correctly matched with their paired
texts. Compared with vanilla dual-encoder without ViLEM,
our method achieves 3.4%, 6.4%, and 15.4% improvement
in recognizing object differences, relational differences, and
co-occurrence of both differences. In addition, the overall
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Table 4. Comparison with vanilla dual-encoder and state-of-the-art
methods on the Winoground dataset. Object, Relation, and Both
indicate the matching accuracy for samples with object difference,
relation difference, and both differences. 1 Pred and 2 Preds in-
dicate the matching accuracy for samples with one predicate and
two predicates respectively. All reflects the overall performance.

Model Object Relation Both 1 Pred 2 Preds All

Joint-Encoder:
UNITER [4] 34.0 30.0 42.3 35.3 24.1 32.3
ViLBERT [22] 29.1 19.3 34.6 24.0 23.2 23.8
ViLLA [7] 33.3 27.0 38.5 33.2 21.3 30.0
ViLT [13] 31.9 36.9 30.8 35.3 33.3 34.8
FLAVAitm [33] 31.9 30.0 53.8 36.3 21.3 32.3
VinVL [42] 36.9 37.8 42.3 39.4 33.3 37.8

Dual-Encoder:
FLAVAconstrastive [33] 23.4 23.6 50.0 26.4 22.2 25.3
CLIP [29] 34.8 22.8 80.8 35.3 18.5 30.8
w/o ViLEM 30.5 29.1 50.0 33.9 24.1 31.2
Ours 33.9 35.5 65.4 38.7 30.6 36.5

performance of our method exceeds all dual-encoder meth-
ods and joint-encoder methods except VinVL. Note that
CLIP [29] utilizes 28× pre-training data than our method.

4.5. Ablation Studies

In this section, we discuss the effectiveness of our proxy
task ViLEM and multi-granularity interaction framework
via evaluating different models for zero-shot image-text re-
trieval on MSCOCO. We sample 1M image-text pairs from
CC3M as pre-training dataset due to the limitation of com-
putation resources.
Are ViLEM with local and global visual features effec-
tive? Yes. As shown in Table 5, models D and G which
perform ViLEM with local and global visual features re-
spectively outperform the baseline model A, indicating that
associating local text semantics with high-level global vi-
sual features or multi-level local visual features both bene-
fit the global image-text alignment. Moreover, the model H
that performs ViLEM with multi-granularity visual features
achieves further performance improvement, which shows
that the effectiveness of our multi-granularity interaction
framework and ViLEM with global and local features are
complementary for improving image-text retrieval.
Are error detection and correction effective tasks? Yes.
As shown in Table 5, models B and E that perform text error
detection outperform baseline model A, indicating the ben-
efits of learning local image-text matching relationship for
retrieval. Both models C and F perform text error correction
outperform baseline model A, which shows that enforcing
the model to reason correct words with visual information
also facilitates image-text retrieval. Retrieval performance
is further improved when combining text error detection and
correction into ViLEM task, i.e. models D and G.
Does the position to compute ViLEM losses matter? Yes,
we choose to compute ViLEM losses with output features
from 6-th layer of textual encoder for the following rea-
sons. (1) Using features from a higher layer for ViLEM,

Table 5. Ablation studies on different components of our method,
including text error detection (Det), and correction (Cor) with local
and global visual features respectively.

Local Global image→text text→image R@SDet Cor Det Cor R@1 R@5 R@10 R@1 R@5 R@10

A – – – – 26.4 53.1 66.2 19.4 42.9 54.8 262.8
B ✓ 28.1 54.6 66.8 20.5 43.7 55.6 269.3
C ✓ 28.4 55.2 67.0 21.0 43.8 55.2 270.6
D ✓ ✓ 29.1 55.5 67.1 20.7 44.5 55.9 272.8

E ✓ 27.3 54.6 66.4 20.5 44.0 55.8 268.6
F ✓ 27.4 54.4 66.3 20.6 43.9 55.7 268.3
G ✓ ✓ 28.0 54.3 66.9 20.9 44.6 56.4 271.1

H ✓ ✓ ✓ ✓ 29.1 55.3 68.3 22.0 45.7 57.7 278.1

Table 6. Ablation study on the position to compute ViLEM losses.

Layer Index image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10

4 27.4 55.0 67.2 21.3 45.2 56.8 272.9
6 29.1 55.3 68.3 22.0 45.7 57.7 278.1
8 28.1 56.0 68.7 21.3 45.0 56.8 275.9
10 27.8 55.0 67.4 21.2 44.6 56.6 272.6
12 27.9 55.0 66.8 21.3 45.0 56.8 272.8

Table 7. Comparisons between different sub-module options.

Method image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10

A w/o ViLEM 26.4 53.1 66.2 19.4 42.9 54.8 262.8
B MLM 27.5 55.0 66.4 21.1 44.4 56.3 270.7
C Edited text cont. 26.6 53.9 66.5 19.8 43.1 55.1 265.0
D Highest-level 28.3 54.7 67.1 21.1 44.6 56.3 272.1
E Local-global Unify 28.9 55.5 67.6 20.6 44.1 56.2 272.9
F Random edition 28.4 53.9 66.8 21.7 45.4 57.1 273.3

G Ours 29.1 55.3 68.3 22.0 45.7 57.7 278.1

such as the 10-th or 12-th layer, degrades the performance.
We argue that in this case too many encoder layers under-
take the task of text encoding and decoding simultaneously,
which interferes the encoding of text features. (2) Com-
puting ViLEM loss with features from a lower layer, such
as the 4-th layer, also yields worse results due to the insuf-
ficient interaction between visual features and textual fea-
tures. (3) Computing ViLEM loss with features from the
8-th layer achieves slightly worse performance and requires
more computation cost.
ViLEM vs. Masked Language Modeling. Different from
our ViLEM, Masked Language Modeling (MLM) only con-
siders a proportion of word token and may ignore visual in-
formation to recover the masked words. Comparing Model
B with G in Table 7, pre-training with ViLEM shows signif-
icant advantages over pre-training with Masked Language
Model (MLM), which clearly validates the superiority of
our method beyond MLM.
ViLEM vs. Contrastive learning with edited text. We
take edited texts and corresponding images as hard nega-
tive pairs for contrastive learning, i.e. model C in Table 7.
It achieves performance improvement compared to baseline
model A but has a large performance gap with our method
G. We argue that coarse-grained global alignment is insuf-
ficient for capturing fine-grained semantic association.
Multi-level vs. Single-level local visual features. Instead
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A cat that is eating some kind of banana

eating banana

Two ducks floating together on a body of water

two ducks(b) (c) oncat

Young girl in sunglasses holding a frisbee

(a) sunglasses frisbeegirl

Figure 3. Grad-CAM visualizations on the cross-attention maps corresponding to individual words.

(b) Score of our method (c) Normalized Margin(a) Score w/o ViLEM

Figure 4. Distribution of similarity scores for positive and negative
pairs and normalized margins between positive and negative pairs.

of using multi-level local visual features, Model D in Table
7 performs ViLEM with global visual features and single-
level local visual features. We observe that the performance
drops due to the lack of guidance on the intermediate visual
features. But model D also outperforms the baseline model
A, which validates the effectiveness of our ViLEM task.
Separate vs. Joint use of global and local visual features.
A straightforward approach to exploit global and local vi-
sual features for ViLEM is concatenating them and then
feeding them into cross-attention modules. We experiment
with this approach, i.e., model E in Table 7, and observe that
it achieves worse results than model G. Moreover, model E
achieves comparable performance with the model that only
uses local visual features (model D in Table 5), indicating
model E may only focus on local visual features for ViLEM
and lacks the regularization on global visual features.
Knowledge-based vs. Random text edition. Replacing
words by random sampling from vocabulary (Model F in
Table 7) rather than the knowledge-based edition with a pre-
trained language model (Model G in Table 7) may gener-
ate meaningless texts and reduces the difficulty of ViLEM,
leading to performance degradation.
Distribution of similarity scores and normalized mar-
gins. We show the distribution of similarity scores and nor-
malized margins in Figure 4 to observe the effect of ViLEM
on the image-text embedding space. It can be seen that
ViLEM reduces the variance of similarity scores of positive
and negative pairs while enlarging the normalized margins
between positive and negative pairs from 0.35 to 0.40.

4.6. Qualitative Analysis

Fine-grained image-text association. We visualize the
word-patch cross-attention maps corresponding to individ-
ual words through Grad-CAM [31], which shows that fine-
grained association between images and texts is properly es-
tablished. In Figure 3(a), our model attends to correspond-
ing regions of different objects, even fine-grained ones like
“sunglasses” and “frisbee”. Figure 3(b) shows that our
model correlates action information across visual and lan-

(a) Object and attribute 

(b) Object and action 

(c) Position

(d) Number

A green and red dog sitting in a sink           

Three cows are sitting close together on the land

A close up of a fire hydrant in a house

Four cars parked on the sidewalk ……

black white  brown cat kitty  kittenwhite black  brown

zebra animals  people standing gazing  hubbled

near by  outside

two several  three

(a) (b)

(c) (d)

Figure 5. Visualization of text error detection and correction.
Different colored words in captions indicate the detected wrong
words, and the top-3 candidates for correction are shown in the
corresponding colored text boxes.

guage. When recognizing “eating”, our model focus on the
region where cat’s mouth touches the banana. Moreover,
our model can capture abstract visual concepts, i.e., number
“two” and spatial relation “on” as shown in Figure 3(c).
Proofreading negative texts with ViLEM. Figure 5 visu-
alize examples of our model applied to negative texts with
different kinds of local errors. Common types of errors,
such as the object error (“dog” in (a) and “cows” in (b)),
the attribute error (“green” and “red” in (a)), and the action
error (“sitting” in (b)) can be well detected and corrected by
the model. Moreover, our model can also deal with position
error (“in” in (c)) and counting error (“four” in (d)).

5. Conclusion

In this work, we propose a novel proxy task, Visual-
Language Error Modeling (ViLEM) for image-text re-
trieval, which injects detailed image-text association into
“dual-encoder” architecture. A multi-granularity interac-
tion framework is proposed to perform ViLEM via inter-
acting with both high-level visual context and multi-level
local visual information while maintaining high efficiency
for retrieval. Extensive experiments on image-text retrieval
and vision-linguistic stress testing clearly demonstrate the
superiority of our method. Our model also shows the gen-
eralization capability to video-text data.
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