
ViewNet: A Novel Projection-Based Backbone with View Pooling for Few-shot
Point Cloud Classification

Jiajing Chen, Minmin Yang, Senem Velipasalar
Electrical Engineering and Computer Science Dept., Syracuse University, Syracuse, NY, USA

{jchen152, myang47, svelipas}@syr.edu *

Abstract

Although different approaches have been proposed for
3D point cloud-related tasks, few-shot learning (FSL) of
3D point clouds still remains under-explored. In FSL, un-
like traditional supervised learning, the classes of training
and test data do not overlap, and a model needs to rec-
ognize unseen classes from only a few samples. Existing
FSL methods for 3D point clouds employ point-based mod-
els as their backbone. Yet, based on our extensive experi-
ments and analysis, we first show that using a point-based
backbone is not the most suitable FSL approach, since (i)
a large number of points’ features are discarded by the
max pooling operation used in 3D point-based backbones,
decreasing the ability of representing shape information;
(ii) point-based backbones are sensitive to occlusion. To
address these issues, we propose employing a projection-
and 2D Convolutional Neural Network-based backbone, re-
ferred to as the ViewNet, for FSL from 3D point clouds.
Our approach first projects a 3D point cloud onto six dif-
ferent views to alleviate the issue of missing points. Also, to
generate more descriptive and distinguishing features, we
propose View Pooling, which combines different projected
plane combinations into five groups and performs max-
pooling on each of them. The experiments performed on the
ModelNet40, ScanObjectNN and ModelNet40-C datasets,
with cross validation, show that our method consistently
outperforms the state-of-the-art baselines. Moreover, com-
pared to traditional image classification backbones, such as
ResNet, the proposed ViewNet can extract more distinguish-
ing features from multiple views of a point cloud. We also
show that ViewNet can be used as a backbone with different
FSL heads and provides improved performance compared
to traditionally used backbones.

*The information, data, or work presented herein was funded in part by
National Science Foundation under Grant 1816732 and Federal Highway
Administration Exploratory Advanced Research Program under Agree-
ment No. 693JJ31950022. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Govern-
ment or any agency thereof.

1. Introduction

3D point cloud data has a wide range of applications
including robotics, self driving cars and simultaneous lo-
calization and mapping (SLAM). In recent years, different
approaches have been proposed for traditional point cloud-
related tasks, such as point cloud classification, segmenta-
tion and object detection. Yet, few-shot learning of 3D point
clouds remains relatively under-explored. In contrast to
structured 2D images, a 3D point cloud is a set of unordered
points. Thus, traditional Convolution Neural Networks
(CNNs) cannot be directly used with 3D point clouds. To
address this, PointNet [14] was proposed, which employs a
max pooling operation to obtain permutation invariant fea-
tures. This has been shown to be effective in capturing 3D
objects’ shape, and could be used for downstream tasks,
such as point cloud classification and segmentation. How-
ever, in PointNet, each point’s features are learned inde-
pendently, and features from neighboring points are not ag-
gregated. Thus, later works presented different approaches,
wherein a better representation can be learned by incorpo-
rating features from neighboring points [15,22,24,25]. De-
spite having different network structures, these point-based
methods all employ a max pooling module to obtain permu-
tation invariant features for the downstream tasks.

Traditional supervised learning needs a large number of
labeled samples for training, and performs testing on the
same classes used in training. In contrast, with few-shot
learning (FSL), a model performs prediction on classes,
which have not been seen during training, with only a few
labeled samples provided in a support set. Let (x, y) denote
a point cloud sample and its label. In N -way-K-shot FSL, a
support set S = {(xi, yi)}N×K

i=1 contains N classes with K
samples for each class. A query set Q = {xj}N×q

j=1 contains
the same classes, with q samples for each class. The model
matches each sample in Q with a sample in S to predict the
labels of query samples. Support and query sets are used
both in training and testing. The model gains the ability to
learn the similarities between samples from the same class,
and dissimilarities between different classes.

Existing approaches for FSL from point clouds [26, 27]

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17652

use DGCNN [22], a well-known point-based method, as
their backbone due to its simplicity and effectiveness in rep-
resenting 3D object shapes. In DGCNN, non-local features
are learned for each point by aggregating features from dif-
ferent neighbors in each Edge Convolution Layer. At the
end of the network, max pooling is performed to obtain per-
mutation invariant features, which are then used for the FSL
tasks. In this paper, we first show that point-based methods
are not the most suitable backbones for FSL for the follow-
ing reasons: (i) The representation ability of a point-based
method is correlated with the number of points kept after
max-pooling [3]. Our extensive experiments show that, in
FSL, a point-based backbone utilizes only a small portion
of points after max pooling. Considering that classification
with FSL is already more challenging than traditional su-
pervised classification, it is even more important to make
effective use of the available data points. Discarding 3D
points during max-pooling decreases the shape representa-
tion ability of a point-based approach; (ii) Real-world point
cloud data is affected by occlusions and has missing points,
and point-based methods are very sensitive to these issues.
For instance, almost all point-based methods [14, 15, 22]
perform well on the ModelNet40 [23] dataset, which was
generated from CAD models, and thus is not affected by
missing point issues. On the other hand, the performances
of these methods drop on the ScanObjectNN dataset [21],
which was collected by scanning real-world objects.

To address the aforementioned issues, instead of a point-
based backbone, we propose a 2D projection-based back-
bone, referred to as the ViewNet, for FSL of point clouds.
The proposed ViewNet is inspired by GaitSet [2], which
was proposed for gait recognition from videos. ViewNet is
designed by incorporating our proposed novel View Pool-
ing, which extracts more descriptive and distinguishing fea-
tures from 2D projection images of point clouds, which are
then fed into a few-shot head for downstream FSL tasks.
More specifically, we project a point cloud into six orthogo-
nal planes (front, back, left, right, top and bottom) to gener-
ate six depth images by using the SimpleView [7] projection
method. Some example depth images are shown in Fig. 2.
In addition, we propose View Pooling, which combines dif-
ferent projected plane combinations into five groups and
performs max-pooling on each of them to generate more
descriptive features. The experiments performed on the
ModelNet40 [23], ScanObjectNN [21] and ModelNet40-
C [18] datasets, with cross validation, show that our pro-
posed method consistently outperforms the state-of-the-art
(SOTA) on the few-shot point cloud classification task. The
main contributions of this work include the following:

• We first provide an analysis of the commonly used point-
based backbones in terms of point utilization, and argue
that they are not well-suited for the FSL task especially
with real-word point clouds obtained via scanning.

• By visualizing projected depth images of point clouds, we
have observed that some projections are robust to missing
points and deformations. Motivated by this, we propose
the ViewNet, a 2D projection-based backbone, for few-
shot point cloud classification.

• We propose View Pooling to generate more descriptive
and distinguishing features.

• Our approach achieves SOTA performance on ScanOb-
jectNN, ModelNet40-C and ModelNet40 datasets, and
outperforms four different baselines [10, 17, 19, 26] on
few-shot point cloud classification task.

• Ablation studies show that the proposed ViewNet back-
bone can generalize and be employed together with dif-
ferent few-shot prediction heads, providing better perfor-
mance than a point-based backbone.

2. Related Work
Point Cloud Classification: PointNet [14] employs max-
pooling to obtain permutation invariant features, which can
be used for downstream tasks, such as classification and
segmentation. Following works [4,5,15,16,22,24,25] intro-
duce different network structures to aggregate information
from neighboring points, yet most of them still employ the
same max-pooling operation to obtain permutation invariant
features. These methods are referred to as the point-based
methods. Other methods convert 3D point clouds into 2D
images, and use image processing methods to perform pre-
diction. SimpleView [7] projects points onto six orthogonal
planes to create depth images, and then uses ResNet [8] for
classification. Lawin et al. [9] project point clouds onto 120
synthetic 2D images, and feed these images into a CNN.
Few-shot Learning: Prototypical Network [17] is a mile-
stone FSL work, which learns a metric space, wherein the
prediction could be performed by calculating the Euclidean
distance between the features of samples in query and sup-
port sets. Chen and Wang [6] use discrete cosine transfor-
mation to generate a frequency representation. Features of
frequency and spatial domain are used together for final pre-
diction. Sung et al. [19] propose a module to obtain the re-
lation scores between the support and query sets. Currently,
most FSL models focus on 2D images, while FSL from 3D
point clouds remains under-explored. Zhao et al. [27] pre-
sented one of the first works for few-shot semantic point
cloud segmentation, which uses an attention-aware, multi-
prototype transductive method. A recent point cloud FSL
work [26] uses DGCNN [22] as the backbone, and presents
a Cross-Instance Adaption module, which achieves good
FSL performance on CAD-based point cloud datasets.

3. Motivation
Current point cloud FSL models [26, 27] employ point-

based DGCNN as their backbone, to extract features, since

17653

it was shown in [26] that DGCNN outperformed other
backbones. Different from these methods, we propose a
projection-based backbone for few-shot point cloud clas-
sification. For motivation, we first show that DGCNN
only keeps a small portion of point features, which can
then be used in the FSL task, while completely discarding
other points. We then show the sensitivity of point-based
DGCNN, as backbone, to occlusions and missing points in
point clouds, which are very common for real-world point
cloud data.

3.1. Point Utilization Analysis

Chen et al. [3] showed that point-based methods, such as
PointNet [14], PointNet++ [15] and DGCNN [22], employ
a max-pooling module, and use only a portion of points’
features while discarding the other points. If a point has no
features participating/used in the set of permutation invari-
ant features, this point is referred to as ‘discarded by max
pooling’. Chen et al. [3] also showed that these discarded
points are actually useful for a task at hand.

We first investigate the number of points utilized after
max-pooling in DGCNN, for both traditional supervised
and few-shot point cloud classification, on ModdelNet40
and ScanObjectNN datasets. For supervised point cloud
classification, DGCNN is trained on the training set, and we
evaluate the number of points retained by max pooling on
testing set directly. For few-shot point cloud classification
experiments, we employ the recent work by Ye et al. [26],
which provided the SOTA performance with DGCNN as its
backbone. The classes in the datasets are split into n folds,
to perform n-fold cross validation. For all the experiments,
the number of input points is 1024.

3.1.1 Experiments on the ModelNet40 Dataset

ModelNet40 contains objects from 40 classes. For tradi-
tional supervised classification (TSC), DGCNN is trained
on the training set, which contains 9840 objects, and eval-
uated on the testing set containing 2468 objects. For few-
shot classification, we sort 40 classes by their class ID in
ascending order, and evenly split them into 4 folds, with
objects from 10 classes in each fold. Some example ob-
jects from the dataset and the experiment results for point
utilization are shown in Fig. 1 (a) and top half of Table 1.
As can be seen, in all the experiments, the number of points
kept after max-pooling in DGCNN, increases at the end of
training compared to before training. This indicates that
the network is learning to pick up a set of points that can
better describe an object’s shape for final prediction. For
TSC, 464 points are utilized in DGCNN. For few-shot point
cloud classification, on the other hand, a maximum of 416
points are utilized. In FSL, the model performs prediction
on classes that were not seen during training, which makes
few-shot classification more challenging than TSC, and also

Experiments on ModelNet40

N
um

be
r o

f p
oi

nt
s

ke
pt

 a
fte

r m
ax

-p
oo

in
g

N
um

be
r o

f p
oi

nt
s

ke
pt

 a
fte

r m
ax

-p
oo

in
g

(a)

(b)

Experiments on ScanObjectNN

Figure 1. (a) and (b) show example 3D objects and box plots of the
number of points used by DGCNN for ModelNet40 and ScanOb-
jectNN datasets, respectively. TSC refers to traditional supervised
classification, and FS-n represents few-shot point cloud classifica-
tion experiment at fold n. The number of input points is 1024 for
all experiments. Only about 250 points are utilized by DGCNN
before the training. The number of points kept by max-pooling
increases after the model is well trained.

making it difficult to pick up useful points for prediction af-
ter max-pooling. Thus, with the number of points utilized
for few-shot classification being less than that for TSC, it is
hard to expect DGCNN to extract the best set of features as
a backbone to describe 3D objects for FSL.

3.1.2 Experiments on the ScanObjectNN Dataset

Different from the ModelNet40 dataset, wherein point
clouds are complete and regular, points in ScanObjectNN
come from scanning of real-world objects. Thus, missing
points are commonly observed as seen in Fig. 1(b). Even
with supervised classification, although ScanObjectNN has
only 15 classes, all point-based methods [14,15,22] provide
worse performance compared to the ModelNet40 dataset.

For few-shot point cloud classification, 15 classes are
sorted by the class ID in ascending order, and evenly split
into 3 folds for cross validation. As shown in Fig. 1(b)
and lower half of Tab. 1, for TSC, a well-trained DGCNN
only makes use of 397 points and provides an accuracy of
83.10% on ScanObjectNN, which is lower than the 92.51%
accuracy obtained with 460 points on ModelNet40. For

17654

few-shot point cloud classification, while a well-trained
DGCNN can make use of more than 400 points on Mod-
elNet40, it uses less points on ScanObjectNN, and provides
lower accuracy. From this, it can be inferred that missing
points and deformed shapes can negatively affect the max-
pooling, causing it to pick up inadequate points to represent
a 3D object’s features and shape.

Two strategies can be used to address this problem: (i)
the discarded points can be recycled [3] to increase the point
utilization, and make the backbone output a better set of
features to describe an object’s shape; (ii) the point-based
backbone, such as DGCNN, can be replaced with another
backbone to output more representative features. In this pa-
per, we present an approach based on the second strategy.
The reason is that if there are already missing points in the
cloud to begin with, they cannot be recycled. Projections
onto different view planes provide robustness against this
issue, and a backbone analysis using these projections is
provided in detail in Sec. 3.2.

Dataset Experiment Name MED of no. of kept pnts Accuracy
ModelNet40 TSC 252→464 92.51%
ModelNet40 FS-0 274→414 89.97%
ModelNet40 FS-1 257→390 83.46%
ModelNet40 FS-2 246→413 74.08%
ModelNet40 FS-3 271→416 76.13%

ScanObjectNN TSC 234→397 83.10%
ScanObjectNN FS-0 237→363 50.58%
ScanObjectNN FS-1 230→391 62.17%
ScanObjectNN FS-2 248→400 62.59%

Table 1. b → a shows the median value of the number of utilized
points before and after training, respectively. TSC is the traditional
supervised point cloud classification, and FS-n is few-shot point
cloud classification at fold n.

3.2. Point Projection Analysis

Occlusion and missing points are common problems
with point clouds captured from LiDAR and other scanning
devices. Point-based backbones [14, 15, 22] use 3D points
as input directly. Thus, missing points and deformation in
object shapes negatively affect their performance. However,
if 3D points are projected into depth images from different
angles, some depth images can be more robust against miss-
ing points, as illustrated in Fig. 2, which shows an example
from the ModelNet40-C dataset [18]. This dataset contains
the same 40 classes as ModelNet40 [23], but in addition
to the point clouds formed by sampling a CAD model, the
dataset contains point clouds obtained by introducing differ-
ent types of common and realistic corruptions. The first row
of Fig. 2 shows a point cloud sampled from a CAD model
(referred to as Original), and clouds with simulated miss-
ing points seen from five different angles. Rows 2 through
5 show the projection images on different planes. For An-
gles 1 and 2, the left part of the car is missing. For Angles
3 and 4, the right part of the car is missing. In Angle 5,

Original Angle 1 Angle 2 Angle 3 Angle 4 Angle 5

Back
View

Left
View

Right
View

Top
View

Point

Figure 2. Projections of the original point cloud and of clouds with
simulated missing points seen from five different angles. The con-
tours of the projections of occluded clouds, shown in red circles,
are similar to the ones obtained from the original point cloud.

the lower part of the car is occluded. Although the missing
portion of the point cloud can be different due to scanning
device’s position, some projection images can provide ro-
bustness to varying occlusions. For instance, for Angles 1
and 2 in Fig. 2, the object’s contour in left and right pro-
jection views and the top view are similar to those obtained
from the CAD-based point cloud. Points missing on some
part of the object do not affect all the projected views in
the same way. For example, when the points from Angle
1 and Angle 2 are in the support set and query set, respec-
tively, during the few-shot classification, if the backbone is
given the projected depth images, and can focus on the fea-
tures from a side view and top view, rather than the back
view, there is a better chance of predicting the correct label
for the points from Angle 2, compared to using the point
clouds themselves directly.

Projection-based approach is commonly used for su-
pervised point cloud classification. A SOTA approach is
presented in [7], which projects points onto six orthogo-
nal planes to create sparse depth images, and then uses
ResNet [8] to perform the prediction task on depth im-
ages. However, for few-shot classification, wherein the
model needs to perform prediction on classes that were not
seen during training, we argue that a traditional image clas-
sification backbone, such as ResNet, may not be able to ex-
tract distinguishing features from depth images. Traditional
CNN-based backbones are composed of convolution layers
and process all depth images separately, without a module
for extracting distinguishing features among all views’ fea-
ture maps. To show this, we chose to use ProtoNet [17] in
our analysis, since ProtoNet is a well known milestone work
on FSL, with many following works developed based on it.
We used ProtoNet with DGCNN and ResNet as the back-
bones, separately, for few-shot classification on the Model-
Net40 dataset. Data splitting is done the same way as de-

17655

Set Pooling

D0

6x1x128x128

Convolution &

Max Pooling

D1

6x32x64x64

Convolution &

Max Pooling

D2

6x64x32x32

Convolution &

Max Pooling

D3

6x128x32x32

F1

32x64x64

Convolution &

Max Pooling

F2

64x32x32

Convolution &

Max Pooling

F4

128x32x32

View

Pooling

F3

128x32x32

Projection

F5

128x32x32

Projection Feature Learning Branch

Point Feature Learning Branch

B1

128xb1xp1

B2

128xb2xp2

Bn

128xbnxpn

B'1

128xb1xp1

Set Pooling

128xΣb

128xΣb

128x(2*Σb)256x(2*Σb)

summation

concatenation

MLP

B'2

128xb2xp2

B'n

128xbnxpn

View Pooling View Pooling

Figure 3. Pipeline of ViewNet. The Projection Feature Learning Branch processes feature maps of each depth image individually through
convolution and max pooling. The Point Feature Learning Branch learns the features describing the point cloud’s shape from the feature
maps of all six projections.

scribed in Sec. 3.1. The results are summarized in Table 2.
When ResNet is used as the backbone, points are first pro-
jected onto six orthogonal planes to obtain depth images, as
described in [7]. Then, these images are fed into the ResNet,
which outputs features for the downstream few-shot clas-
sification. As seen in Table 2, the average performance
of DGCNN, as backbone, is better than ResNet, for both
1- and 5-shot classification. With 4-fold cross validation,
DGCNN outperforms ResNet in 3 of the 4 folds. Although
ResNet has a good ability to extract features for the super-
vised image classification task, these results show that it is
not able to learn distinguishing features among projection
depth images for few-shot point cloud classification.

Model fold 0 fold 1 fold 2 fold 3 Mean
5-way
1-shot

DGCNN+ProtoNet 85.42% 79.46% 70.06% 70.73% 76.42%
ResNet+ProtoNet 83.29% 79.35% 64.44% 74.42% 75.38%%

5-way
5-shot

DGCNN+ProtoNet 93.99% 88.65% 84.76% 85.56% 88.24%
ResNet+ProtoNet 92.61% 87.39% 80.91% 86.96% 86.97%%

Table 2. Comparison of Protonet’s performance on ModelNet40,
with DGCNN and ResNet as backbones, for 5-way 1-shot and 5-
way 5-shot classification.

4. Proposed ViewNet

We propose a projection-based backbone, referred to as
the ViewNet, for few-shot 3D point cloud classification.
ViewNet is inspired by GaitSet [2], which focuses on gait
recognition from videos. ViewNet incorporates our pro-
posed novel View Pooling to extract more descriptive and
distinguishing features. As shown in Fig. 3, ViewNet is

composed of two main branches: Projection Feature Learn-
ing Branch and Point Feature Learning Branch.

Projection Feature Learning Branch takes D0 ∈
R6×1×H×W as input, where 6 is the number of projection
depth images (front, back, left, right, top and bottom views),
and H and W are the height and width of a depth image, re-
spectively. In this branch, convolution and max pooling are
used to process each depth image independently, and ob-
tain intermediate feature maps {Di|i ∈ {1, 2, 3}} for View
Pooling. View Pooling extracts features from different com-
binations of views, which are then fed into the Point Feature
Learning Branch for further processing. The details of the
View Pooling are described in Sec. 4.1.

Point Feature Learning Branch learns a set of fea-
ture maps Fi to describe point cloud features based on
the output of View Pooling. This branch is also com-
posed of convolution layers and max pooling, and inter-
acts with the Projection Feature Learning Branch via fea-
ture summation to output F4 (Fig. 3). To learn discrim-
inative features in different receptive fields, the pixels in
feature maps F4 and F5 are divided into n-many bins,
where n ∈ {1, 2, 4, 8, 16}, resulting in bin feature matri-
ces {B′

i|i = 1, 2., 5} and {Bi|i = 1, 2.., 5}, respectively. In
each Bi and B′

i, since bin sizes are different, bin features
can cover different receptive fields. By set pooling, illus-
trated in Fig. 4, discriminative features from each bin can
be extracted. Set pooling is composed of max pooling and
average pooling, whose outputs are summed to produce the
output. In the end, bin features obtained from F4 and F5

17656

are concatenated, and Multiple Layer Perceptron (MLP) is
applied to obtain the final output of the whole backbone.

128xbxp

Max Poolig

128xb

128xb

Average Poolig

128xb

Figure 4. Set Pooling. b is the number of bins, p is the number
of pixels in each bin. The pooling is performed along the pixel
dimension.

4.1. View Pooling

As shown in Fig. 2, missing parts of a point cloud
do not greatly affect some projection depth images. To
leverage this, we propose a novel module, referred to as
View Pooling. As shown in Fig. 5, View Pooling takes
depth image feature map Di ∈ R6×C×H×W as input,
where 6 is the number of projection images, C is the num-
ber of feature channels for each projection feature map,
i ∈ {1, 2, 3} and H and W represent the feature map’s
size. We obtain 5 new feature maps (Ci) from 6 view
features in D by using them in different combinations
such that {Ci ∈ RN×C×H×W |i = 1, .., 5}, where N is
the number of projection feature maps combined for Ci.
Three of these five feature maps are obtained by taking
all pairs of opposite projection feature maps into account,
i.e. {(left, right), (front, back), (top, bottom)}, since if
a small part of points is missing due to occlusion, it is likely
that at least one projection image in this combination of op-
posite projections is not affected greatly, as seen in Fig. 2.
Remaining two of the five feature maps come from triplet
combinations {(left, front, top), (right, back, bottom)},
since these three-view drawings are able to depict an ob-
ject’s 3D shape. Max pooling is performed on these combi-
nations together with the original Di, along the dimension
of the number of projection feature maps, and distinguish-
ing feature {Gi ∈ RC×H×W |(i = 1, ..., 6)} for each pro-
jection combination is obtained. Finally, these features are
concatenated, and then fed into a convolutional layer to ob-
tain the output feature F ∈ RC×H×W .

5. Few-shot Head
In this paper, we employ the Cross Instance Adaption

module (CIA) [26] as the few-shot head. CIA is composed
of a Self-Channel Interaction Module and a Cross-Instance
Fusion Module. In Self-Channel Interaction Module, each
support and query feature f ∈ R1×d is updated by a self-
attention mechanism. Firstly, a query-vector q ∈ R1×d and
a key-vector k ∈ R1×d are obtained by two separate embed-
ding linear functions operating on f . Then, a channel-wise
relation score map is calculated as follows:

R = qT k,R ∈ Rd×d. (1)

Front
Feature

Back
Feature

Left
Feature

Right
Feature

Top
Feature

Bottom
Feature

D

6xCxHxW

Projection Feature Sets

Max
Pooling

G1 G2 G3 G4 G5 G6

CxHxW

6*CxHxW

Convolution

F

CxHxW

C1 DC2 C3 C4 C5

Figure 5. Pipeline of View Pooling. The input D is used to-
gether with the different projection feature combinations Ci ob-
tained from D. Max pooling is applied to extract distinguishing
features Gi for each combination.

Then, the updated feature is obtained as f ′ = f+fR′, f ′ ∈
R1×d, where R′

ij =
exp(Rij)∑d

k=1 exp(Rkj)
, R′ ∈ Rd×d.

In Cross-Instance Fusion Module, each query feature f i
q

aggregates k1 nearest neighbor support feature {f j
s |j =

0..k1}. Each support feature f i
s also aggregates k2 near-

est neighbor query feature {f j
q |j = 0..k2}. Details can be

found in the original CIA paper [26].
Different from other backbones outputting a single vec-

tor f ∈ Rd, our proposed ViewNet divides all pixels in the
feature map into a set of bins, and concatenates features
from all bins to give the output O ∈ RB×D, where B is
number of bins, and D is the feature dimension. For each
query and support feature Oi ∈ RB×D, bin-wise CIA is
applied. Then, jth bin’s feature of ith sample, O′j

i , is ob-
tained as CIA(Oj

1, O
j
2, ..., O

j
N), where N is the total num-

ber of query and support samples. Triplet loss is applied to
the features of each bin. The jth bin’s triplet loss is

Lj
tp = Max(D(Aj , P j)−D(Aj , N j) +M, 0), (2)

where D(Aj , P j) and D(Aj , N j) are the distances of the
anchor to a positive and negative sample in the jth bin, re-
spectively. M is a margin value, which is set to 0.2. The
final loss L = 1

B

∑B
k=1 L

j
tp, where B is the number of bins.

6. Experiments
It was shown in [26] that DGCNN performs better as

a backbone compared to other methods [11–15]. Thus,
the baselines we use for comparison employ DGCNN as

17657

the backbone, together with different modules as few-
shot heads. All methods are run with the same training
and evaluation settings, including the learning rate, opti-
mizer, training epochs, and 10 queries. Experiments are per-
formed with n-fold cross validation on ScanObjectNN [20],
ModelNet40-C [18] and ModelNet40 [23] datasets. Test-
ing episodes’ mean accuracy and 95% confidence intervals
are computed for models’ performance evaluation. The re-
sults show that our proposed method consistently outper-
forms the SOTA work [26] as well as other baselines, for
both 1-shot and 5-shot classification.

6.1. Few-shot Classification on ScanObjectNN

ScanObjectNN [20] dataset contains 15k objects from 15
categories. Since the point clouds are scanned from real-
world objects, missing points due to occlusion frequently
occur, posing challenges for point cloud analysis models.
Sample point clouds from ScanObjectNN are shown in
Fig 1(b). The classes are sorted in ascending order based on
their ID, and then evenly divided into 3 folds for cross val-
idation. We compare our method with several SOTA base-
lines, namely ProtoNet [17], MetaOptNet [10], Relation-
Net [19] and CIA [26], which all use DGCNN as the back-
bone. With our approach, we use the proposed ViewNet as
the backbone together with CIA as the few-shot head. The
results are summarized in Table 3. Our method outperforms
all the baselines with significant margins for all folds, and
for both 1-shot and 5-shot classification. In 1-shot classifi-
cation, our approach outperforms the second best performer
(CIA) by 5.38%. In 5-shot classification, our method out-
performs the second best performer (ProtoNet) by 6.17%.

fold 0 fold 1 fold 2 Mean

5-way
1-shot

MetaOpt 41.92±0.72 61.12±0.66 53.87±0.78 52.30±0.72
RelationNet 50.29±0.76 54.23±0.63 51.45±0.64 51.99±0.68

ProtoNet 50.81±0.73 60.46±0.67 58.72±0.78 56.66±0.73
CIA 50.58±0.82 62.17±0.68 62.59±0.74 58.45±0.75
Ours 60.90±0.76 66.48±0.60 64.10±0.77 63.83±0.71

5-way
5-shot

MetaOpt 63.86±0.56 67.73±0.45 70.19±0.49 67.26±0.50
RelationNet 58.65±0.53 66.72±0.50 65.94±0.52 63.77±0.52

ProtoNet 68.42±0.54 70.20±0.52 68.76±0.49 69.13±0.52
CIA 62.94±0.51 71.31±0.45 70.21±0.48 68.15±0.48
Ours 73.66±0.48 74.77±0.45 77.46±0.46 75.3±0.46

Table 3. Few-shot classification results on ScanObjectNN. Our
proposed method outperforms all baselines with a significant mar-
gin for each fold, and for both 1-shot and 5-shot classification.

6.2. Few-shot Classification on ModelNet40-C

ModelNet40-C [18] is a recently published dataset con-
taining the point clouds of the same 40 classes as the com-
monly used ModelNet40 dataset [23]. Different from Mod-
elNet40, ModelNet40-C contains point clouds formed with
different types of corruption to simulate real-world scenar-
ios. In this experiment, we use point clouds, which are
corrupted to simulate clouds collected by LiDAR from five
different angles. Example set of point clouds are shown in

Fig. 2. 40 classes are first sorted by their class ID in ascend-
ing order, and then divided into 4 folds for cross-validation.
The experimental results are summarized in Table 4. Our
method outperforms all the baselines with significant mar-
gins for each fold and for both 1-shot and 5-shot classifi-
cation. Our method outperforms the second best performer
(CIA) by 2.75% for 1-shot classification, and by 3.32% for
5-shot classification, on average of all 4 folds.

fold 0 fold 1 fold 2 fold 3 Mean

5-way
1-shot

Metaopt 78.28±0.79 75.34±0.84 58.07±0.86 66.29±0.91 69.50±0.85
RelationNet 79.59±0.74 74.63±0.84 59.03±0.81 68.38±0.86 70.41±0.81

ProtoNet 81.29±0.71 75.83±0.79 61.76±0.84 69.83±0.84% 72.18±0.80
CIA 85.70±0.75 79.67±0.90 65.68±1.0 74.32±0.94 76.34±0.89
Ours 89.47±0.58 81.05±0.78 69.56±0.89 76.29±0.85 79.09±0.78

5-way
5-shot

Metaopt 91.09±0.40 84.19±0.57 75.10±0.73 81.34±0.53 82.93±0.56
RelationNet 87.12±0.46 83.55±0.54 70.18±0.78 79.01±0.58 79.97±0.59

ProtoNet 90.97±0.39 86.21±0.50 76.99±0.65 83.19±0.51 84.34±0.51
CIA 92.07±0.36 86.81±0.56 76.11±0.71 83.71±0.51 84.68±0.54
Ours 94.95±0.31 88.75±0.49 81.53±0.60 86.78±0.46 88±0.47

Table 4. Few-shot classification result on ModelNet40-C dataset.

6.3. Few-shot classification on ModelNet40

ModelNet40 [23] is a commonly used point cloud
dataset, which contains 12,311 CAD models of 40 man-
made object categories. Point clouds are randomly sampled
from CAD models’ surfaces. Compared to ScanObjectNN
and ModelNet40-C, points in ModelNet40 are more regular,
and data does not suffer from missing point issues. Thus,
point cloud analysis models usually have a better perfor-
mance on this dataset. We split the data in the same way
as in Sec. 3.1.1, and perform 4-fold cross validation. The
experiment results are shown in Table 5. Our method out-
performs all baselines in terms of mean accuracy for both
1-shot and 5-shot classification. Our approach improves the
performance of the original CIA by 1.96% on 1-shot clas-
sification and by 1.58% on 5-shot classification. Compared
to ScanObjectNN and ModelNet40-C, wherein points are
more irregular and objects have missing points, our method
provides less improvement on ModelNet40 as expected.

The significant improvements provided on ScanOb-
jectNN and ModelNet40-C datasets show that our proposed
method is also effective on point clouds scanned from the
real-world, and verify the analysis provided in Sec. 3.

fold 0 fold 1 fold 2 fold 3 Mean

5-way
1-shot

MetaOpt 82.87±0.72 75.77±0.83 65.31±0.92 66.97±0.93 72.73±0.85
RelationNet 82.14±0.69 77.46±0.80 66.09±0.91 69.47±0.84 75.23±0.81

ProtoNet 85.42±0.64 79.46±0.76 70.06±0.39 70.73±0.42 76.42±0.55
CIA 89.97±0.63 83.46±0.83 74.08±0.95 76.13±0.86 80.91±0.82
Ours 92.57±0.52 82.68±0.80 75.28±0.90 80.95±0.75 82.87±0.74

5-way
5-shot

MetaOpt 92.37±0.38 86.44±0.62 82.10±0.58 83.15±0.55 86.02±0.53
RelationNet 91.53±0.38 85.11±0.61 79.36±0.63 83.01±0.52 84.75±0.53

ProtoNet 93.99±0.29 88.65±0.54 84.76±0.51 85.56±0.48 88.24±0.45
CIA 94.61±0.30 89.15±0.55 85.00±0.51 86.71±0.50 88.87±0.47
Ours 96.23±0.26 89.64±0.55 85.74±0.51 90.18±0.45 90.45±0.44

Table 5. Few-shot classification results on the ModelNet40
dataset.

17658

7. Ablation Studies

For the ablation studies, we use the ScanObjectNN
dataset, since it is composed of point clouds scanned from
real-world objects.

7.1. Analysis of the Bin-wise Loss

The backbones used in other works, such as DGCNN
and ResNet, output a vector f ∈ RD to describe an ob-
ject’s shape, where D is the vector’s dimension. Then, f is
fed into a few-shot head for prediction and loss calculation.
However, our proposed ViewNet outputs multiple feature
matrices (one for each bin) O ∈ RB×D, where B is the
number of bins. Different bins contain features from differ-
ent receptive fields. Few-shot head processes each bin’s fea-
ture matrix separately, and calculates loss Lbi ∈ RB based
on prediction on each bin. The final loss is L = 1

B

∑
Lbi .

In this ablation study, the bin feature matrix O ∈ RB×D

is compressed into a vector O′ ∈ RD by a linear layer so
that O′ has the same dimension as other backbones’ output
f . The training and evaluation are performed on O and O′

with our method, and the results are shown in Table 6. As
can be seen, if O is compressed into O′, the performance
drops for all folds for both 1-shot and 5-shot classification.
Since different bins contain features from different recep-
tive fields, if they are compressed into one bin by force,
information might be lost, causing a performance drop.

Backbone Feature fold 0 fold 1 fold 2 Mean
5-way
1-shot

O′ 57.29% 64.47% 62.52% 61.43%
O 60.90% 66.48% 64.10% 63.83%

5-way
5-shot

O′ 73.28% 74.41% 75.42% 74.37%
O 73.66% 74.77% 77.46% 75.30%

Table 6. Ablation study for the bin-wise loss: prediction results
from O and O′.

7.2. ViewNet’s Generalizability as a Backbone

It was shown in [26] that DGCNN provides the best per-
formance as backbone compared to other networks. In this
section, we show that ViewNet can be used as a backbone
with different few-shot heads and provides better perfor-
mance than DGCNN. For fair comparison, the ViewNet’s
output O ∈ RB×D is compressed into O′ ∈ Rd, which has
the same dimension as DGCNN’s output. Although this can
cause information lost as shown in Sec. 7.1, it is guaranteed
that the output features of ViewNet and DGCNN are fed
into the same few-shot head and same loss function is used
during training and evaluation. The results are shown in Ta-
ble 7. With all of the four few-shot heads and for both 5-shot
and 1-shot classification, ViewNet achieves higher mean ac-
curacy than DGCNN. ViewNet outperforms DGCCN as a
backbone in 23 of the 24 different fold experiments for 5-
shot and 1-shot classification.

fold 0 fold 1 fold 2 Mean

5-way
1-shot

DGCNN+MetaOpt
ViewNet+MetaOpt

41.92%
48.74% (↑6.82%)

61.12%
61.62% (↑0.5%)

53.87%
58.95% (↑5.08%)

52.3%
56.44% (↑4.14%)

DGCNN+RelationNet
ViewNet+MetaOpt

50.29%
55.73% (↑5.44%)

54.23%
60.32% (↑6.09%)

51.45%
59.10% (↑7.65%)

51.99%
58.38% (↑6.39%)

DGCNN+ProtoNet
ViewNet+ProtoNet

50.81%
56.02% (↑5.21%)

60.46%
64.06% (↑3.6%)

58.72%
64.05% (↑5.33%)

56.66%
61.37% (↑4.71%)

DGCNN+CIA
ViewNet+CIA

50.58%
60.81% (↑10.23%)

62.17%
65.84% (↑3.67%)

62.59%
64.19% (↑1.6%)

58.45%
63.61% (↑5.16%)

5-way
5-shot

DGCNN+MetaOpt
ViewNet+MetaOpt

63.86%
67.97% (↑4.11%)

67.73%
73.04% (↑5.31%)

70.19%
75.12% (↑4.93%)

67.26%
72.04% (↑4.78%)

DGCNN+RelationNet
ViewNet+RelationNet

58.65%
67.49% (↑8.84%)

66.72%
66.51% (↓0.21%)

65.94%
72.01% (↑6.08%)

63.77%
68.67%(↑4.9%)

DGCNN+ProtoNet
ViewNet+ProtoNet

68.42%
75.13% (↑6.71%)

70.2%
74.41% (↑4.21%)

68.76%
77.07% (↑8.31%)

69.13%
75.54% (↑6.41%)

DGCNN+CIA
ViewNet+CIA

62.94%
72.69% (↑9.75%)

71.31%
73.56% (↑2.25%)

70.21%
75.33% (↑5.12%)

68.15%
73.86% (↑5.71%)

Table 7. Comparison of DGCNN and ViewNet as backbones.

7.3. Analysis of View Pooling

In our proposed View Pooling module shown in Fig. 5,
max pooling is performed on D as well as Ci. To show the
contribution of Ci, we perform an experiment, wherein F
is only obtained from D, without any use of Ci. The results
in Table 8 show that, if pairs of feature maps from oppo-
site views as well as their triplet combinations are included
in the view pooling (with Ci), more distinguishing features
can be learned, and final performance is improved.

View Pooling Type fold 0 fold 1 fold 2 Mean
5-way
1-shot

Without Ci 60.98% 63.41% 63.81% 62.73%
With Ci 60.90% 66.48% 64.10% 63.83%

5-way
5-shot

Without Ci 73.14% 72.76% 75.85% 73.92%
With Ci 73.66% 74.77% 77.46% 75.30%

Table 8. Comparison of View Pooling with and without Ci.

7.4. Analysis of Computational Complexity

The computational costs of DGCNN and ViewNet, ob-
tained by Pytorch-summary [1], are shown in Tab. 9. The
total size of ViewNet is less than one third of DGCNN’s.

Forw./Backw. Pass Size Param Size Total Size
DGCNN 352.01 MB 4.87MB 356.90MB
ViewNet 106.50MB 6.70MB 113.22MB

Table 9. Network Complexity of DGCNN and ViewNet.

8. Conclusion
We have proposed a robust and effective backbone,

ViewNet, for 3D few-shot point cloud classification. In
order to address issues of missing points and occlusion,
ViewNet uses six different depth images that are projections
of a point cloud. Furthermore, to generate more descriptive
and discriminative features from the projected six planes,
we have proposed View Pooling, which uses different com-
binations of view features, and performs max-pooling on
each of them. We have performed extensive experiments
on the ScanObjuctNN, ModelNet40-C and ModelNet40
datasets for 5-way 1-shot and 5-way 5-shot 3D point cloud
classification. Results have shown that ViewNet achieves
SOTA performance, and can be used as a backbone together
with various few-shot heads. As future work, we will apply
ViewNet to other related tasks, such as zero-shot learning
of point clouds, or traditional supervised point cloud classi-
fication.

17659

References
[1] S. Chandel. Model summary in pytorch. https://

github.com/sksq96/pytorch-summary. 8
[2] H. Chao, Y. He, J. Zhang, and J. Feng. Gaitset: Regarding

gait as a set for cross-view gait recognition. In Proceedings
of the AAAI conference on artificial intelligence, volume 33,
pages 8126–8133, 2019. 2, 5

[3] J. Chen, B. Kakillioglu, H. Ren, and S. Velipasalar. Why
discard if you can recycle?: A recycling max pooling module
for 3d point cloud analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 559–567, 2022. 2, 3, 4

[4] J. Chen, B. Kakillioglu, and S. Velipasalar. Hierarchical
grow network for point cloud segmentation. In 2020 54th
Asilomar Conference on Signals, Systems, and Computers,
pages 1558–1562. IEEE, 2020. 2

[5] J. Chen, B. Kakillioglu, and S. Velipasalar. Background-
aware 3-d point cloud segmentation with dynamic point fea-
ture aggregation. IEEE Transactions on Geoscience and Re-
mote Sensing, 60:1–12, 2022. 2

[6] X. Chen and G. Wang. Few-shot learning by integrating spa-
tial and frequency representation. In 2021 18th Conference
on Robots and Vision (CRV), pages 49–56. IEEE, 2021. 2

[7] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng. Revisiting
point cloud shape classification with a simple and effective
baseline. In International Conference on Machine Learning,
pages 3809–3820. PMLR, 2021. 2, 4, 5

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 2, 4

[9] F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan,
and M. Felsberg. Deep projective 3d semantic segmentation.
In International Conference on Computer Analysis of Im-
ages and Patterns, pages 95–107. Springer, 2017. 2

[10] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-
learning with differentiable convex optimization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10657–10665, 2019. 2, 7

[11] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:
Convolution on x-transformed points. Advances in neural
information processing systems, 31, 2018. 6

[12] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan.
Densepoint: Learning densely contextual representation for
efficient point cloud processing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5239–5248, 2019. 6

[13] Y. Liu, B. Fan, S. Xiang, and C. Pan. Relation-shape con-
volutional neural network for point cloud analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8895–8904, 2019. 6

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017. 1, 2, 3, 4, 6

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric

space. Advances in neural information processing systems,
30, 2017. 1, 2, 3, 4, 6

[16] S. Qiu, S. Anwar, and N. Barnes. Geometric back-projection
network for point cloud classification. IEEE Transactions
on Multimedia, 2021. 2

[17] J. Snell, K. Swersky, and R. Zemel. Prototypical networks
for few-shot learning. Advances in neural information pro-
cessing systems, 30, 2017. 2, 4, 7

[18] J. Sun, Q. Zhang, B. Kailkhura, Z. Yu, C. Xiao, and
Z. M. Mao. Benchmarking robustness of 3d point cloud
recognition against common corruptions. arXiv preprint
arXiv:2201.12296, 2022. 2, 4, 7

[19] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales. Learning to compare: Relation network for few-
shot learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1199–1208,
2018. 2, 7

[20] M. A. Uy, Q.-H. Pham, B.-S. Hua, D. T. Nguyen, and S.-K.
Yeung. Revisiting point cloud classification: A new bench-
mark dataset and classification model on real-world data. In
International Conference on Computer Vision (ICCV), 2019.
7

[21] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K.
Yeung. Revisiting point cloud classification: A new bench-
mark dataset and classification model on real-world data. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 1588–1597, 2019. 2

[22] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019. 1, 2, 3, 4

[23] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015. 2, 4,
7

[24] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai. Walk in the
cloud: Learning curves for point clouds shape analysis. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 915–924, 2021. 1, 2

[25] M. Xu, J. Zhang, Z. Zhou, M. Xu, X. Qi, and Y. Qiao. Learn-
ing geometry-disentangled representation for complemen-
tary understanding of 3d object point cloud. arXiv preprint
arXiv:2012.10921, 2, 2021. 1, 2

[26] C. Ye, H. Zhu, Y. Liao, Y. Zhang, T. Chen, and J. Fan. What
makes for effective few-shot point cloud classification? In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 1829–1838, 2022. 1, 2,
3, 6, 7, 8

[27] N. Zhao, T.-S. Chua, and G. H. Lee. Few-shot 3d point cloud
semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8873–8882, 2021. 1, 2

17660

