
VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking

Yukang Chen1 Jianhui Liu2 Xiangyu Zhang3 Xiaojuan Qi2 Jiaya Jia1,4

1The Chinese University of Hong Kong 2The University of Hong Kong 3MEGVII 4SmartMore

Abstract

3D object detectors usually rely on hand-crafted prox-
ies, e.g., anchors or centers, and translate well-studied 2D
frameworks to 3D. Thus, sparse voxel features need to be
densified and processed by dense prediction heads, which
inevitably costs extra computation. In this paper, we in-
stead propose VoxelNext for fully sparse 3D object detec-
tion. Our core insight is to predict objects directly based
on sparse voxel features, without relying on hand-crafted
proxies. Our strong sparse convolutional network Vox-
elNeXt detects and tracks 3D objects through voxel fea-
tures entirely. It is an elegant and efficient framework,
with no need for sparse-to-dense conversion or NMS post-
processing. Our method achieves a better speed-accuracy
trade-off than other mainframe detectors on the nuScenes
dataset. For the first time, we show that a fully sparse voxel-
based representation works decently for LIDAR 3D object
detection and tracking. Extensive experiments on nuScenes,
Waymo, and Argoverse2 benchmarks validate the effective-
ness of our approach. Without bells and whistles, our model
outperforms all existing LIDAR methods on the nuScenes
tracking test benchmark. Code and models are available at
github.com/dvlab-research/VoxelNeXt.

1. Introduction
3D perception is a fundamental component in au-

tonomous driving systems. 3D detection networks take
sparse point clouds or voxels as input, and localize and cat-
egorize 3D objects. Recent 3D object detectors [40, 49,
57] usually apply sparse convolutional networks (Sparse
CNNs) [53] for feature extraction owing to its efficiency.
Inspired by 2D object detection frameworks [14, 38], an-
chors [12, 53] or centers [57], i.e., dense point anchors
in CenterPoint [57], are commonly utilized for prediction.
Both of them are hand-crafted and taken as intermediate
proxies for 3D objects.

Anchors and centers are designed for regular and grid-
structured image data in the first place, and do not consider
sparsity and irregularity of 3D data. To employ these proxy
representations, the main stream of detectors [12, 40, 57]

CenterPointInput VoxelNeXt
0 1

Figure 1. Visualization of input and heatmaps of CenterPoint in
BEV for Car. Most values in the heatmaps are nearly zero, while
the dense head computes over all BEV features, which is wasteful.

convert 3D sparse features to 2D dense features, so as to
build a dense detection head for the ordered anchors or
centers. Albeit useful, this dense head tradition leads to
other limitations, including inefficiency and complicated
pipelines, as explained below.

In Fig. 1, we visualize the heatmap in CenterPoint [57].
It is clear that a large portion of space has nearly zero pre-
diction scores. Due to inherent sparsity and many back-
ground points, only a small number of points have re-
sponses, i.e., less than 1% for Car class on average of
nuScenes validation set. However, the dense prediction
head computes over all positions in the feature map, as re-
quired by the dense convolution computation. They not
only waste much computation, but also complicate detec-
tion pipelines with redundant predictions. It requires to use
non-maximum suppression (NMS) like post-processing to
remove duplicate detections, preventing the detector from
being elegant. These limitations motivate us to seek alter-
native sparse detection solutions.

In this paper, we instead propose VoxelNeXt. It is a
simple, efficient, and post-processing-free 3D object detec-
tor. The core of our design is a voxel-to-object scheme,
which directly predicts 3D objects from voxel features, with
a strong fully sparse convolutional network. The key ad-
vantage is that our approach can get rid of anchor proxies,
sparse-to-dense conversion, region proposal networks, and

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21674

Output

Input

RoI Pooing

Anchors/Centers

dense head

Dense
features

Input FC / SpConv
M

+ NMS

Mainstream 3D Detectors VoxelNeXt

M Sparse Max-pool

Voxel features

Sparse CNN

Output

Figure 2. Pipelines of mainstream 3D object detectors and VoxelNeXt. These 3D detectors [12,40,57] rely on sparse-to-dense conversion,
anchors/centers, and dense heads with NMS. RoI pooling is an option for two-stage detectors [12, 40]. In contrast, VoxelNeXt is a fully
sparse convolutional network, which predicts results directly upon voxel features, with either fully connected layers or sparse convolutions.

other complicate components. We illustrates the pipelines
of mainstream 3D detectors and ours in Fig. 2.

High inference efficiency is due to our voxel-to-object
scheme avoiding dense feature maps. It predicts only upon
sparse and necessary locations, as listed in Tab. 1 with com-
parison to CenterPoint [57]. This representation also makes
VoxelNeXt easily extended to 3D tracking with an offline
tracker. Previous work [57] only tracks for the predicted
object centers, which might involve prediction bias to its
positions. In VoxelNeXt, the query voxels, i.e., the voxels
for box prediction, can also be tracked for association.

Recently, FSD [16] exploits the fully sparse framework.
Motivated by VoteNet [36], it votes for object centers and
resorts to iterative refinement. Since 3D sparse data is gen-
erally scattered on object surfaces, this voting process in-
evitably introduces bias or error. Consequently, refinement,
such as iterative group correction, is needed to ensure final
accuracy. The system is complicated by its heavy belief in
object centers. FSD [16] is promising at the large-range Ar-
goverse2, while its efficiency is inferior to ours, as in Fig. 3.

To demonstrate the effectiveness of VoxelNeXt, we
evaluate our models on three large-scale benchmarks of
nuScenes [3], Waymo [44], Argoverse2 [52] datasets. Vox-
elNeXt achieves leading performance with high efficiency
on 3D object detection on both these benchmarks. It also
yields state-of-the-art performance on 3D tracking. With-
out bells and whistles, it ranks 1st among all LIDAR-only
entries on the nuScenes tracking test split [3].

2. Related Work
LIDAR Detectors. 3D detectors usually work similar to
their 2D counterparts, such as R-CNN series [12,33,40,42,
54] and CenterPoint series [14,57,60]. 3D detection distin-
guishes from the 2D task due to the sparsity of data distri-
bution. But many approaches [12, 53, 57, 61] still seek 2D
dense convolutional heads as a solution.

VoxelNet [61] uses PointNet [37] for voxel feature en-
coding and then applies dense region proposal network
and head for prediction. SECOND [53] improves Voxel-
Net by efficient sparse convolutions with the dense anchor-
based head. Other state-of-the-art methods, including PV-

Table 1. Comparison with CenterPoint on nuScenes dataset. Vox-
elNeXt presents better performance with high efficiency.

Method mAP NDS FLOPs
Sparse CNN Head

CenterPoint [57] 58.6 66.2 62.9 G 123.7 G
VoxelNeXt 60.0 67.1 33.6 G 5.1 G

Efficiency on Argoverse2

• Argoverse2

- VOXEL_SIZE:
- [0.1, 0.1, 0.2].
- 2080ti GPU
- Batch size 1

Lue Fan, et al. Fully Sparse 3D Object Detection, NeurIPS 2022

82
113

164

246

81
92 96 99

61 63 65 66
0

50

100

150

200

250

50m 100m 150m 200m

Overall (ms)

CenterPoint FSD VoxelNeXt

54
78

128

218

56 65
68 71

26 27 28 28
50m 100m 150m 200m

Head (ms)

Figure 3. Latency on Argoverse2 and various perception ranges.

RCNN [40], Voxel R-CNN [12], and VoTr [34], still keep
the sparse-to-dense scheme to enlarge the receptive field.

Motivated by 2D CenterNet [14], CenterPoint [57] is ap-
plied to 3D detection and tracking. It converts the sparse
output of a backbone network into a map-view dense feature
map and predicts a dense heatmap of the center locations
of objects, based on the dense feature. This dense center-
based prediction has been adopted by several dense-head
approaches [29, 32]. In this paper, we take a new direction
and surprisingly show that a simple and strong sparse CNN
is sufficient for direct prediction. The notable finding is that
the dense head is not always necessary.

Sparse Detectors. Methods of [16, 45, 46] avoid dense
detection heads and instead introduce other complicated
pipelines. RSN [46] performs foreground segmentation on
range images and then detects 3D objects on the remained
sparse data. SWFormer [45] proposes a sparse transformer
with delicate window splitting and multiple heads with fea-
ture pyramids. Motivated by VoteNet [36], FSD [16, 18]
uses point clustering and group correction to solve the issue
of center feature missing. These detectors conduct sparse

21675

!"#$%

M

&!

&"

&#

Objects

&$
Sparse max poolMSparse conv stage / layerVoxel features

①

①
② ③

④

Figure 4. Detailed structure of VoxelNeXt framework. Circled
numbers in the figure correspond to the paragraphs in Sections 3.1
and 3.2. 1 - Additional down-samplings. 2 - Sparse height com-
pression. 3 - Voxel selection. 4 - Box regression. We omit the
generation of F1, F2, and F3 here for the simplicity sake.

prediction, but complicate detection pipelines in different
ways. In our work, this center-missing issue can also be
simply skipped through sparse networks that have large re-
ceptive fields. We make minimal adaptations to commonly-
used sparse CNNs to realize fully sparse detectors.

Sparse Convolutional Networks. Sparse CNNs become
mainframe backbone networks in 3D deep learning [10, 11,
23, 40] for its efficiency. It is common wisdom that its rep-
resentation ability is limited for prediction. To remedy it,
3D detectors of [12, 40, 48, 53] rely on dense convolutional
heads for feature enhancement. Recent methods [6, 31]
make convolutional modifications upon sparse CNNs. Ap-
proaches of [21, 34] even substitute it with transformers for
large receptive fields. Contrary to all these solutions, we
demonstrate that the insufficient receptive field bottleneck
can be simply addressed by additional down-sampling lay-
ers without any other complicated design.

3D Object Tracking. 3D object tracking models tracklets
of multiple objects along multi-frame LIDAR. Most previ-
ous methods [2,9,51] directly use the Kalman filter upon de-
tection results, such as AB3DMOT [51]. CenterPoint [57]
predicts the velocities to associate object centers through
multiple frames, following CenterTrack [60]. In this paper,
we include query voxels for association, which effectively
relieve the prediction bias of object centers.

3. Fully Sparse Voxel-based Network
Point clouds or voxels are irregularly distributed and usu-

ally scattered at the surface of 3D objects, not at the center
or inside. This motivates us to study along a new direction
to predict 3D boxes directly based on the voxels instead of
the hand-crafted anchors or centers.

To this end, we aim for minimal modification to adapt
a plain 3D sparse CNN network to the direct-voxel predic-
tion. In the following, we introduce the backbone adapta-
tion (Section 3.1), the sparse head design (Section 3.2), and
the extension to 3D object tracking (Section 3.3).

w/o additional
down-sampling

w/ additional
down-sampling GT Box

Predicted

Query
Voxel

ERFs

Figure 5. Effects of additional down-sampling layers on effective
receptive fields (ERFs) and the predicted boxes.

3.1. Sparse CNN Backbone Adaptation

Additional Down-sampling. Strong feature representation
with sufficient receptive fields is a must to ensure direct and
correct prediction upon sparse voxel features. Although the
plain sparse CNN backbone network has been widely used
in 3D object detectors [12, 40, 57], recent work presents
its weakness and proposes various methods to enhance the
sparse backbone using, e.g., well-designed convolution [7],
large kernels [8], and transformers [24, 25, 34].

Unlike all these approaches, we make as little as pos-
sible modification to accomplish this, only using addi-
tional down-sampling layers. By default, the plain sparse
CNN backbone network has 4 stages, with the feature
strides {1, 2, 4, 8}. We name the output sparse features
{F1, F2, F3, F4} respectively. This setting is incapable of
direct prediction, especially for large objects. To enhance
its ability, we simply include two additional down-sampling
layers to obtain features with strides {16, 32} for {F5, F6}.
This small change directly imposes notable effects to en-
large receptive fields. We combine the sparse features from
the last three stages {F4, F5, F6} to Fc. Their spatial res-
olutions are all aligned to F4. For stage i, Fi is a set of
individual features fp. p ∈ Pi is a position in 3D space,
with the coordinate (xp, yp, zp). This process is shown in
Fig. 4. It is noteworthy that this simple sparse concatena-
tion requires no other parameterized layers. Sparse features
Fc and their positions Pc are obtained as

Fc = F4 ∪ (F5 ∪ F6),

P ′
6 = {(xp × 22, yp × 22, zp × 22) | p ∈ P6}

P ′
5 = {(xp × 21, yp × 21, zp × 21) | p ∈ P5}

Pc = P4 ∪ (P ′
5 ∪ P ′

6).

(1)

We visualize the effective receptive fields (ERFs) in
Fig. 5. With additional down-sampling layers, ERFs are
larger and the predicted box is more accurate. It is effec-
tive enough and costs little extra computation, as in Tab. 2.
Thus, we use this simple design as the backbone network.

21676

Scores

Voxel feature

Max-pool kernel

Selective
Dilation

Pooling

Selected Unimportant Dilated

SP-Conv
Stride 2

Figure 6. Spatially voxel pruning. In sparse CNN backbone,
down-sampling layers commonly dilate all voxels to the kernel
shape, before down-sampling. Different from these approaches,
we only dilate selected voxels that have high feature magnitudes
to maintain high efficiency.

Scores

Voxel feature

Max-pool kernel

Selective
Dilation

Pooling

Selected Unimportant Dilated

SP-Conv
Stride 2

Figure 7. Sparse max pooling layer. Similarly to submanifold
sparse convolution [19], it only operates on non-empty positions.
It removes non-maximum voxels in local space.

Sparse Height Compression. 3D object detectors of [12,
40, 57] compress 3D voxel features into dense 2D maps by
converting sparse features to dense ones and then combin-
ing depth (along z axis) into the channel dimension. These
operations cost footprint memory and computation.

In VoxelNet, we find that 2D sparse features are efficient
for prediction. Height compression in VoxelNeXt is fully
sparse. We simply put all voxels onto the ground and sum
up features in the same positions. It costs no more than 1ms.
We find that prediction upon the compressed 2D sparse fea-
tures cost less than using 3D ones, as shown in Tab. 5.The
compressed sparse features F̄c and their positions P̄c are
obtained as:

P̄c = {(xp, yp) | p ∈ Pc}

F̄c = {
∑
p∈Sp̄

fp, | p̄ ∈ P̄c} (2)

where Sp̄ = {p |xp = xp̄, yp = yp̄, p ∈ Pc}, containing
voxels that are put onto the same 2D position p̄.

Spatially Voxel Pruning. Our network is completely based
on voxels. It is common that 3D scenes contain a large num-
ber of background points that is redundant and have little
benefit for prediction. We gradually prune irrelevant vox-
els along down-sampling layers. Following SPS-Conv [31],
we suppress the dilation of voxels with small feature mag-
nitudes, as shown in Fig. 6. Taking the suppression ratio
as 0.5, we only dilate the voxels whose feature magnitudes
|fp| (averaged on the channel dimension) rank top half of all

✗

✓

Frame ! Frame ! + 1

GT Box Predicted
Query
Voxel

Predicted
Center

Motion Prediction

Figure 8. Visualization of voxel association. The predicted object
centers are conventionally used for tracking. We additionally asso-
ciate query voxels in case that the predicted centers are inaccurate.

Predicted BoxQuery Voxel

Pedestrian

CarCar

Car

Figure 9. Visualization on the predicted boxes and their query vox-
els. For the Car objects, query voxels are inside and usually near
the boundaries. For the pedestrian consisting of limited voxels, its
query voxel is outside. More visualizations are in the appendix.

voxels. The voxel pruning largely saves computation with-
out compromising performance as indicated in Tab. 3.

3.2. Sparse Prediction Head

Voxel Selection. Figure 4 shows the detailed framework of
the VoxelNeXt model. Instead of relying on the dense fea-
ture map M, we directly predict objects based on the sparse
output of the 3D CNN backbone network V ∈ RN×F . We
first predict the scores of voxels for K classes, s ∈ RN×K .
During training, we assign the voxel nearest to each anno-
tated bounding box center as a positive sample. We use a
focal loss [30] for supervision. We note the fact that dur-
ing inference query voxels are commonly not at the object
center. They are even not necessarily inside the bounding
boxes, e.g., for pedestrian in Fig. 9. We count the distribu-
tion of query voxels in Tab. 7 on nuScenes validation set.

During inference, we avoid NMS post-processing by us-
ing sparse max pooling, as features are sparse enough. Sim-
ilar to submanifold sparse convolution [19], it only oper-
ates on non-empty positions. This is based on the pre-
dicted scores s and conducted individually for each class.

21677

Table 2. Results of a pilot study on nuScenes validation split, for the strides of fully sparse voxel-based prediction. Latency is evaluated on
a single GPU. For D3, the arrows indicate the change based on CenterPoint. For others, the arrows indicate the change based on D3.

Method Strides Latency mAP NDS Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
CenterPoint {2, 4, 8} 96 ms 55.6 63.2 83.5 54.9 67.5 30.6 16.3 83.3 52.7 34.5 65.6 66.5
D3 {2, 4, 8} 56 ms 46.7↓8.9 56.2 75.3 41.3 38.3 10.5 14.9 82.0 47.7 28.3 63.6 64.2
D5×5×5

3 {2, 4, 8} 225 ms 51.6↑4.9 60.4 80.0 49.2 56.8 16.8 16.5 83.5 50.2 30.9 64.8 67.7
D4 {2, 4, 8, 16} 62 ms 52.3↑5.6 61.2 80.0 50.0 61.2 23.1 16.9 82.5 49.0 31.8 63.9 64.8
D5 {2, 4, 8, 16, 32} 66 ms 56.5↑9.5 64.5 83.0 54.0 67.4 32.9 20.0 84.1 52.7 35.7 66.6 65.3

Table 3. Effects of spatial pruning ratios. A larger pruning ratio
means that fewer voxels remain in the sparse CNN backbone.

Ratio - 0.1 0.3 0.5 0.7 0.9
FLOPs (G) 83.8 79.6 60.1 33.6 19.8 7.6
mAP 56.5 56.5 56.4 56.2 53.7 45.1
NDS 64.5 64.5 64.3 64.3 62.1 56.0

Table 4. Effects of spatial pruning on various layers. We use it on
the first 3 down-sampling layers by default.

Stages - 1 2 3 4 5
FLOPs (G) 83.8 65.0 45.9 33.6 29.1 27.9
mAP 56.5 56.5 56.4 56.2 54.2 53.7
NDS 64.5 64.5 64.4 64.3 62.5 62.0

We adopt sparse max pooling to select voxels with spatially
local maximums. The removed voxels will be excluded in
box prediction, which saves the computation of head.

Box Regression. Bounding boxes are directly regressed
from the positive or selected sparse voxel features v ∈
Rn×F . Following the protocol in CenterPoint [57], we
regress the location (∆x,∆y) ∈ R2, height h ∈ R, 3D
size s ∈ R3, and rotation angle (sin(α), cos(α)) ∈ R2. For
the nuScenes dataset or tracking, we regress the velocity
v ∈ R2 by task definition. These predictions are supervised
under the L1 loss function during training. For Waymo
dataset, we also predict the IoU and train with IoU loss
for performance enhancement [22]. We simply use fully
connected layer or 3 × 3 submanifold sparse convolutional
layers with kernel size 3 for prediction, without other com-
plicate designs. We find that the 3 × 3 sparse convolutions
generate better results than fully connected layers, with lim-
ited burden, as in Tab. 6.

3.3. 3D Tracking

Our framework is naturally extended to 3D tracking.
CenterPoint [57] tracks the predicted object centers via a
two-dimensional velocity v ∈ R2, which is also supervised
by L1 loss. We extend this design into VoxelNeXt. Our so-

Table 5. Ablations on 2D or 3D sparse CNN in VoxelNeXt. sparse
height Compression is used to connect 3D backbone and 2D head.

Method Backbone Head Latency mAP NDS
- 3D 3D 92 ms 56.3 63.4
VoxelNeXt 3D 2D 66 ms 56.2 64.3
VoxelNeXt-2D 2D 2D 61 ms 53.4 62.6

Table 6. Effects of the layer type in the sparse prediction head.
1× 1 submanifold sparse convolution [19] is the fully connected.

Head kernel size Head latency mAP NDS
1× 1 (FC) 30 ms 56.2 64.3
3× 3 (SpConv) 35 ms 56.8 64.5

lution is to use voxel association to include more tracklets
that match the positions of query voxels.

As shown in Fig. 8, we record the position of voxel that
is used to predict each box. Similar to the center associa-
tion, we compute the L2 distance for matching. The query
positions are picked by tracking back their index to original
input voxels, instead of stride-8 positions. The tracked vox-
els exist in input data, which has less bias than the predicted
centers. Also, the query voxels between adjacent frames
share similar relative positions to boxes. We empirically
show that voxel association improves tracking in Tab. 11.

4. Experiments
4.1. Ablation Studies

Additional Down-sampling Layers. We ablate the effect
of the down-sampling layers in VoxelNeXt. We extend it to
the variants Ds. s denotes the number of down-sampling.
For example, D3 has the same network strides (3 times) to
the base model. Our modification does not change the reso-
lution for the detection head. The results of these models are
shown in Tab. 2. Without the dense head, D3 suffers from
serious performance drop, especially on large objects of
Truck and Bus. From D3 to D5, performance gradually in-
creases. Additional down-sampling layers compensate for
the receptive field. To verify this, we add one more variant,

21678

Table 7. Ratios of relative positions of query voxels to the boxes predicted from them. We only take high-quality predicted boxes (IoU
with ground-truth boxes > 0.7 and with matched predicted labels) into consideration. According to the relative positions to their predicted
boxes, we split voxels into 3 types of near center, near boundary, and outside box. Overall, most voxels are inside but not near center.

Class Mean Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
Near center 9.9% 10.3% 5.6% 15.2% 1.2% 16.3% 12.5% 19.6% 13.1% 10.8% 17.8%
Near boundary 72.8% 84.3% 39.2% 58.8% 84.6% 51.8% 42.3% 66.5% 54.7% 39.7% 58.7%
Outside box 17.3% 5.4% 55.3% 26.0% 14.2% 31.9% 45.2% 13.9% 32.2% 49.6% 23.5%

Table 8. Comparison to the representative dense-head method
Centerpoint [57]. ATE, ASE, AOE, AVE, and AAE denote the
errors of location, size, orientation, velocity, and attribute.

Method mAP NDS ATE ASE AOE AVE AAE
CenterPoint 55.6 63.5 29.7 25.7 44.5 24.5 18.8

VoxelNeXt 56.5 64.5 29.9 25.4 39.6 23.2 19.0
↑0.9 ↑1.0 ↑0.2 ↓0.3 ↓4.9 ↓1.3 ↑0.2

Table 9. Efficiency statistics on sparse CNN backbone. The com-
putations of Stage 5&6 are limited by their small voxel numbers.

Stage 1 2 3 4 5 6
Channel 16 32 64 128 128 128
Voxels (K) 82.6 46.7 18.2 6.4 3.0 1.3
FLOPs (G) 1.1 4.7 8.2 11.7 6.1 2.8
Latency (ms) 4 5 6 7 6 3

Table 10. Effects of sparse max-pool and NMS post-processing.
The max-pool follows the submanifold sparse convolution pattern.

Max-pool NMS mAP NDS
✗ ✗ 33.0 51.0
✗ ✓ 56.0 64.2
✓ ✗ 56.2 64.3
✓ ✓ 56.2 63.3

Table 11. Voxel association on nuScenes tracking validation set.

+ Voxel
association AMOTA AMOTP MOTA IDS

✗ 69.1 61.6 59.3 643
✓ 70.2 64.0 61.5 729

D5×5×5
3 , which increases the kernel size of sparse convolu-

tions in all stages to 5 × 5 × 5. Large kernel improves the
performance to some extend but degrades efficiency. Thus,
we use additional down-samplings as a simple solution.

Spatially Voxel Pruning. VoxelNeXt gradually drops re-
dundant voxels according to feature magnitude. We ablate

this setting in Tab. 3. We control the drop ratio from 0.1 to
0.9 with an interval of 0.2. The performance hardly decays
when the ratio is not greater than 0.5. Thus, we set the drop
ratio to 0.5 as a default setting in our experiments. We also
ablate the stages of voxel pruning in Tab. 4. We use it on
the first 3 stages by default.

Sparse Height Compression. We make ablations on the
sparse CNN types of 2D and 3D, in the backbone and head
of VoxelNeXt, in Tab. 5. The naive design is that both the
backbone and head apply 3D sparse CNN, which results
in high latency. With the sparse height compression, we
combine the 3D backbone and 2D sparse prediction head.
It achieves much better efficiency with decent performance.
We use it as a default setting of VoxelNeXt. When we use
2D sparse CNN as the backbone network, it has the same
layer number and double channels as the 3D one. It achieves
the best efficiency, and yet suffers a bit of performance drop.
We name it VoxelNeXt-2D for its high efficiency.

Layer Type in Sparse Prediction Head. We ablate the
effect using fully-connected layers or submanifold sparse
convolutions to predict boxes in the sparse head, as shown
in Tab. 6. The fully-connected (FC) head has inferior per-
formance to the 3 × 3 sparse convolution counterpart, but
more efficient. We denote the latter with K3 in VoxelNeXt.

Relative Positions between Voxels and Predicted Boxes.
In VoxelNeXt, voxels for box prediction are not required to
be inside the boxes, not to mention centers, as in Tab. 7. We
count the relative of voxels that are inside the 3D bounding
boxes they generate. We split voxels into 3 area types of
near center, near boundary, and outside box, according to
their relative positions to boxes. On average, most boxes are
predicted from voxels inside, maybe not near centers. Sta-
tistically, only a few boxes (less than 10% in total) are pre-
dicted based on the voxels near object centers. This finding
shows that boundary voxels are also qualified for prediction,
while object centers are not always necessary.

Another observation is that there are large gaps between
the ratios of different classes. For Car and Trailer, most
boxes are predicted on inside voxels. In contrast, for Truck,
Traffic Cone, and Pedestrian, about half of the boxes are
predicted from outside voxels. We illustrate example pairs
in Fig. 9. As objects in different classes vary in size and

21679

Table 12. Performance of 3D object detection methods on nuScenes test set. † means the method that uses double-flip testing. All models
listed take LIDAR data as input without image fusion or any model ensemble.

Method mAP NDS Latency Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
PointPillars [26] 30.5 45.3 31 ms 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
3DSSD [55] 42.6 56.4 - 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
CBGS [62] 52.8 63.3 80 ms 81.1 48.5 54.9 42.9 10.5 80.1 51.5 22.3 70.9 65.7
CenterPoint [57] 58.0 65.5 96 ms 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
CVCNET [4] 58.2 66.6 122 ms 82.6 49.5 59.4 51.1 16.2 83.0 61.8 38.8 69.7 69.7
HotSpotNet [5] 59.3 66.0 - 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
AFDetV2 [22] 62.4 68.5 - 86.3 54.2 62.5 58.9 26.7 85.8 63.8 34.3 80.1 71.0
Focals Conv [7] 63.8 70.0 138 ms 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
VISTA [13]† 63.0 69.8 94 ms 84.4 55.1 63.7 54.2 25.1 82.8 70.0 45.4 78.5 71.4
UVTR-L [27]† 63.9 69.7 132 ms 86.3 52.2 62.8 59.7 33.7 84.5 68.8 41.1 74.7 74.9
PillarNet-18 [39]† 65.0 70.8 78 ms 87.4 56.7 60.9 61.8 30.4 87.2 67.4 40.3 82.1 76.0
VoxelNeXt-2D 64.1 69.8 61 ms 84.8 52.7 62.3 56.2 29.5 84.5 72.5 45.7 78.8 73.7
VoxelNeXt 64.5 70.0 66 ms 84.6 53.0 64.7 55.8 28.7 85.8 73.2 45.7 79.0 74.6
VoxelNeXt† 66.2 71.4 - 85.3 55.7 66.2 57.2 29.8 86.5 75.2 48.8 80.7 76.1

Table 13. Performance of nuScenes 3D tracking test split for
LIDAR-only methods, without multi-modal extension. † is based
on the double-flip 3D object detection results in Tab. 12.

Method AMOTA AMOTP MOTA IDS
AB3DMOT [51] 15.1 150.1 15.4 9027
CenterPoint [57] 63.8 55.5 53.7 760
CBMOT [2] 64.9 59.2 54.5 557
OGR3MOT [58] 65.6 62.0 55.4 288
SimpleTrack [35] 66.8 55.0 56.6 575
UVTR-L [27] 67.0 55.0 56.6 774
TransFusion-L [1] 68.6 52.9 57.1 893
VoxelNeXt 69.5 56.8 58.6 785
VoxelNeXt† 71.0 51.1 60.0 654

Table 14. Performance of nuScenes 3D tracking validation set. All
methods listed are LIDAR-only, without multi-modal extension.

Method AMOTA AMOTP MOTA IDS
AB3DMOT [51] 57.8 80.7 51.4 1275
MPN-Baseline 59.3 83.2 51.4 1079
CenterPoint [57] 66.5 56.7 56.2 562
CBMOT [2] 67.5 59.1 58.3 494
OGR3MOT [47] 69.3 62.7 60.2 262
SimpleTrack [35] 69.6 54.7 60.2 405
VoxelNeXt 70.2 64.0 61.5 729

spatial sparsity, predicting upon voxels complies with data
distribution, rather than proxies like anchors or centers.

Comparison to CenterPoint in Error Analysis. We com-
pare VoxelNeXt to the representative dense-head method

CenterPoint [57] in Tab. 8. Training on 1/4 nuScenes train-
ing set and evaluating on the full validation split, VoxelNeXt
achieves 0.9% mAP and 1.0% NDS improvement. In fur-
ther analysis, CenterPoint and VoxelNeXt shares compara-
ble errors in location, size, and velocity. However, there are
large gaps in other error types, especially in orientation. No-
tably, VoxelNext has 4.9% less orientation error than Cen-
terPoint. We suppose that this results from that sparse voxel
features might be more sensitive to orientation difference.

Efficiency Statistics of Backbone. We count the
efficiency-related statistics of our sparse CNN backbone
network in Tab. 9. As features in the last 3 stages are
summed up for height compression, they share the same
channel number 128. Due to the high down-sampling ra-
tios in Stages 5-6, their voxel numbers are much smaller
compared to previous stages. Consequently, the computa-
tion cost introduced in Stages 5-6 is limited to 6.1G and
2.8G FLOPs in 6 and 3 ms. It is no more than 1/3 of the
overall backbone network, and yet makes notable effects on
performance enhancement.

Sparse Max Pooling. We ablate the effect of sparse max
pooling and NMS in Tab. 10. Compared to the commonly
used NMS, max-pool presents comparable mAP, 56.0% v.s.
56.2%. VoxelNeXt is flexible to works either with NMS or
sparse max pooling. Max-pool is an elegant solution and
avoids some unnecessary computation on predictions.

Voxel Association for 3D Tracking. Tab. 11 shows the ab-
lation of 3D tracking on nuScenes validation. In addition to
tracking predicted box centers, we also include the voxels
that predict boxes for matching. Voxel association intro-
duces notable improvement of 1.1% AMOTA.

21680

Table 15. Performance of 3D object detection results on the Waymo validation split. Results with the instance-decreasing trick in the
ground-truth sampling [16] is in the appendix. All models take single-frame data as input without test-time augmentations or ensemble.

Method
mAP/mAPH Vehicle Pedestrian Cyclist

L2 L1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH
Pillar-OD [50] - 69.8 / - - / - 72.5 / - - - -
VoxSeT [21] - 76.0 / - 68.2 / - - - - -
VoTr-TSD [34] - 74.9 / 74.3 65.9 / 65.3 - - - -
SECOND [53] 61.0 / 57.2 72.3 / 71.7 63.9 / 63.3 68.7 / 58.2 60.7 / 51.3 60.6 / 59.3 58.3 / 57.0
M3METR [20] 61.8 / 58.7 75.7 / 75.1 66.0 / 66.0 65.0 / 56.4 56.0 / 48.4 65.4 / 64.2 62.7 / 61.5
IA-SSD [59] 62.3 / 58.1 70.5 / 69.7 61.6 / 61.0 69.4 / 58.5 60.3 / 50.7 67.7 / 65.3 65.0 / 62.7
PointPillars [26] 62.8 / 57.8 72.1 / 71.5 63.6 / 63.1 70.6 / 56.7 62.8 / 50.3 64.4 / 62.3 61.9 / 59.9
RangeDet [17] 65.0 / 63.2 72.9 / 72.3 64.0 / 63.6 75.9 / 71.9 67.6 / 63.9 65.7 / 64.4 63.3 / 62.1
3D-MAN [56] - 74.5 / 74.0 67.6 / 67.1 71.7 / 67.7 62.6 / 59.0 - -
LIDAR-RCNN [28] 65.8 / 61.3 76.0 / 75.5 68.3 / 67.9 71.2 / 58.7 63.1 / 51.7 68.6 / 66.9 66.1 / 64.4
PV-RCNN [40] 66.8 / 63.3 77.5 / 76.9 69.0 / 68.4 75.0 / 65.6 66.0 / 57.6 67.8 / 66.4 65.4 / 64.0
Part-A2-Net [43] 66.9 / 63.8 77.1 / 76.5 68.5 / 68.0 75.2 / 66.9 66.2 / 58.6 68.6 / 67.4 66.1 / 64.9
SST [15] 67.8 / 64.6 74.2 / 73.8 65.5 / 65.1 78.7 / 69.6 70.0 / 61.7 70.7 / 69.6 68.0 / 66.9
PV-RCNN++ [41] 68.4 / 64.9 78.8 / 78.2 70.3 / 69.7 76.7 / 67.2 68.5 / 59.7 69.0 / 67.6 66.5 / 65.2
CenterPoint [57] 69.8 / 67.6 76.6 / 76.0 68.9 / 68.4 79.0 / 73.4 71.0 / 65.8 72.1 / 71.0 69.5 / 68.5
AFDetV2 [22] 71.0 / 68.8 77.6 / 77.1 69.7 / 69.2 80.2 / 74.6 72.2 / 67.0 73.7 / 72.7 71.0 / 70.1
PillarNet-34 [39] 71.0 / 68.5 79.1 / 78.6 70.9 / 70.5 80.6 / 74.0 72.3 / 66.2 72.3 / 71.2 69.7 / 68.7
SWFormer [45] - 77.8 / 77.3 69.2 / 68.8 80.9 / 72.7 72.5 / 64.9 - -
FSDspconv [16] 71.9 / 69.7 77.8 / 77.3 68.9 / 68.5 81.9 / 76.4 73.2 / 68.0 76.5 / 75.2 73.8 / 72.5
VoxelNeXt-2D 70.9 / 68.2 77.9 / 77.5 69.7 / 69.2 80.2 / 73.5 72.2 / 65.9 73.3 / 72.2 70.7 / 69.6
VoxelNeXtK3 72.2 / 70.1 78.2 / 77.7 69.9 / 69.4 81.5 / 76.3 73.5 / 68.6 76.1 / 74.9 73.3 / 72.2

Table 16. Performance of 3D object detection results Argoverse2 dataset.

Methods mAP Veh. Bus Ped. Stop. Box. Boll. C-B. M.-list MPC. M.-cycle Bicycle A-B. School. Truck. C-C. V-T. Sign Large. Str. Bic.-list
CenterPoint [57] 22.0 67.6 38.9 46.5 16.9 37.4 40.1 32.2 28.6 27.4 33.4 24.5 8.7 25.8 22.6 29.5 22.4 6.3 3.9 0.5 20.1
FSD 28.2 68.1 40.9 59.0 29.0 38.5 41.8 42.6 39.7 26.2 49.0 38.6 20.4 30.5 14.8 41.2 26.9 11.9 5.9 13.8 33.4
VoxelNeXt 30.0 71.7 39.2 63.1 39.2 40.0 52.5 63.7 42.2 34.9 42.7 40.1 20.1 25.2 16.9 45.7 22.3 15.8 5.9 9.8 33.5
VoxelNeXtK3 30.7 72.7 38.8 63.2 40.2 40.1 53.9 64.9 44.7 39.4 42.4 40.6 20.1 25.2 19.9 44.9 20.9 14.9 6.8 15.7 32.4

4.2. Main Results

3D Object Detection. In Tab. 12, we evaluate our detec-
tion models on the test split and compare them with other
LIDAR-based methods on nuScenes test set. Results de-
noted as † [13,27,39] are reported with the double-flip test-
ing augmentation [57]. Both lines of results are better than
previous ones. We compare VoxelNeXt with other 3D ob-
ject detectors on the Waymo validation split in Tab. 15 and
on Argoverse2 [52] in Tab. 16. We present latency com-
parison in Tab. 12 and Fig. 3. VoxelNeXt achieves leading
performance among these methods with high efficiency.
3D Multi-object Tracking. In Tab. 13 and Tab. 14,
we compare VoxelNeXt’s tracking performance with other
methods in the nuScenes test and validation splits. Voxel-
NeXt achieves the best AMOTA among all LIDAR-based
methods. In addition, when combined with the double-flip
testing results in Tab. 12, denoted as † in Tab. 13, Voxel-
NeXt further achieves 71.0% AMOTA and ranking 1st on
the nuScenes 3D LIDAR tracking benchmark.

5. Conclusion and Discussion

In this paper, we have presented a fully sparse and voxel-
based framework for 3D object detection and tracking. It
is with simple techniques, run fast with no much extra
cost, and works in an elegant manner without NMS post-
processing. For the first time, we show that direct voxel-
based prediction is feasible and effective. Thus, anchors
or centers, and dense heads become unnecessary. Vox-
elNeXt presents promising results on large-scale datasets,
nuScenes, Waymo, and Argoverse2. With high efficiency,
it achieves leading performance on 3D object detection and
ranks 1st on nuScenes 3D tracking LIDAR benchmark.
Limitations. A gap exists between FLOPs and inference
speed. Latency reduction is clear but not so large as FLOPs
in Tab. 1, as it depends on implementation and devices.
Acknowledgement. This work is supported by Shenzhen
Science and Technology Program KQTD20210811090149095,
Hong Kong Research Grant Council - Early Career Scheme (No.
27209621), and General Research Fund Scheme (No. 17202422).

21681

References
[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In CVPR, pages 1080–1089, 2022. 7

[2] Nuri Benbarka, Jona Schröder, and Andreas Zell. Score re-
finement for confidence-based 3d multi-object tracking. In
IROS, pages 8083–8090, 2021. 3, 7

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. In CVPR, pages
11618–11628, 2020. 2

[4] Qi Chen, Lin Sun, Ernest Cheung, and Alan L. Yuille. Every
view counts: Cross-view consistency in 3d object detection
with hybrid-cylindrical-spherical voxelization. In NeurIPS,
2020. 7

[5] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan L. Yuille.
Object as hotspots: An anchor-free 3d object detection ap-
proach via firing of hotspots. In ECCV, volume 12366, pages
68–84, 2020. 7

[6] Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Ji-
aya Jia. Focal sparse convolutional networks for 3d object
detection. In CVPR, pages 5418–5427, 2022. 3

[7] Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Ji-
aya Jia. Focal sparse convolutional networks for 3d object
detection. In CVPR, pages 5418–5427, 2022. 3, 7

[8] Yukang Chen, Jianhui Liu, Xiaojuan Qi, Xiangyu Zhang,
Jian Sun, and Jiaya Jia. Scaling up kernels in 3d cnns. CoRR,
abs/2206.10555, 2022. 3

[9] Hsu-Kuang Chiu, Jie Li, Rares Ambrus, and Jeannette Bohg.
Probabilistic 3d multi-modal, multi-object tracking for au-
tonomous driving. In ICRA, pages 14227–14233, 2021. 3

[10] Ruihang Chu, Yukang Chen, Tao Kong, Lu Qi, and Lei Li.
Icm-3d: Instantiated category modeling for 3d instance seg-
mentation. IEEE Robotics and Automation Letters, 7(1):57–
64, 2021. 3

[11] Ruihang Chu, Xiaoqing Ye, Zhengzhe Liu, Xiao Tan, Xi-
aojuan Qi, Chi-Wing Fu, and Jiaya Jia. Twist: Two-way
inter-label self-training for semi-supervised 3d instance seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1100–1109,
2022. 3

[12] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou,
Yanyong Zhang, and Houqiang Li. Voxel R-CNN: towards
high performance voxel-based 3d object detection. In AAAI,
pages 1201–1209, 2021. 1, 2, 3, 4

[13] Shengheng Deng, Zhihao Liang, Lin Sun, and Kui Jia.
VISTA: boosting 3d object detection via dual cross-view spa-
tial attention. In CVPR, pages 8438–8447, 2022. 7, 8

[14] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In ICCV, pages 6568–6577, 2019. 1, 2

[15] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing single stride 3d object detector with sparse trans-
former. In CVPR, pages 8448–8458, 2022. 8

[16] Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Fully sparse 3d object detection. CoRR, abs/2207.10035,
2022. 2, 8

[17] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and
Zhaoxiang Zhang. Rangedet: In defense of range view for
lidar-based 3d object detection. In ICCV, pages 2898–2907,
2021. 8

[18] Lue Fan, Yuxue Yang, Feng Wang, Naiyan Wang, and
Zhaoxiang Zhang. Super sparse 3d object detection. CoRR,
abs/2301.02562, 2023. 2

[19] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In CVPR, pages 9224–9232, 2018.
4, 5

[20] Tianrui Guan, Jun Wang, Shiyi Lan, Rohan Chandra, Zuxuan
Wu, Larry Davis, and Dinesh Manocha. M3DETR: multi-
representation, multi-scale, mutual-relation 3d object detec-
tion with transformers. In WACV, pages 2293–2303, 2022.
8

[21] Chenhang He, Ruihuang Li, Shuai Li, and Lei Zhang. Voxel
set transformer: A set-to-set approach to 3d object detection
from point clouds. In CVPR, pages 8407–8417, 2022. 3, 8

[22] Yihan Hu, Zhuangzhuang Ding, Runzhou Ge, Wenxin Shao,
Li Huang, Kun Li, and Qiang Liu. Afdetv2: Rethinking the
necessity of the second stage for object detection from point
clouds. In AAAI, pages 969–979, 2022. 5, 7, 8

[23] Li Jiang, Shaoshuai Shi, Zhuotao Tian, Xin Lai, Shu Liu,
Chi-Wing Fu, and Jiaya Jia. Guided point contrastive learn-
ing for semi-supervised point cloud semantic segmentation.
In CVPR, pages 6423–6432, 2021. 3

[24] Xin Lai, Yukang Chen, Fanbin Lu, Jianhui Liu, and Jiaya
Jia. Spherical transformer for lidar-based 3d recognition. In
CVPR, 2023. 3

[25] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8500–8509, 2022. 3

[26] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, pages
12697–12705, 2019. 7, 8

[27] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun,
and Jiaya Jia. Unifying voxel-based representation with
transformer for 3d object detection. CoRR, abs/2206.00630,
2022. 7, 8

[28] Zhichao Li, Feng Wang, and Naiyan Wang. Lidar R-CNN:
an efficient and universal 3d object detector. In CVPR, pages
7546–7555, 2021. 8

[29] Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia,
Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi
Tang. Bevfusion: A simple and robust lidar-camera fusion
framework. CoRR, abs/2205.13790, 2022. 2

[30] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection. T-
PAMI, 42(2):318–327, 2020. 4

21682

[31] Jianhui Liu, Yukang Chen, Xiaoqing Ye, Zhuotao Tian, Xiao
Tan, and Xiaojuan Qi. Spatial pruned sparse convolution for
efficient 3d object detection. In NeurIPS, 2022. 3, 4

[32] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. CoRR, abs/2205.13542, 2022. 2

[33] Jiageng Mao, Minzhe Niu, Haoyue Bai, Xiaodan Liang,
Hang Xu, and Chunjing Xu. Pyramid R-CNN: towards bet-
ter performance and adaptability for 3d object detection. In
ICCV, 2021. 2

[34] Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. In ICCV, 2021. 2, 3, 8

[35] Ziqi Pang, Zhichao Li, and Naiyan Wang. Simpletrack: Un-
derstanding and rethinking 3d multi-object tracking. CoRR,
abs/2111.09621, 2021. 7

[36] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep hough voting for 3d object detection in point
clouds. In ICCV, pages 9276–9285, 2019. 2

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, pages 5099–5108,
2017. 2

[38] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NeurIPS, pages 91–99, 2015. 1

[39] Guangsheng Shi, Ruifeng Li, and Chao Ma. Pillarnet: Real-
time and high-performance pillar-based 3d object detection.
CoRR, abs/2205.07403, 2022. 7, 8

[40] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: point-
voxel feature set abstraction for 3d object detection. In
CVPR, pages 10526–10535, 2020. 1, 2, 3, 4, 8

[41] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu
Guo, Jianping Shi, Xiaogang Wang, and Hongsheng Li.
PV-RCNN++: point-voxel feature set abstraction with lo-
cal vector representation for 3d object detection. CoRR,
abs/2102.00463, 2021. 8

[42] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In CVPR, pages 770–779, 2019. 2

[43] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detec-
tion from point cloud with part-aware and part-aggregation
network. T-PAMI, 43(8):2647–2664, 2021. 8

[44] Pei Sun and et. al. Scalability in perception for autonomous
driving: Waymo open dataset. In CVPR, pages 2443–2451,
2020. 2

[45] Pei Sun, Mingxing Tan, Weiyue Wang, Chenxi Liu, Fei Xia,
Zhaoqi Leng, and Dragomir Anguelov. Swformer: Sparse
window transformer for 3d object detection in point clouds.
CoRR, abs/2210.07372, 2022. 2, 8

[46] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed,
Alex Bewley, Xiao Zhang, Cristian Sminchisescu, and
Dragomir Anguelov. RSN: range sparse net for efficient, ac-
curate lidar 3d object detection. In CVPR, pages 5725–5734,
2021. 2

[47] Dominic Zeng Wang and Ingmar Posner. Voting for voting
in online point cloud object detection. In Robotics: Science
and Systems, 2015. 7

[48] Jun Wang, Shiyi Lan, Mingfei Gao, and Larry S. Davis. In-
fofocus: 3d object detection for autonomous driving with
dynamic information modeling. In ECCV, volume 12355,
pages 405–420, 2020. 3

[49] Tianyu Wang, Xiaowei Hu, Zhengzhe Liu, and Chi-Wing Fu.
Sparse2Dense: Learning to densify 3d features for 3d object
detection. In NeurIPS, 2022. 1

[50] Yue Wang, Alireza Fathi, Abhijit Kundu, David A. Ross,
Caroline Pantofaru, Thomas A. Funkhouser, and Justin M.
Solomon. Pillar-based object detection for autonomous driv-
ing. In ECCV, 2020. 8

[51] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
3d multi-object tracking: A baseline and new evaluation met-
rics. In IROS, pages 10359–10366, 2020. 3, 7

[52] Benjamin Wilson and et. al. Argoverse 2: Next genera-
tion datasets for self-driving perception and forecasting. In
NeurIPS, 2021. 2, 8

[53] Yan Yan, Yuxing Mao, and Bo Li. SECOND: sparsely em-
bedded convolutional detection. Sensors, 18(10):3337, 2018.
1, 2, 3, 8

[54] Honghui Yang, Zili Liu, Xiaopei Wu, Wenxiao Wang, Wei
Qian, Xiaofei He, and Deng Cai. Graph r-cnn: Towards
accurate 3d object detection with semantic-decorated local
graph. In ECCV, 2022. 2

[55] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. In CVPR, pages
11037–11045, 2020. 7

[56] Zetong Yang, Yin Zhou, Zhifeng Chen, and Jiquan Ngiam.
3d-man: 3d multi-frame attention network for object detec-
tion. In CVPR, pages 1863–1872, 2021. 8

[57] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3d object detection and tracking. In CVPR, pages
11784–11793, 2021. 1, 2, 3, 4, 5, 6, 7, 8

[58] Jan-Nico Zaech, Dengxin Dai, Alexander Liniger, Mar-
tin Danelljan, and Luc Van Gool. Learnable online
graph representations for 3d multi-object tracking. CoRR,
abs/2104.11747, 2021. 7

[59] Yifan Zhang, Qingyong Hu, Guoquan Xu, Yanxin Ma, Jian-
wei Wan, and Yulan Guo. Not all points are equal: Learn-
ing highly efficient point-based detectors for 3d lidar point
clouds. In CVPR, pages 18931–18940, 2022. 8

[60] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Tracking objects as points. In ECCV, volume 12349, pages
474–490, 2020. 2, 3

[61] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In CVPR, pages
4490–4499, 2018. 2

[62] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and
Gang Yu. Class-balanced grouping and sampling for point
cloud 3d object detection. CoRR, abs/1908.09492, 2019. 7

21683

