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Abstract

Current audio-visual separation methods share a stan-
dard architecture design where an audio encoder-decoder
network is fused with visual encoding features at the en-
coder bottleneck. This design confounds the learning of
multi-modal feature encoding with robust sound decod-
ing for audio separation. To generalize to a new instru-
ment, one must fine-tune the entire visual and audio net-
work for all musical instruments. We re-formulate the
visual-sound separation task and propose Instruments as
Queries (iQuery) with a flexible query expansion mech-
anism. Our approach ensures cross-modal consistency
and cross-instrument disentanglement. We utilize “visually
named” queries to initiate the learning of audio queries
and use cross-modal attention to remove potential sound
source interference at the estimated waveforms. To gen-
eralize to a new instrument or event class, drawing inspi-
ration from the text-prompt design, we insert additional
queries as audio prompts while freezing the attention mech-
anism. Experimental results on three benchmarks demon-
strate that our iQuery improves audio-visual sound source
separation performance. Code is available at https:
//github.com/JiabenChen/iQuery .

1. Introduction
Humans use multi-modal perception to understand com-

plex activities. To mimic this skill, researchers have studied
audio-visual learning [3, 17, 33] by exploiting the synchro-
nization and correlation between auditory and visual infor-
mation. In this paper, we focus on the sound source sepa-
ration task, where we aim to identify and separate different
sound components within a given sound mixture [60, 74].
Following the “Mix-and-Separate” framework [32, 34, 81],
we learn to separate sounds by mixing multiple audio sig-
nals to generate an artificially complex auditory represen-
tation and then use it as a self-supervised task to separate
individual sounds from the mixture. The works [26, 53, 89]
showed that visually-guided sound separation is achievable

by leveraging visual information of the sound source.
Prevalent architectures take a paradigm of a visual-

conditioned encoder-decoder architecture [23, 26, 58, 88],
where encoded features from audio and visual modalities
are fused at the bottleneck for decoding to yield separated
spectrogram masks. However, it is noticed that this design
often creates a “muddy” sound and “cross-talk” that leaks
from one instrument to another. To create a clean sound
separation, one would like the audio-visual encoders to be
(1) self-consistent within the music instrument and (2) con-
trasting across. One approach [27] added critic functions
explicitly to enforce these properties. Another method [99]
used a two-step process with the second motion-conditioned
generation process to filter out unwanted cross-talks. We
call these approaches decoder-centric.

Most recent works focus on addressing the “muddy” and
“cross-talk” issue by improving fine details of audio-visual
feature extraction: for example, adding human motion en-
coding as in [23, 88, 99], or cross-modality representations
[58] via self-supervised learning. Once the feature repre-
sentations are learned, the standard encoder-decoder FCN
style segmentation is used as an afterthought. We consider
these methods feature-centric. The standard designs have
two limitations. First, it is hard to balance decoder-centric
and feature-centric approaches that enforce a common goal
of cross-modality consistency and cross-instrument con-
trast. Second, to learn a new musical instrument, one has
to retrain the entire network via self-supervision.

To tackle these limitations, we propose a query-based
sound separation framework, iQuery. We recast this prob-
lem from a query-based transformer segmentation view,
where each query learns to segment one instrument, similar
to visual segmentation [15, 16, 65, 78]. We treat each au-
dio query as a learnable prototype that parametrically mod-
els one sound class. We fuse visual modality with audio
by “visually naming” the audio query: using object detec-
tion to assign visual features to the corresponding audio
query. Within the transformer decoder, the visually initial-
ized queries interact with the audio features through cross-
attention, thus ensuring cross-modality consistency. Self-
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Figure 1. Pipeline of iQuery. Our system takes as input an audio mixture and its corresponding video frames, and disentangles separated
sound sources for each video. Our pipeline consists of two main modules: an Audio-Visual Feature Extraction module which extracts
audio, object, and motion features through three corresponding encoders, and an Audio-Visual Transformer module for sound separation.
The query-based sound separation transformer has three key components: 1) “visually-named” audio queries are initialized by extracted
object features, 2) cross-attention between the audio queries with static image features, dynamic motion features and audio features, 3)
self-attention between the learned audio queries to ensure cross-instrument contrast.

attention across the audio queries for different instruments
implements a soft version of the cross-instrument contrast
objective. With this design, we unify the feature-centric
with the decoder-centric approach.

How do we achieve generalizability? Motivated by re-
cent success in fine-tuning domain transfer with the text-
prompt [28] and visual-prompt designs [7, 35, 41, 86], we
adaptively insert the additional queries as audio prompts to
accommodate new instruments. With the audio-prompt de-
sign, we freeze most of the transformer network parame-
ters and only fine-tune the newly added query embedding
layer. We conjecture that the learned prototype queries are
instrument-dependent, while the cross/self-attention mech-
anism in the transformer is instrument-independent.

Our main contributions are:

• To the best of our knowledge, we are the first to study
the audio-visual sound separation problem from a tun-
able query view to disentangle different sound sources
explicitly through learnable audio prototypes in a mask
transformer architecture.

• To generalize to a new sound class, we design an audio
prompt for fine-tuning with most of the transformer ar-
chitecture frozen.

• Extensive experiments and ablations verify the ef-
fectiveness of our core designs for disentangle-
ment, demonstrating performance gain for audio-
visual sound source separation on three benchmarks.

2. Related work

Audio-Visual Sound Source Separation. Recent
years have witnessed promising results of audio-
visual multi-modality joint learning [49, 62, 67, 75, 83]
in domains like audio-visual sound source localiza-
tion [4, 5, 14, 36, 55, 61, 63, 93], audio-visual event
localization [68, 76, 77, 95] and sound synthesis from
videos [25, 52, 54, 80, 97]. Sound source separation, a
challenging classical problem, has been researched exten-
sively in the audio signal processing area [11, 22, 37, 40]. A
well-known example is the cocktail party problem [31, 48]
in speech domain [1, 21]. Works have been proposed
recently for tasks like speech separation [2, 27, 39, 51, 70],
active sound separation [45, 46] and on-screen sound sep-
aration [25, 53, 71, 72]. Our work focuses on audio-visual
sound separation. Recent audio-visual sound separation
methods could be classified generally into two categories:
feature-centric and decoder-centric as discussed in Sec. 1.
Feature-centric methods exploit various ways for visual
feature extraction selection to aid this multi-modality task.
Some works consider frame-based appearance features
(static frame features [24, 79, 89] or detected object re-
gions [26, 66]) for extracting visual semantic cues (e.g.,
instrument categories) to guide sound separation. [12, 13]
adds embeddings from an audio-visual scene graph at the
U-Net bottleneck to model the visual context of sound
sources. Based on the assessment that motion signals
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Figure 2. Qualitative results on MUSIC test set. The first column shows the mixed video frames, the second to the fourth columns
compare our predicted spectrogram masks against masks yielded by state-of-the-art algorithm [66] and ground truth masks, and the fifth
to the seventh columns visualize separated spectrograms. [66] produces blurry masks and contains unseparated components from another
sound source, while our system successfully generates accurate mask and clean spectrograms as the ground truth.

could more tightly couple the moving sounding object
with corresponding variations of sounds, recent approaches
focus on including motion information into the pipeline
(e.g., optical flow [88], and human pose [23,58]). Based on
this, [94] proposes a framework to search for the optimal
fusion strategy for multi-modal features. Decoder-centric
methods explore prevention of “cross-talk” between the
audio sources in the decoder stage. [99] designs a two-stage
pipeline, where the second stage conducts a counterfactual
synthesis through motion features to remove potentially
leaked sound. The approach of [27] added critic functions
explicitly to enforce cross-modal consistency and cross-
instrument contrast.

Vision Transformers. Motivated by transformer’s suc-
cess in natural language processing [73], transformers were
first introduced in computer vision for image classification
as ViT [20]. Given the superior long-range modeling ca-
pacity, many follow-up works [47, 69, 82] have upgraded
ViT to achieve higher performance and widely surpassed
convolutional neural networks. Further, transformer-based
models are adopted for various downstream tasks, such
as 2D object detection [9, 91, 100], semantic/instance seg-
mentation [65, 78, 92], 3D object detection [50, 85], shape
recognition [84, 90] and video understanding [6, 42]. Par-
ticularly, following the pipeline from DETR [9], Mask-
Former [16] and Mask2Former [15] represent each mask
candidate as a learnable query and conduct parallel decod-
ing for instance-level segmentation. However, only few ap-
proaches [39, 58, 71, 72, 99] have extended transformer for
audio-visual sound separation fields. [58] adopts a BERT

[18] architecture to learn visual, pose, and audio feature rep-
resentations. [99] designs an audio-motion transformer to
refine sound separation results through audio-motion fea-
ture fusion. These methods focus mainly on learning bet-
ter contextualized multi-modality representations through
an encoder transformer. In contrast, our mask transformer-
based network focuses on the entire process of visual-audio
separation task. We disentangle different sound sources
through independent learnable query prototypes and seg-
ment each time-frequency region on the spectrogram via
mask prediction in an end-to-end fashion.

3. Method
We first describe the formulation of the audio-visual

sound separation task and introduce our pipeline iQuery
briefly in Sec. 3.1. Then we introduce networks for learn-
ing representations from visual and audio modalities in Sec.
3.2 and our proposed cross-modality cross-attention trans-
former architecture for visual sound separation in Sec. 3.3.
Finally, we introduce our adaptive query fine-tuning strat-
egy through designs of flexible tunable queries in Sec. 3.4.

3.1. Overview

As mentioned before, our goal is to disentangle the au-
dio mixture concerning its corresponding sound sources
in the given mixture by using so-called queries. Follow-
ing previous works [21, 89], we adopt a commonly used
“Mix-and-Separate” self-supervised source separation pro-
cedure. Given K video clips with accompanying audio
signal: {(Vk, sk(t))}k∈[1,K], we create a sound mixture:
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smix(t) =
∑K

k=1 sk(t) as training data. Our disentan-
glement goal is to separate sounds sk(t) from smix(t) for
sound sources in Vk, respectively. The pipeline, as illus-
trated in Fig. 1, is mainly composed of two components:
an Audio-Visual Feature Extraction module and a Mask
Transformer-based Sound Separation module. First, in the
feature extraction module, the object detector & image en-
coder, and video encoder extract object-level visual features
and motion features from video clip Vk. The audio net-
work yields an audio feature and an audio embedding from
the given sound mixture smix(t). After that, a cross-modal
transformer decoder attends to visual and audio features and
outputs audio mask embeddings, which are further com-
bined with audio embeddings for sound separation.

3.2. Audio-Visual Feature Extraction

Object Detector & Image Encoder. To initialize learning
of audio queries, we assign object-level visual appearance
features to the corresponding queries, to create “visually
named” queries. In the implementation, following [26],
we use a Faster R-CNN object detector with ResNet-101
backbone. For frames in a given video clip Vk, the object
detector is utilized to acquire the detected objects set
Ok. After that, we adopt a pre-trained ResNet-18 similar
to [66], followed by a linear layer and max pooling to
yield object-level features FOk

∈ RCO , where CO denotes
channel dimension of object features.

Video Encoder. The video encoder maps the video
frames from Vk ∈ R3×Tk×Hk×Wk into a motion fea-
ture representation. In contrast with previous motion
representations [23, 58, 88, 99], we use self-supervised
video representation obtained from a 3D video encoder
of I3D [10] pre-trained by FAME [19]. The model is
pre-trained contrastively to concentrate on moving fore-
grounds. Finally, a spatial pooling is applied to obtain
motion embedding FMk

∈ RCM×T ′
k , where CM denotes

the dimension of the motion feature.

Audio Network. The audio network takes the form of
skip-connected U-Net style architectures [59] following
[26, 66, 89]. Given the input audio mixture smix(t), we
first apply a Short-Time Fourier Transform (STFT) [30] to
convert the raw waveform to a 2D Time-Frequency spec-
trogram representation Smix ∈ RF×T , which is then fed
into the U-Net encoder to obtain an audio feature map
FA ∈ RCA×F

S ×T
S (CA denotes the number of channels and

S denotes stride of audio feature map) at the bottleneck. A
U-Net decoder gradually upsamples the audio features to
yield audio embeddings εA ∈ RCε×F×T (Cε denotes the
dimension of audio embeddings), which is combined fur-
ther with the transformer mask embeddings to generate the
separated sound spectrogram mask Mk.

3.3. Audio-Visual Transformer

Our cross-modality sound separation transformer con-
tains the transformer decoder [73] with N queries (i.e.,
learnable prototypes), and utilizes the extracted object
features FOk

, motion embeddings FMk
and audio features

FA to yield N mask embeddings εmask ∈ RCε×N for
spectrogram mask prediction of separated sound sk(t),
where N denotes maximum of the pre-defined instrument
types.

Audio query prototypes. We denote audio queries as
Q ∈ RCQ×N to represent different instruments, which are
initialized by “visually naming” audio queries. Specifically,
“visually naming” means that we assign object features
FOk

to the corresponding query in Q with element-wise
addition to yield “visually-named” queries Qv , which are
then fed into the transformer decoder cross-attention layers.

Cross-attention layers. In the decoder, we stack one
motion-aware decoder layer and three audio-aware de-
coder layers. The “visually-named” queries Qv first
interact temporally with motion features FMk

in the
motion-aware decoder layer with motion cross-attention by
Attention(Qv, FMk

, FMk
). This is followed by an FFN to

generate the motion-decoded queries Q′, which are then
fed into three audio-aware decoder layers to adaptively
interact with audio features FA, each of which consists
of a self-attention, an audio cross-attention computed by
Attention(Q′, FA, FA), and an FFN. The output N audio
segmentation embeddings εQ ∈ RCQ×N is computed by

εQ = AudioDecoder×3(Q
′, FA, FA), (1)

where AudioDecoder stands for our audio-aware decoder
layer. Similar to [9, 16], the decoder generates all audio
segmentation embeddings parallelly.

Separated mask prediction. Through the above decoder,
the N audio segmentation embeddings εQ are converted to
N mask embeddings εmask ∈ RCε×N through a MLP with
two hidden layers, where dimension Cε is identical to di-
mension of audio embeddings εA ∈ RCε×F×T . Then each
predicted mask Mk ∈ RF×T of the separated sound spec-
trogram is generated by a dot-product between the corre-
sponding mask embedding in εmask and audio embedding
εA from the audio decoder. Finally, we multiply the sound
mixture spectrogram Smix and the predicted mask Mk to
disentangle sound spectrogram Sk for sound sk(t) by

Sk = Smix ⊙Mk, (2)

where ⊙ denotes the element-wise multiplication operator.
Ultimately, separated sound signal sk(t) is produced by
applying inverse STFT to the separated spectrogram Sk.
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Figure 3. Audio prompts design. To generalize to new types of
instruments/event classes, we propose to insert additional queries
(audio prompts) to learn new audio prototypes for unseen classes.
With this design, we only fine-tune the query embedding layer
while keeping all the other parts of transformer backbone frozen.

Training objective. Following [26, 89], we set our train-
ing objective as optimizing spectrogram masks. The ground
truth ratio mask MGT

k of k-th video is calculated as follows,

MGT
k (t, f) =

Sk(t, f)

Smix(t, f)
, (3)

where (t, f) denotes time-frequency coordinates. We adopt
per-pixel L1 loss [87] to optimize the overall sound separa-
tion network, sound separation loss Lsep is defined as,

Lsep =

K∑
k=1

||Mk −MGT
k ||1, (4)

where K denotes number of mixed sounds in Smix.

3.4. Tunable Queries as Audio Prompts

With the flexible design of tunable queries as learnable
prototypes, our pipeline is more friendly to generalizing to
new types of instruments. Unlike previous methods that
need to finetune the entire mask generation U-Net, we could
insert additional queries(i.e., audio prompts) for the new
instruments. Such a method enables us only need to fine-
tune the query embedding layer for learning new audio
query prototypes in Sec. 3.3 of our transformer architecture
while keeping all cross-attention layers frozen (see Fig.3).
Specifically, we add L new audio prompts P ∈ RCQ×L to
original pre-trained audio queries Q ∈ RCQ×N , then the
query embedding layer for the prompted learnable proto-
types Qprompted ∈ RCQ×(N+L) is the only layer learnable
in our transformer decoder, while keeping the transformer
backbone frozen.

4. Experiments
4.1. Experimental Settings

Datasets. We perform experiments on three widely-used
datasets: MUSIC [89], MUSIC-21 [88], and Audio-Visual
Event (AVE) [29, 68]. MUSIC dataset spans 11 musical
instrument categories: accordion, acoustic guitar, cello,
clarinet, erhu, flute, saxophone, trumpet, tuba, violin,

and xylophone. This dataset is relatively clean, and
sound sources are always within the scene, collected for
the audio-visual sound separation task. We utilize 503
online available solo videos and split them into train-
ing/validation/testing sets with 453/25/25 videos from 11
different categories, respectively, following same settings
as [66]. MUSIC-21 dataset [88] is an enlarged version of
MUSIC [89], which contains 10 more common instrument
categories: bagpipe, banjo, bassoon, congas, drum, electric
bass, guzheng, piano, pipa, and ukulele. We utilize 1,092
available solo videos and split them into train/test sets
with 894/198 videos respectively from 21 different cate-
gories. Note that we follow the same training/testing split
as [23, 99]. AVE dataset is a general audio-visual learning
dataset, covering 28 event classes such as animal behaviors,
vehicles, and human activities. We follow the same setting
as [99], and utilize 4143 videos from AVE [68] dataset.

Baselines. For MUSIC dataset, we compare our method
with four recent methods for sound separation. NMF-
MFCC [64] is a non-learnable audio-only method, we
consider reporting this result from [26, 58] on MUSIC test
set. We also compare with two representative audio-visual
sound separation baselines: Sound-of-Pixels [89] and
Co-Separation [26]. We retrained these two methods with
the same training data and split them as ours for a fair
comparison. Finally, we compare our approach with a
most recent publicly-available baseline CCoL [66], which
has the same training setting as ours. For MUSIC-21
dataset, we compare our method with six recently proposed
approaches: Sound-of-Pixels [89], Co-Separation [26],
Sound-of-Motions [88], Music Gesture [23], TriBERT [58]
and AMnet [99]. For [58], since 12.27% of the training
samples are missing in their given training split, we
consider their reported result as a baseline comparison.
Finally, for AVE dataset, we compare our method with six
state-of-the-art methods. Since we conduct our experiments
with the same setting as AMnet [99], we report results
from [99] for Multisensory [53], Sound-of-Pixels [89],
Sound-of-Motions [88], Minus-Plus [79], Cascaded Oppo-
nent Filter [98] as baseline comparisons.

Evaluation metrics. The sound separation performance
is evaluated by the popular adopted mir eval library [57]
in terms of standard metrics: Signal to Distortion Ratio
(SDR), Signal to Interference Ratio (SIR), and Signal to
Artifact Ratio (SAR). SDR measures the combination of
interference and artifacts, SIR measures interference, and
SAR measures artifacts. For all three metrics, a higher
value indicates better results.

Implementation Details. For MUSIC [89] and MUSIC-21
[88] datasets, we sub-sample the audio at 11kHz, and each
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Figure 5. Visualization of audio query embeddings with t-SNE,
different instrument categories are color-coded. Our audio queries
have learned to cluster by different classes of sound.

audio sample is approximately 6 seconds. STFT is applied
using a Hann window size of 1022 and a hop length of 256,
yielding a 512×256 Time-Frequency audio representation.
It is then re-sampled on a log-frequency scale to obtain a
magnitude spectrogram with T, F = 256. Detected objects
in frames are resized to 256×256 and randomly cropped
to the size of 224×224. We set the video frame rate as 1
FPS, and randomly-selected three frames as input for the
object detector. While for AVE [68] dataset, audio signal is
sub-sampled at 22kHz, and we use the full frame rate(29.97
FPS). Other settings are the same as MUSIC except STFT
hop length is set as 184, following [99].

For MUSIC dataset [89], we use the Faster R-CNN ob-
ject detector pre-trained by [26] on Open Images [38]. For
MUSIC-21 [88] and AVE [68] datasets, since additional mu-
sical and general classes are not covered for this object de-
tector, we adopt a pre-trained Detic detector [96] based on
CLIP [56] to detect the 10 more instruments in MUSIC-21
dataset [88] and 28 event classes in AVE dataset [68].

We utilize 8 heads for all attention modules and select the
maximum N objects (number of queries) as 15, 25, and 30
for MUSIC, MUSIC-21 and AVE. The video encoder [19]
and the object detector is pre-trained and kept frozen during
training and inference. The multi-layer perception (MLP)
for separated mask prediction has 2 hidden layers of 256
channels following [16]. Audio feature FA, motion feature
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Figure 6. Qualitative results on AVE test dataset. Beyond re-
stricted musical instruments, our model is also able to handle gen-
eral sound separation tasks (e.g. sounds of galloping race car and
frying food on the first two rows; sounds of driving motorcycles
and speeches on the last two rows).

FM , object feature FO, and audio queries Q have a chan-
nel dimension of 256. And we set the channel dimension of
both audio embeddings εA and mask embeddings εM as 32.
The epoch number is 80, and batch size is set to 8. We use
AdamW [43] for the mask transformer with a weight decay
of 10−4 and Adam for all other networks as optimizer se-
lection. The learning rate of the transformer is set as 10−4

and decreases by multiplying 0.1 at 60-th epoch. We set the
learning rate for other networks as 10−4, decreased by mul-
tiplying 0.1 at 30-th and 50-th epoch, respectively. Training
is conducted on 8 NVIDIA TITAN V GPUs.

4.2. Audio-Visual Sound Source Separation

Quantitative evaluation. Table. 1 demonstrates quan-
titative results for sound separation results against
state-of-the-art methods on MUSIC dataset [89]. Our
method outperforms baseline models in separation ac-
curacy measured by all evaluation metrics. Our method
outperforms the most recent publicly available state-of-
the-art algorithm [66] by 3.43 dB in terms of SDR score.
Regarding quantitative results on MUSIC21 dataset [88],
we demonstrate the performance comparison in Table. 2.
Again, our method outperforms baseline models in terms
of SDR metric. Performance on the previous two datasets
demonstrate our model’s ability to disentangle musical
sounds. To further verify the scalability of our proposed
method to general audio-source separation problems, we
perform quantitative comparisons on AVE dataset in Table.
3. As is demonstrated, we surpass the state-of-the-art
algorithm [99] by 1.31 dB in terms of SDR score. AVE is
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Methods SDR↑ SIR↑ SAR↑
NMF-MFCC [64] 0.92 5.68 6.84
Sound-of-Pixels [89] 4.23 9.39 9.85
Co-Separation [26] 6.54 11.37 9.46
CCoL [66] 7.74 13.22 11.54

iQuery (Ours) 11.17 15.84 14.27

Table 1. Audio-visual sound separation results on MUSIC. Best
results in bold and second-best results in Blue.

Methods SDR↑ SIR↑ SAR↑
Sound-of-Pixels [89]* 7.52 13.01 11.53
Co-Separation [26]* 7.64 13.80 11.30
Sound-of-Motions [88]* 8.31 14.82 13.11
Music Gesture [23]* 10.12 15.81 -
TriBERT [58] 10.09 17.45 12.80
AMnet [99]* 11.08 18.00 13.22

iQuery (Ours) 11.12 15.98 14.16

Table 2. Audio-visual sound separation results on MUSIC-21.
The results noted by * are obtained from [23, 99].

a general dataset containing scenes like male and female
speeches, animal sounds, and vehicle sounds. This clearly
shows our model’s adaptivity to more general problems of
sound source separation.

Qualitative evaluation. Fig. 2 illustrates qualitative
sound separation results on MUSIC dataset. It can be
seen that our method disentangles sound sources cleaner
and more accurately, with less “muddy” sound. Fig. 6
provides additional qualitative examples on AVE dataset,
and this again illustrates our model’s good performance on
general sound source separation cases. Both qualitative and
quantitative results verify the superiority of our designed
sound query-based segmentation pipeline iQuery.

Human evaluation. Our quantitative evaluation shows the
superiority of our model compared with baseline models,
however, studies [8] have shown that audio separation
quality could not be truthfully determined purely by the
widely used mir eval [57] metrics. Due to this reason, we
further conduct a subjective human evaluation to study
the actual perceptual quality of sound-separation results.
Specifically, we compare the sound separation result of our
model and the publicly available best baseline model [66]
on MUSIC [89]. We collected 50 testing samples for all 11
classes from the test set, and each testing sample contains
separated sounds with a length of 6 seconds predicted by
our model and baseline [66] for the same sound mixture.
Ground truth sound is also provided for each sample as a

Methods SDR↑ SIR↑ SAR↑
Multisensory [53]* 0.84 3.44 6.69
Sound-of-Pixels [89]* 1.21 7.08 6.84
Sound-of-Motions [88]* 1.48 7.41 7.39
Minus-Plus [79]* 1.96 7.95 8.08
Cascaded Filter [98]* 2.68 8.18 8.48
AMnet [99]* 3.71 9.15 11.00

iQuery (Ours) 5.02 8.21 12.32

Table 3. Audio-visual sound separation results on AVE. The
results noted by * are obtained from [99].

Methods SDR↑ SIR↑ SAR↑
Sound-of-Pixels [89] 4.11 8.17 9.84
Co-Separation [26] 5.37 9.85 8.72
CCoL [66] 6.74 11.94 10.22

iQuery (Ours) 8.04 11.60 13.21

Table 4. Fine-tuning sound separation performance compari-
son. All methods are pretrained on MUSIC dataset without one
particular instrument and then fine-tuned on this new data. Base-
line models are tuned with whole network unfrozen, and we keep
our transformer backbone frozen.

reference. The experiment is conducted by 40 participants
separately. For each participant, the orders of our model
and baseline [66] are randomly shuffled, and we ask the
participant to answer “Which sound separation result is
more close to the ground truth audio?” for each sample.
Statistical results are shown in Fig. 4. Notably, our
method significantly surpasses the compared baseline with
a winning rate of 72.45%. This additionally demonstrate
the better actual perceptual performance of our model.

Learned Query Embedding. To visualize that our pro-
posed model has indeed learned to disentangle different
sound sources through learnable queries, we show t-SNE
embeddings of our learnable queries in MUSIC test set [89].
As is shown in Fig. 5, our queries tend to cluster by differ-
ent instrument classes, learning representative prototypes.

4.3. Extendable Audio Prompt Fine-tuning

Table. 4 evaluates our approach’s generalization ability
compared with previous methods. We conduct fine-tuning
experiments by leave-one-out cross-validation. Baseline
models are fine-tuned on the new instrument with all the
networks structure unfrozen. With the design of audio
prompts discussed in Sec. 3.4, we keep most of our trans-
former parameters frozen, only fine-tuning the query em-
bedding layer, which has much fewer parameters (0.048%
of the total parameters in Transformer).

Fig. 7 (a) shows our performance with a varying num-
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(a) (b)

Figure 7. Fine-tuning curves of sound separation. (a) Fine-tuning
with different number of unseen instrument classes on MUSIC. (b)
Fine-tuning with different number of unseen event classes on AVE.

ber of new instrument classes for fine-tuning on MUSIC
dataset. We hold out 1, 2, 4, and 6 instrument classes in
the pre-training stage and fine-tune our method on these
new classes with only the query embedding layer unfrozen.
MUSIC dataset contains in total of 11 instruments. No-
tably, our method still yields good results when the net-
work is only pre-trained on 5 instrument types, even fewer
than the unseen classes. Fig. 7 (b) shows our model’s fine-
tuning performance on AVE dataset with a varying number
of new event classes for fine-tuning. We follow the exper-
imental setup on MUSIC, and hold out 2, 4, 6, 8, and 12
event classes for fine-tuning. This demonstrates our model’s
adaptivity in general sound separation cases.

4.4. Contrastive Verification

Our learnable query-prototypes network is designed to
ensure cross-modality consistency and cross-instrument
contrast. We assume these prototypes to draw samples
of each particular sound class sample close and push
away the different prototypes. The question is whether
our network design with “visually-named” query trained
in the “Mix-and and-Separate” can already achieve this
goal? As an alternative, we design an auxiliary contrastive
loss for verification: to maximize the cosine similarity of
separated audio embedding εAk

= εA ⊙ Mk and the cor-
responding query embedding Qk in Q, while minimizing
the cosine similarity of separated audio embedding and
other query embeddings Qn (where n ∈ [1, N ], n ̸= k).
We optimize the cross-entropy losses of the cosine sim-
ilarity scores to obtain contrastive loss Lcontras. To
ensure the qualities of audio embedding εA and predicted
mask Mi are accurate enough, we use a hierarchical task
learning strategy [44] to control weights for Lsep and
Lcontras at each epoch. The verification loss Lverify is:
Lverify = wsep(e) ·Lsep +wcontras(e) ·Lcontras where e
denotes training epoch and w(e) denotes loss weight.

Ablations of auxiliary contrastive loss, shown in Table. 5,
demonstrates that our existing design achieves better results
without using explicit contrastive loss. This answers the

Architecture SDR↑ SIR↑ SAR↑

w/o lrn. 10.05 14.27 13.71
w/o adpt. 10.89 15.51 14.14
w/ con. best 11.02 15.91 14.10

Ours (w/o con) 11.17 15.84 14.27

Table 5. Ablations on the auxiliary contrastive loss on MUSIC
dataset. “w/o lrn.” denotes without learnable linear layer added
to queries produced by Transformer decoder; “w/o adpt.” denotes
that we use a fixed weight for auxiliary contrastive loss without
the Hierarchical Task Learning strategy; “w/ con. best” denotes
our best model design using auxiliary contrastive loss.

Architecture SDR↑ SIR↑ SAR↑

Random 6.58 10.79 12.77
Self-audio 10.54 14.81 14.23
Self-motion-audio 10.65 15.37 13.96
Dual-stream 10.46 15.25 13.79

Motion-self-audio 11.17 15.84 14.27

Table 6. Ablations on the design of Transformer decoder.

question we raised, that our “visually-named” queries are
already contrastive enough for sound disentanglement.

4.5. Ablations of Transformer decoder design

Ablation results of Transformer decoder design on MU-
SIC dataset is shown in Table. 6. “Random” denotes ran-
domly assigning object features to queries, its poor separa-
tion result verifies the importance of our “visually-named”
queries. “Self-audio” means removing the motion cross at-
tention layer, which confirms the effectiveness of adding
the motion feature. We tried two baseline designs against
our final selection “Motion-self-audio”, as stated in Sec.
3.3. “Self-motion-audio” is a design that puts self-, motion
cross-, and audio cross-attention in a single decoder layer.
“Dual-stream” means we conduct motion and audio cross-
attention in parallel then fuse in the decoder layer. Specific
details are in the Supplemental material.

5. Conclusion
We proposed an audio-visual separation method using

an adaptable query-based audio mask transformer network.
Our network disentangles different sound sources explic-
itly through learnable audio prototypes initiated by “visu-
ally naming”. We demonstrate cross-modal consistency and
cross-instrument contrast via a multi-modal cross-attention
mechanism. When generalizing to new unseen classes, our
method can be adapted by inserting additional queries as au-
dio prompts while freezing the attention mechanism. Exper-
iments on both musical and general sound datasets demon-
strate performance gain by our iQuery.
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