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Abstract

Despite neural implicit representations demonstrating
impressive high-quality view synthesis capacity, decom-
posing such representations into objects for instance-level
editing is still challenging. Recent works learn object-
compositional representations supervised by ground truth
instance annotations and produce promising scene editing
results. However, ground truth annotations are manually
labeled and expensive in practice, which limits their usage
in real-world scenes. In this work, we attempt to learn an
object-compositional neural implicit representation for ed-
itable scene rendering by leveraging labels inferred from
the off-the-shelf 2D panoptic segmentation networks in-
stead of the ground truth annotations. We propose a novel
framework named Panoptic Compositional Feature Field
(PCFF), which introduces an instance quadruplet metric
learning to build a discriminating panoptic feature space
for reliable scene editing. In addition, we propose semantic-
related strategies to further exploit the correlations between
semantic and appearance attributes for achieving better
rendering results. Experiments on multiple scene datasets
including ScanNet, Replica, and ToyDesk demonstrate that
our proposed method achieves superior performance for
novel view synthesis and produces convincing real-world
scene editing results.

1. Introduction
Virtually editing real-world scenes (e.g., moving a chair

in the room) in mixed reality applications on various de-
vices is desired by users. Such expectation requires an
effective 3D scene representation with the capacity of
photo-realistic view rendering and promising scene decom-
position. Recently, emerging neural implicit representa-
tions with volumetric rendering, especially neural radiance
field (NeRF) [29] and its variants, show impressive re-
sults in novel view synthesis [1, 2] and scene reconstruc-
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tion [13, 31, 43] tasks. However, decomposing a neural im-
plicit representation into objects for scene editing is chal-
lenging due to the holistic scene is implicitly encoded as
weights of connectionist networks like multi-layer percep-
tions (MLPs). To build object-compositional neural im-
plicit representations for instance-level scene editing, sev-
eral works [46, 47, 52] jointly encode the appearance and
instance attributes with extra instance annotations.

Though existing object-compositional methods can ex-
tract convincing object representations from the scene rep-
resentation for further editing, their successes rely heav-
ily on ground truth instance annotations, which are la-
beled manually and expensive to obtain in real-world prac-
tice. An intuitive alternative solution is training object-
compositional representations with labels inferred by 2D
panoptic segmentation networks [5,6,19] instead of ground
truth instance annotations. However, their methods are
tough to leverage the network-inferred labels due to the sig-
nificant 3D index inconsistency, and a detailed discussion is
shown in Fig. 1. We note that 3D index consistency is the
instance indices of a specific object are same across multi-
view labels. Due to network-inferred labels are individually
predicted on each view image and objects order is uncertain
in each prediction, the instance indices of a specific object
in different view labels are usually index inconsistent from
the perspective of 3D, e.g., the index of the target chair is
purple in the label of view #1 and is red in the label of view
#2. Therefore, how to learn object-compositional neural im-
plicit representations by leveraging network-inferred labels
is critical for real-world application.

In this work, we propose a novel panoptic compositional
feature field (PCFF), which integrates the deep metric learn-
ing [18, 27] into the learning of object-compositional rep-
resentations to overcome the challenge of using 2D net-
work predictions. Concretely, we employ metric learning
to constrain the distances among projected panoptic fea-
tures of pixels in each view separately, which circumvents
the requirement of 3D index consistent labels and builds a
discriminating panoptic feature space. Combined with the
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Figure 1. Core challenge. Existing methods (e.g., ObjSDF [46]) require (a) manually-labeled ground truth annotations to train object-
compositional representations, and the trained representation can extract the target object correctly. We note that (a) manually-labeled
annotations are 3D index consistency, i.e., the instance indices of the target object are same across multi-view labels. However, when (b)
network-inferred labels predicted by 2D panoptic segmentation networks are utilized for training their representations, the corresponding
object extraction result is obviously incorrect. Due to (b) network-inferred labels are inferred by networks on each view image individually,
these labels are usually index inconsistent from the perspective of 3D and tough to be used by existing methods.

feature spaces, we provide an easily query-based manner
for scene decomposition, i.e., given a user-specified pixel
query in an arbitrary view, our trained PCFF extracts the
target object by measuring the similarity between the pro-
jected feature of query pixel and corresponding features of
each 3D point. Furthermore, two semantic-related learn-
ing strategies are proposed based on our observation of
the correlations between semantic and appearance attributes
for improving our rendering performance. The semantic-
appearance hierarchical learning enforces our framework to
encode appearances and semantics with MLPs of different
depths, and the semantic-guided regional refinement impels
the framework to focus on inaccurate regions with the guid-
ance of semantic information entropy maps.

We evaluate our method on multiple scene datasets in-
cluding ScanNet [8], Replica [40], and ToyDesk [47]. Ex-
periments demonstrate our method outperforms state-of-
the-art methods in novel view synthesis. More impor-
tantly, PCFF successfully leverages 2D network-inferred la-
bels to build object-compositional representations for object
extraction and real-world scene editing, whereas existing
methods fail to utilize labels without 3D index consistency.
The main contributions of our work are summarized as:

• We propose a novel Panoptic Compositional Feature
Field (PCFF) that learns object-compositional repre-
sentations for editable scene rendering with network-
inferred panoptic labels by building a discriminating
feature space with the assistance of introduced instance
quadruplet metric learning.

• We propose strategies including semantic-appearance
hierarchical learning and semantic-guided regional re-
finement to properly exploit the correlations between
semantic and appearance attributes and improve the
rendering capacity of our method.

• Our method achieves superior novel view synthe-
sis performance than state-of-the-art methods and
produces convincing scene edits by using network-
inferred panoptic labels on real-world scenes.

2. Related Works
Neural Implicit Representations. Recently proposed neu-
ral implicit representations such as DeepSDF [33] and Oc-
cupancy Networks [28] have attracted broad interest due
to their powerful representation capability, which map 3D
coordinates into continuous geometries and overcome the
discretization issue of explicit representations. Without re-
quiring ground truth geometry, NeRF [29] models the tar-
get 3D scene as a continuous volumetric field of density
and color via a multi-layer perceptron from posed multi-
view images and achieves remarkable photo-realistic ren-
dering results. The following works extend NeRF to address
its limitations in various aspects, including efficient render-
ing [2, 9, 25, 38, 41, 48], better generalization [3, 16, 44, 49],
dynamic synthesis [10,23,35,36,45], appearance and shape
editing [17, 26, 42], and scene stylization [7, 11, 15, 51]. In
this work, we adopt NeRF as the basic neural implicit rep-
resentation and explore how to learn object-compositional
scene implicit representations with network-inferred labels
predicted by 2D panoptic segmentation networks.
Object-compositional Implicit Representations. Al-
though neural implicit representations especially NeRFs
achieve significant accomplishment, decomposing NeRFs
into object representations for further editing is still
challenging due to the implicitly represent formulation.
Most existing object-compositional implicit representations
can be roughly summarized into two streams, including
category-specific methods and scene-specific methods.

Several works explore category-specific object represen-
tations by leveraging large-scale images or videos of cor-
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responding categories. Some attempts [14, 30, 50] build
object-centric radiance fields and represent scenes as the
composition of object representations for flexible scene
editing. Other studies [12, 22, 32] learn multiple neural
representations for scenes in the traffic domain to enable
panoptic segmentation and object manipulation on novel
view synthesizes. However, category-specific methods are
struggled to represent objects in unseen categories due to
the lacking of essential data as prior.

Related to ours, scene-specific methods directly encode
the specific scene as a holistic implicit representation [21,
52] or a composition of representations [46,47] for support-
ing object extraction and scene editing. DFF [21] distills
the knowledge of pre-trained 2D image feature extractors in
NeRF and semantically selects regions by the text or image
patch queries, whereas DFF does not support instance-level
object selection. SemanticNeRF [52] augments NeRF to
jointly encode appearance and semantics by simply adding
a prediction head supervised by ground truth annotations,
hence SemanticNeRF allows decomposing scene into ob-
jects according to the instance predictions of 3D points.
ObjectNeRF [47] and ObjectSDF [46] are built upon NeRF
and SDF respectively, they decompose the target scene as
the representations of background and foreground objects
by utilizing precise instance masks, leading to promising
scene decomposition and reconstruction results. However,
[46, 47, 52] are limited in practice due to their high depen-
dence on ground truth instance annotations which is labeled
manually and expensive to obtain. In contrast, we introduce
metric learning to train object-compositional implicit rep-
resentations by utilizing network-inferred labels, which is
critical for wide real-world applications.

3. Method
Given a set of posed images of a specific scene and

corresponding panoptic labels inferred by a pre-trained 2D
panoptic segmentation network, we aim to learn an object-
compositional NeRF with the capacity of view render-
ing and scene decomposition. The core challenge is that
network-inferred labels are 3D index inconsistency, result-
ing in the direct prediction of instances adopted by existing
methods being infeasible. We propose an effective frame-
work for leveraging such labels by introducing metric learn-
ing to achieve convincing scene decomposition results.

In the following, we first give the background of NeRF
and panoptic segmentation in Sec. 3.1. We then show the
details of the proposed framework in Sec. 3.2, and we fi-
nally describe how to extract the representation of the target
object with the query pixel for scene editing in Sec. 3.3.

3.1. Backgrounds

Neural Radiance Fields. Given multi-view images with
known camera parameters, NeRF [29] uses a multi-layer

perception (MLP) to implicitly represent the 3D scene as
a continuous volumetric radiance field. Specifically, MLP
FΘ maps a spatial coordinate x = (x, y, z) and a view di-
rection d = (θ, ϕ) to a view-independent density σ and
view-dependent color c = (r, g, b). Given the camera ray
r(t) = o+td with camera position o and depth t ∈ [tn, tf ],
the projected color of r(t) is obtained by samplingN points
along the ray and using volume rendering:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (1)

where σi and ci denote the density and color of sam-
pled point xi along the ray r, Ti = exp(−

∑i−1
j=1 σjδj)

indicates the accumulated transmittance along the ray, and
δi = ||xi+1−xi||2 is the distance between adjacent sample
points. To supervise NeRF, RGB loss Lrgb is adopted and
formulated as the squared error between the projected color
Ĉ(r) and the ground-truth color C(r):

Lrgb =
∑
r∈R

||Ĉ(r)−C(r)||22, (2)

where R is the ray set of sampled pixels. We adopt the pop-
ular NeRF as the basic neural implicit representation due to
its high-quality view synthesis capacity.
Panoptic Segmentation. To generate a rich and complete
scene segmentation, the panoptic segmentation (PS) task is
proposed [20] to unify the typical semantic segmentation
and instance segmentation task. PS networks map each
pixel of the input image to a pair (s, z), where s represents
the semantic class and z represents the instance index of the
pixel. The semantic classes set C consists of stuff subset
Cs (amorphous regions of similar texture or material, e.g.,
wall and floor) and things subset Ct (countable objects, e.g.,
chairs and tables). Concretely, all pixels labeled with the
same s belong to the same instance and z is irrelevant when
s ∈ Cs, while all pixels labeled with the same (s, z) belong
to the same instance when s ∈ Ct.

We leverage panoptic segmentation networks [5, 6, 19]
to make predictions on each view image individually, and
network-inferred labels are divided into semantic and in-
stance sub-labels with the PS definition. Since semantic la-
bels are 3D index consistent when the adopted PS network
is pre-trained with the same C, we can jointly learn appear-
ance and semantic attributes in a similar way. However, the
instance labels are usually inconsistent due to the uncertain
order of object predictions. Thus a metric-based constraint
is designed for leveraging inferred instance labels.

3.2. Panoptic Compositional Feature Field

In this section, we give the details of our proposed frame-
work named Panoptic Compositional Feature Field (PCFF),
and the overview is shown in Fig. 2. Firstly, we describe
the joint learning of color c and semantic s and proposed
semantic-related strategies which explore the correlations
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Figure 2. Overview of the proposed PCFF framework. PCFF adopts MLPs to map a 3D coordinate x and the view direction of ray r to
density σ, color c, semantic logits s and panoptic feature fp. For the image pixel of ray r, we use differentiable volume rendering to obtain
corresponding projected color Ĉ(r), projected semantic probabilities Ŝp(r) and projected panoptic feature F̂(r). Ĉ(r) and Ŝp(r) are
supervised with input images and semantic labels, and semantic-related strategies are proposed to explore the correlations between c and
s for improving rendering performance. To leverage instance labels without 3D index consistency, we introduce instance metric constraint
on F̂(r) to build a discriminating feature space for scene decomposition and editing.

between c and s for improving our rendering capacity.
Then, we show how to utilize metric learning to build dis-
criminating feature spaces for scene decomposition at in-
stance level with network-inferred labels.
Semantic-Appearance Hierarchical Learning. Inspired
by the [22, 37, 52], our framework is developed from an in-
tuitively semantic extension of NeRF, which uses a MLP
FΘ to map a spatial coordinate x and a view direction d into
a view-dependent color c, view-invariant density σ and se-
mantic logits s∈R|C|, where C is the set of semantic classes.
The semantic extension of NeRF is formulated as:

(σ, s) = FΘ(x), c = FΘ(x,d). (3)

Giving the camera ray r of a pixel, the projected semantic
logits Ŝ(r) is formulated as:

Ŝ(r) =

N∑
i=1

Ti(1− exp(−σiδi))si, (4)

where si denotes the predicted semantic logits of point xi

along the ray r. We forward the logits Ŝ(r) into a softmax
normalization layer to compute the multi-class probabilities
Ŝp(r). The semantics are supervised by a cross-entropy loss
between Ŝp(r) and the semantic label S(r):

Lsem = −
∑
r∈R

|C|∑
j=1

Sj(r) log Ŝj
p(r), (5)

where R is the ray set of pixels. Sj(r) ∈ {0, 1} is the j-th
class label of the intersection pixel of ray r and image.

Although the joint encoding of s and c enhances the
network for better utilizing the inherent multi-view consis-
tency and improves the accuracy of semantic segmentation,
the introduction of s incurs negative effects for the render-
ing capacity, as discussed in [52]. Due to the observation

that s is an easier attribute to learn than c, we assume that
the performance degradation is caused by the tight coupling
of s and c brought by the deeply shared MLPs. Hence, a
semantic-appearance hierarchical learning strategy is pro-
posed to encode s with shallower layers, which is simply
implemented by modifying FΘ into two sub-MLPs FΘ1

and
FΘ2

(see Fig. 2) for hierarchical learning:

fh = FΘ1
(x), σ = FΘ2

(fh), c = FΘ2
(fh,d), (6)

where fh is the intermediate hidden feature for the subse-
quent encoding of s:

fp = φ(fh), s = ψ(fp), (7)

where φ(·), ψ(·) are linear layers. fp is named panoptic fea-
ture because it is both supervised by the semantic and in-
stance losses, and fp is further utilized as the selected crite-
rion for the scene decomposition.

Semantic-Guided Regional Refinement. According to
our observation, the framework is struggled to render photo-
realistic results in regions with semantic prediction diffi-
culty, e.g., object boundaries or observe lacking parts. Thus
we design a semantic-guided regional refinement strategy
to impel the framework to focus on semantic inaccurate re-
gions with the guidance of semantic information entropy
maps (see Fig 2). Specifically, following [39], we formu-
late the semantic information entropy of ray r as H(r) to
reflect the semantic prediction difficulty:

H(r) = −
|C|∑
j=1

Ŝj
p(r) log Ŝ

j
p(r), (8)

where Ŝp(r) is the projected multi-class probabilities of ray
r, C is the set of semantic classes, and H(r) ∈ [0, log |C|].
Therefore, we adjust the weights of color loss (Eq. 2) under

4950



Figure 3. Conception of the proposed instance quadruplet loss.
Left: For a pixel quadruplet sampled in the same view, the pro-
posed loss closes the feature distance between the anchor and the
positive while enlarging feature distances among the anchor and
negatives. Right: The proposed loss constrains the features con-
sistently in different views regardless of the specific indices.

the guidance of H(r) for imposing stronger constraints on
semantic complicated regions:

LR
rgb =

∑
r∈R

(1 + ϵH(r))||Ĉ(r)−C(r)||22, (9)

where ϵ is the hyper-parameter to control the strength.
Instance Quadruplet Metric Learning. We now describe
our core design named instance quadruplet metric learning
for leveraging the network-inferred labels. We emphasize
that predicting instances on 3D points in a similar way with
s will cause severe collisions in 3D space when inferred in-
stance labels are 3D index inconsistency. Therefore, we in-
troduce metric learning to close or enlarge the distances be-
tween the projected features of pixels sampled in the same
view according to their labels (see Fig. 3 left), which leads
to a discriminating feature space for the scene decomposi-
tion at instance level. Besides, our metric-based loss con-
strains features consistently in different views even if the
instance indices are changed, e.g., though the index of the
left chair is red in view #1 and is green in view #2, the an-
chor feature should be closed to the positive feature in both
views (see Fig. 3 right). Thus proposed metric-based con-
straint overcomes the 3D index inconsistency in network-
inferred labels without degrading the inherent multi-view
consistency brought by the joint encoding of c and s.

Concretely, we denote that (sa, za) as the semantic label
and instance label of pixel a by the definition in Sec. 3.1.
To implement the instance quadruplet loss, we construct a
quadruplet for the given pixel a which belongs to a count-
able object (sa ∈ Ct), consisting of a itself as the anchor, a
positive sample p (sa=sp, za=zp), an easy negative sample
e (sa ̸=se, za ̸=ze), and a hard negative sample h (sa=sh,
za ̸=zh). We note that all pixels in a quadruplet are sam-
pled in the same view. For the anchor pixel a which is the

intersection of ray ra and the view image, we calculate its
projected panoptic feature F̂(ra) as:

F̂(ra) =

N∑
i=1

Ti(1− exp(−σiδi))fp,i, (10)

where fp,i denote the panoptic feature of point xi along the
ray ra. Due to the supervision of s, the panoptic feature
F̂(ra) is associated with the semantic label sa, and the dis-
tances among panoptic features of pixels with the same se-
mantic label are naturally closer. To alleviate the degrada-
tion of rendering performance caused by the introduction
of metric learning, we divide negative samples into easy
or hard ones according to their corresponding semantic la-
bels, and different margins ηe and ηh are assigned with the
principle ηe>ηh to establish more reasonable relationships.
Therefore, the instance quadruplet loss is defined as:

Lins =
∑
ra∈Z

([ηe + dp − de]+ + [ηh + dp − dh]+),

s.t. dk = D(F̂(ra), F̂(rk)), k ∈ {p, e, h}, (11)

where Z is the ray set of pixels that belong to countable
objects (sa ∈ Ct) in the target view, [·]+ is the max(·, 0)
function, and D(·, ·) is the distance function.
Joint Optimization. We jointly optimize our framework
by the color loss LR

rgb (Eq. 9), the semantic loss Lsem

(Eq. 5), and instance quadruplet loss Lins (Eq. 11) in the
training stage. Overall, the total loss is formulated as:

Ltotal = LR
rgb + λsemLsem + λinsLins, (12)

where λsem and λins are trade-off hyper-parameters to bal-
ance the magnitude of losses. We set λsem=1×10−3 and
λins=5×10−4 in experiments. We notice that the learnable
layers consist of MLPs FΘ1 , FΘ2 and linear layers φ,ψ.

3.3. Query-Based Object Selection

Extracting the representation of the target object from a
trained PCFF is the key to instance-level scene editing, we
thus propose a query-based manner to select the 3D points
belonging to the desired object according to the feature and
semantic similarity between the query and points. Con-
cretely, given a user-specified pixel query q of the target
object in an arbitrary view, for each point x in the 3D space,
we calculate the feature similarity αx and the semantic sim-
ilarity βx between q and x:

αx = 1−D(fp, F̂(rq)), (13)

βx = sigmoid(sj
′
), j′ = argmax

j
(Ŝj(rq)), (14)

where fp and sj
′

are panoptic feature and j′-th semantic
logit of point x. F̂(rq) and Ŝ(rq) are projected panoptic
feature and projected semantic logits of query pixel q, and
D(·, ·) is the cosine distance. We select points whose simi-
larities are both higher than corresponding thresholds γf , γs
as the representation of the target object for scene editing.
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4. Experiments
The main purpose of our method is to learn object-

compositional neural implicit representations with posed
images and corresponding network-inferred labels pre-
dicted by 2D panoptic segmentation networks. We conduct
experiments and demonstrate that existing scene-specific
methods fail to utilize such labels. In contrast, our method
shows robust rendering and editing performance whether
using ground truth annotations or network-inferred labels.

4.1. Implementation details
We implement our method with PyTorch [34] and all ex-

periments are performed on an NVIDIA RTX 3090 GPU.
We adopt MMDetection [4] for implementing 2D panop-
tic segmentation networks and networks are pre-trained on
COCO [24] dataset. We use a batch size of 1024 rays unless
otherwise stated, and 64 coarse points and 128 fine points
are sampled for each ray. We train our method using Adam
optimizer with default hyper-parameters for 200k iterations,
and the learning rate begins at 5×10−4 and decays exponen-
tially to 5×10−5. The margin values ηh and ηe are set to 0.3
and 0.5, and the refine hyper-parameter ϵ is set to 0.1.

4.2. Datasets
ScanNet [8] is a large-scale RGB-D dataset of 1513 real-
world indoor scenes with annotations including camera
poses, panoptic segmentation, and surface reconstructions.
We choose 3 scenes for evaluation, and there are 300/100
images with camera poses and panoptic annotations are
sampled in each scene for training/testing.
Replica [40] is a reconstruction-based 3D dataset of 18
high-fidelity scenes with dense geometry, HDR textures,
and panoptic annotations. We choose 6 one-room scenes
for evaluation. Following the train/test data split in [52],
we sample 180/180 images with camera poses and panoptic
annotations in each scene for training/testing.
ToyDesk [47] is a real-world dataset including 2 scenes
of a desk by placing several toys with different layouts and
images are 360◦ captured by looking at the desk center. We
follow the standard train/test data split [47] which sample
80% frames for training and use the rest for testing.

4.3. Learning with Network-Inferred Labels
In this section, we conduct experiments to demonstrate

that our method can learn object-compositional implicit
representations with network-inferred labels while other
methods are failed, which is shown in Fig. 4. Due to Ob-
jectNeRF [47] needs ground truth bounding boxes of target
objects for extraction, we choose SemanticNeRF [52] and
ObjectSDF [46] here for comparison. Mask2Former [5] is
adopted as the 2D panoptic segmentation network to pre-
dict labels, which are significantly index inconsistent as
shown in Fig. 4(b). Fig. 4(c) and (d) respectively show
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Figure 4. Qualitative comparison with object-compositional meth-
ods on object extraction. Our method successfully extracts the tar-
get object when trained with network-inferred labels while others
are failed. The red dot in View #1 is our query pixel.

(a) Input Image (b) Similarity Map (c) Seg. Mask

Figure 5. We utilize (b) feature sim-
ilarity map of query to generate (c)
segmentation masks for evaluation.

Methods IoU ↑
SemanticNeRF [52] 0.357
ObjectSDF [46] 0.486
PCFF (Ours) 0.891

Table 1. Segmentation ac-
curacy comparison of target
objects on ScanNet.
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(b) Panoptic-FPN [19] (c) MaskFormer [6] (d) Mask2Former [5]

Figure 6. Qualitative comparison of editing capacity when train-
ing our method with labels predicted by various panoptic segmen-
tation networks. Our method robustly generates discrimating fea-
ture spaces and produces scene edits.

the selection criterion (i.e., segmentation masks) and ob-
ject extraction results of SemanticNeRF and ObjSDF. Due
to their explicit instance predictions suffering severe col-
lision in 3D space when supervised by 3D index inconsis-
tent labels, these methods generate mistaken instance masks
and lead to unacceptable object extraction results. Different
from their prediction-based criterion, we select the target
object according to the panoptic feature space supervised by
the proposed instance quadruplet loss. We roughly visual-
ize our panoptic feature space by using 3-dimensional PCA
components of the features as RGB [21] for reference and
understanding in Fig. 4(e). Our panoptic feature space is
discriminating at instance level, where features of different
instances are presented in different colors. Therefore, we
correctly extract the object by measuring the feature simi-
larities between the query pixel and each 3D point.

To further verify our framework can leverage network-
inferred labels while others cannot, we report the averaged
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ScanNet Replica ToyDesk

Methods Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SemanticNeRF [52] ∼8h 26.11 0.796 0.378 31.74 0.921 0.183 22.01 0.775 0.448
ObjectNeRF [47] ∼16h 26.29 0.785 0.350 31.68 0.925 0.159 21.93 0.718 0.431
ObjectSDF [46] ∼20h 26.50 0.798 0.387 27.25 0.858 0.281 21.32 0.794 0.432

PCFF (Ours) ∼9h 26.45 0.807 0.355 32.28 0.932 0.163 22.42 0.781 0.435
PCFF* (Ours) ∼15h 26.58 0.811 0.346 32.77 0.937 0.150 22.45 0.783 0.431

Table 2. Comparison of rendering performance with state-of-the-art object-compositional methods on ScanNet, Replica, and Toydesk
datasets. All methods are supervised by ground truth annotations. ∗ denotes we use a larger batch size to train our method for a fair
comparison in training time with ObjectNeRF and ObjectSDF.
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Feature Space

View #1

View #2
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Feature Space
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View #2

Input Image

Feature Space

View #1

View #2

Input Image

Feature Space

View #1

View #2

Deletion Colorization Translation Duplication
Figure 7. Query-based edits of target objects in Replica scenes. The red dots in input images are query pixels.

segmentation IoU of target objects on ScanNet in Tab 1.
Different from SemanticNeRF and ObjSDF, our method
cannot produce segmentation masks directly. Thus we se-
lect the target object by the query pixel in each scene,
and segmentation masks are roughly generated according
to the projected feature similarity maps in each view (see in
Fig. 5). The comparison results show their explicit instance
prediction leads to low performance, while our metric-
based constraint can address the 3D index inconsistency.

We then show the robustness of our method when facing
labels predicted by various 2D panoptic segmentation net-
works including Panoptic-FPN [19], MaskFormer [6] and
Mask2Former [5], and the qualitative comparison is shown
in Fig. 6. Although network-inferred labels are inconsis-
tent and inaccurate from the perspective of 3D, our method
robustly builds discriminating feature spaces and produces
remarkable colorization results with the query pixel. We
observe that the editing quality is related to the segmen-
tation accuracy, e.g., the colorization of the target chair in
Fig. 6 (b) is slightly leaked to the adjacent chair caused by
the prediction inaccuracy of Panoptic-FPN while the col-
orization in Fig. 6 (c) and (d) are better, indicating that our
method can be benefited from the further development of
panoptic segmentation networks.

4.4. Scene Rendering and Editing
To evaluate the scene rendering capacity of our method,

we follow the standard metric in [29] by using PSNR, SSIM
and LPIPS to measure the rendering quality. The scene-

specific object-compositional methods including Semantic-
NeRF [52], ObjectNeRF [47] and ObjectSDF [46] are com-
pared, and the ground truth instance annotations are used
in this experiment because compared methods are tough to
utilize network-inferred labels. As shown in Tab. 2, our
method achieves comparable rendering performance on all
scene datasets and requires significantly less time for train-
ing. Our time efficiency is mainly because that our method
encodes the scene as a holistic representation, whereas Ob-
jectNeRF and ObjectSDF build separate representations for
the background and all foreground objects. Hence, we train
PCFF with a larger (2048) batch size of rays to increase the
training time to 15 hours for making a fair comparison in
training time with ObjectNeRF and ObjectSDF, and PCFF
outperforms compared methods in most metrics in this con-
dition. We emphasize that our method is designed for lever-
aging 2D network-inferred labels. However, thanks to our
proposed semantic-related strategies, our method shows re-
markable rendering performance.

Furthermore, we show various edits including dele-
tion, colorization, translation, and duplication in multiple
Replica scenes in Fig. 7 to demonstrate that our method
can produce convincing multi-view consistent scene edits,
and the corresponding panoptic feature spaces are PCA-
based visualized (see Sec. 4.3) for reference. All chosen
scenes include many similar objects (e.g., chairs) with the
same semantic. However, our discriminating feature spaces
drive our method to select accurate object representations
for editing without affecting adjacent similar instances.
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Components ScanNet 0192 Replica office4

Methods SAHL SGRR IQML PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

(a) 26.84 0.360 31.52 0.187
(b) ✓ 26.86 0.356 31.68 0.177
(c) ✓ ✓ 27.02 0.348 31.86 0.173
(d) ✓ ✓ ✓ 26.96 0.350 31.76 0.182

Table 3. Ablation for proposed components. Though IQML
causes a decrease in rendering capacity, we notice that IQML is
necessary for leveraging 2D network-inferred labels.
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Figure 8. Qualitative comparison of proposed SGRR. With the
guidance of semantic entropy maps, our method refines the ren-
dering in semantic inaccurate regions such as object boundaries.

4.5. Ablation Study
We conduct ablation studies on two complicated scenes

including Replica office4 and ScanNet 0192. These two
scenes both contain multiple instances (chairs) with the
same semantic, which can properly demonstrate the effec-
tiveness of proposed components, especially the instance
quadruplet metric learning.
Proposed Components. We analyze the effectiveness of
proposed components including semantic-appearance hi-
erarchical learning (SAHL), semantic-guided regional re-
finement (SGRR), and instance quadruplet metric learning
(IQML) in Tab. 3. We first construct the semantic exten-
sion of NeRF as the baseline for comparison and the ren-
dering performance is shown in Tab. 3(a). The effectiveness
of SAHL and SGRR is shown in Tab. 3(b) and (c), which
demonstrate our presented semantic-related strategies can
improve the evaluation metrics on both scenes, indicating
that our exploitation of the correlation between appearance
and semantic attributes is reasonable. Furthermore, visual-
ize results of employing SGRR in Fig. 8 shows that SDRR
refines the rendering on semantic inaccurate regions under
the guidance of entropy maps. Tab. 3(d) shows that IQML
decreases the rendering performance due to the introduction
of the additional constraint on feature space, especially on
the high-fidelity scene such as Replica office4. However,
we emphasize that IQML is the core component for lever-
aging 2D network-inferred labels and the slight rendering
capacity degradation is acceptable. The necessity is further
shown in Fig. 9, IQML discriminates the panoptic feature
space at instance level and enables our method to remove
the target chair without affecting others.
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Figure 9. Qualitative comparison of proposed IQML. Constrained
by IQML, the panoptic features are obviously grouped at instance
level, which enables our method for scene editing.

Margins ScanNet 0192 Replica office4

Schemes ηh ηe PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Triplet 0.5 26.89 0.355 31.65 0.191
Quadruplet 0.5 0.3 26.88 0.354 31.67 0.187
Quadruplet 0.3 0.5 26.96 0.350 31.76 0.182

Table 4. Ablation of the instance metric schemes. Compared with
the triplet or the inverse quadruplet schemes, our quadruplet de-
sign achieves higher rendering performance.

Instance Quadruplet Loss. We construct two baselines
for comparison to investigate the impact of the different in-
stance metric schemes. The triplet baseline treats easy and
hard negative samples equally in metric constraint and the
inverse quadruplet baseline assigns a smaller margin δe for
easy negatives. The ablative results in Tab. 4 show that our
quadruplet constraint which assigns a smaller margin δh for
hard negatives establishes reasonable relationships among
samples and benefits the rendering performance. The qual-
itative results in Fig. 9 (b) show that features of pixels with
the same semantic are naturally closer caused by the seman-
tic supervision, validating that employing a less restrictive
constraint for hard negatives is efficient.

5. Conclusion
We observe that existing object-compositional neural

implicit representations are limited in real-world applica-
tions due to their requirement of manually-labeled ground
truth instance annotations with 3D index consistency. To
learn object-compositional representations with labels in-
ferred by 2D panoptic segmentation networks, we propose
a novel framework named panoptic compositional feature
field (PCFF) for editable scene rendering by building a dis-
criminating space of projected panoptic features supervised
by the designed instance quadruplet metric learning. Be-
sides, semantic-related strategies are proposed based on the
correlation between appearance and semantic attributes to
improve our rendering capacity. Experiments conducted on
three scene datasets demonstrate our method achieves re-
markable rendering performance and produces convincing
scene edits with network-inferred labels.
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