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Abstract

Recent times have witnessed an increasing number of ap-
plications of deep neural networks towards solving tasks
that require superior cognitive abilities, e.g., playing Go,
generating art, question answering (e.g., ChatGPT), etc.
Such a dramatic progress raises the question: how general-
izable are neural networks in solving problems that demand
broad skills? To answer this question, we propose SMART:
a Simple Multimodal Algorithmic Reasoning Task and the
associated SMART-101 dataset1, for evaluating the abstrac-
tion, deduction, and generalization abilities of neural net-
works in solving visuo-linguistic puzzles designed specifi-
cally for children in the 6–8 age group. Our dataset con-
sists of 101 unique puzzles; each puzzle comprises a picture
and a question, and their solution needs a mix of several
elementary skills, including arithmetic, algebra, and spa-
tial reasoning, among others. To scale our dataset towards
training deep neural networks, we programmatically gen-
erate entirely new instances for each puzzle while retaining
their solution algorithm. To benchmark the performance on
the SMART-101 dataset, we propose a vision-and-language
meta-learning model that can incorporate varied state-of-
the-art neural backbones. Our experiments reveal that
while powerful deep models offer reasonable performances
on puzzles in a supervised setting, they are not better than
random accuracy when analyzed for generalization – filling
this gap may demand new multimodal learning approaches.

1. Introduction

“An attempt will be made to find how to make
machines use language, form abstractions and
concepts, solve kinds of problems now reserved for
humans, and improve themselves.”

The Dartmouth Summer Project on AI, 1956

Deep learning powered AI systems have been increas-
ing in their data modeling abilities at an ever more vigor

1The SMART-101 dataset is publicly available at:
https://doi.org/10.5281/zenodo.7761800

Question: Bird Bobbie jumps on a fence from the post on the left
end to the other end. Each jump takes him 4 seconds. He makes 4
jumps ahead and then 1 jump back. Then he again makes 4 jumps
ahead and 1 jump back, and so on. In how many seconds can
Bobbie get from one end to the other end?
Answer Options: A: 64 B: 48 C: 56 D: 68 E: 72

Figure 1. An example puzzle instance from our SMART-101
dataset generated using our programmatic augmentation method.
Solving this puzzle needs various skills such as counting the num-
ber of posts, spatially locating Bobbie, and using the details in the
question to derive an algorithm for the solution. At a foundational
level, a reasoning agent needs to recognize abstracted objects such
as posts and identify the bird. The answer is shown below2.

in the recent times, with compelling applications emerg-
ing frequently, many of which may even seem to chal-
lenge human abilities. A few notable such feats in-
clude but are not limited to game playing (e.g., Al-
phaGo [60]), language-guided image generation (e.g., the
recent DALLE-2 [54] and ImageGen [56]), creative story
writing (e.g., using GPT-3 [10]), solving university level
math problems [17], algorithmic inference [20], and general
question-answering/dialog (e.g., ChatGPT [48] and vari-
ants). Such impressive performances have prompted an in-
trospection into the foundation of what constitutes artificial
intelligence and deriving novel tasks that could challenge
deep models further [13, 37, 45, 55].

While deep neural networks offer compelling perfor-
mances on specialized tasks on which they are trained on, (i)
how well do they model abstract data, attend on key entities,
and transfer knowledge to solve new problems? (ii) how
fluid are they in acquiring new skills? and (iii) how effec-
tive are they in the use of language for visual reasoning? We
task ourselves to understand and seek a way to answer these

2The answer to the puzzle in Figure 1 is: C.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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questions for state-of-the-art (SOTA) vision and language
deep learning models. An approach that has been taken
several times in the past is to design specialized datasets
that can measure the cognitive abilities of well-trained neu-
ral networks. For example, in CLEVR [34], a diagnostic
dataset is proposed that comprises visuo-linguistic spatial
reasoning problems. The abstraction abilities of neural net-
works have been explored towards solving types of Bon-
gard problems [33, 47] and human IQ puzzles (e.g., Ravens
progressive matrices) have been extended to evaluate neu-
ral reasoning abilities [7,8,31,49,64,66,72,75]. However,
while the puzzles in these prior works are often seemingly
diverse, they are often confined to a common setting and
may need only specialized skill sets, bringing in inductive
biases that could be exploited by well-crafted deep learn-
ing models, thereby solving such puzzles with near perfect
accuracy [59, 64].

In this paper, we take a look back at the foundations
of intelligence, by asking the question: Are state-of-the-
art deep neural networks capable of emulating the thinking
process of even young children? To gain insights into an-
swering this question, we introduce the Simple Multimodal
Algorithmic Reasoning Task (SMART) – a visuo-linguistic
task and the associated SMART-101 dataset built from 101
distinct children’s puzzles. As this is the first step in this di-
rection, we keep the puzzles simple – to ensure this, we took
inspiration from the puzzles in the Math Kangaroo USA
Olympiad [3] which has puzzle sets professionally designed
for children in the age group of 6–8. Each puzzle in our
dataset has a picture describing the problem setup and an
associated natural language question. To solve the puzzle,
one needs to use the question to gather details from the pic-
ture and infer a simple mathematical algorithm that leads to
a solution to be matched against multiple answer options.
In Figure 1, we illustrate our task with an example puzzle
from our dataset. Unlike prior datasets with similar goals,
each of the 101 puzzles in our dataset is distinct and needs a
broad range of elementary mathematical skills for their so-
lutions, including skills in algebra, basic arithmetic, geom-
etry, ordering, as well as foundational skills to interpret ab-
stract images, and execute counting, spatial reasoning, pat-
tern matching, and occlusion reasoning. To the best of our
knowledge, this is the first dataset that offers such a richly
diverse set of visuo-linguistic puzzles in an open-world set-
ting, with a psychometric control on their difficulty levels
against human performance.

To benchmark performances on the SMART-101 dataset,
we propose an end-to-end meta-learning based neural net-
work [21], where we use a SOTA pre-trained image encoder
backbone (e.g., Transformers/ResNets) to embed the pic-
ture part of the puzzles, and a strong large language model
(e.g., GPT/BERT) to model the questions. As each puzzle
may have a different range for their answers (e.g., selection

from a few choices, sequential answers, etc.), we propose to
treat each puzzle as a separate task, with task-specific neu-
ral heads and training objectives, while a common vision-
language backbone is used on all the puzzles.

We provide experiments using our learning framework
under various evaluation settings, analyzing the ability
of SOTA vision and language backbones for: (i) in-
distribution generalization, when training and test data are
from the same distributions of puzzle instances, and out-of-
distribution generalization, when training and test data are
from: (ii) distinct answer distributions, or (iii) different puz-
zles. We find the backbones performing poorly in our model
on (i) and (ii), while failing entirely on (iii), suggesting that
solving our dataset would demand novel research directions
into algorithmic reasoning.

We experiment on various settings, evaluating the ability
of our model to (i) solve puzzles when trained and tested
on the same distribution of instances, (ii) out of distribution
generalization when training and testing data are disjoint at
the answer level, and (iii) out of distribution generalization
when the training and testing sets are disjoint at the puzzle
levels. We find that our model performs poorly on the tasks
(i) and (ii), while failing entirely on (iii), suggesting that
solving our dataset would demand novel research directions
into neural abstractions, and algorithmic reasoning abilities.

We summarize below the key contributions of this paper.
1. With the goal of making progress towards improving

the visuo-linguistic algorithmic reasoning abilities of
neural networks, we introduce a novel task: SMART,
and the associated large-scale SMART-101 dataset.

2. We propose a programmatic augmentation strategy for
replicating abstract puzzles.

3. We design a baseline meta-solver neural architecture
for solving the puzzles in our task.

4. We present experiments using our approach in various
algorithmic generalization settings, bringing out key
insights on the performance of SOTA neural networks
on this task. We also compare performances against
humans and using large language models.

2. Related works
To set the stage, we briefly review below a few prior

methods and datasets proposed towards understanding the
reasoning abilities of deep neural networks.
Solving IQ puzzles: via creating computer programs has
been a dream since the early days of exploration into
AI [28, 43, 44]; Evan’s ANALOGY [19] and Hofstader’s
CopyCat, among others [30] are famous tasks in this di-
rection. With the resurgence of deep learning, there have
been several attempts at re-considering such puzzles, with
varied success. In Table 1, we briefly review such tasks
and datasets (see Małkiński and Mańdziuk [42] for an in-
depth survey). While, the goal of these works have been
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Dataset Involve language Dataset size Task nature

Bongard-LOGO [47] ✗ 12K few-shot concepts, abstract shape reasoning
Bongard-HOI [33] ✗ 53K few-shot concepts, human-object interaction

ARC [13] ✗ 800 generate image based on abstract rules
Machine Number Sense [74] ✗ 280K solving arithmetic problems

RAVEN [72] ✗ 70K finding next image in sequence
Image riddles [4] ✓(fixed question) 3333 finding common linguistic descriptions

VLQA [57] ✓(variable questions) 9267 spatio-temporal reasoning, info lookup, mathematical, logical, causality, analogy, etc.
PororoQA [36] ✓(variable questions) 8913 reason from cartoon videos about action, person, abstract, detail, location, etc.
CLEVR [34] ✓(variable questions) 100K exist, count, query attributes, compare integers/attribute

SMART-101 (ours) ✓(variable questions) 200K 8 predominant algorithmic skills and their compositions (see Figure 2)

Table 1. Comparison between our SMART-101 dataset with existing datasets related to visual reasoning.

towards capturing human cognition through machine learn-
ing models, their tasks are often specialized and when pro-
vided enough data, the neural networks apparently leverage
shortcomings in the dataset towards achieving very high ac-
curacy [28, 64, 73], defaulting the original goals.
Neuro-symbolic learning and program synthesis: ap-
proaches consider solving complex tasks via decomposing
a scene into entities and synthesizing computer programs
that operate on these entities; thereby plausibly emulat-
ing human reasoning. The DreamCoder approach [18] for
program synthesis to draw curves, solving Bongard prob-
lems using program induction [63], solving Raven’s ma-
trices using neuro-symbolic methods [29], and Bongard
LOGO [47] are a few recent and successful approaches to-
wards neuro-algorithmic reasoning, however, their general-
ization to tasks beyond their domains is often unexplored.
Visual and language: tasks for understanding and reason-
ing on natural images [5, 6, 32, 34, 51] have been very suc-
cessful using deep neural networks, lately [9, 35, 39, 41, 51,
58, 61, 62, 65, 67, 70, 71]. Similar to such tasks, our goal
in SMART-101 is to jointly interpret vision and language
modalities for solving various reasoning tasks. However,
different from such approaches, our images are not neces-
sarily natural images, instead are mostly sketches without
textures; thereby avoiding the unexpected and implicit in-
ductive biases.
Understanding children’s cognition: for solving a vari-
ety of age-appropriate problems has been intensively stud-
ied over the years [14, 23, 37] via studying their ability to
form abstract, hierarchical representations of the world, ac-
quire language and develop a theory of mind [22]. A partic-
ularly useful and common approach to understanding chil-
dren’s cognitive abilities, albeit imperfectly, is to present
them with puzzles such as those in IQ tests [38, 46, 68]. To
the best of our knowledge, it is the first time that a dataset
has been built in this direction, that can allow exploration of
generalized reasoning abilities at a level of children’s cogni-
tion, and that can be potentially useful not only in computer
vision, but also for studying a breadth of abilities spanning
psychology, neuroscience, and cognitive science.

3. Proposed approach
3.1. Task and the SMART-101 dataset

As alluded to above, our goal is to understand the abil-
ities and shortcomings of SOTA deep models for visuo-
linguistic reasoning. With this goal in mind, we propose
the Simple Multimodal Algorithmic Reasoning Task and
the SMART-101 dataset, consisting of visuo-linguistic puz-
zles in a multiple-choice answer selection setting.

Each puzzle in SMART-101 consists of an image I , a
natural language question Q, and a set of five multiple
choice answers A, and the task is to have an AI model fθ,
parameterized by θ, that can provide the correct answer a to
a given problem tuple (I,Q,A), i.e.,

fθ(I,Q) → a ∈ A. (1)

To learn the parameters θ of the model fθ, we use a dataset
R = {π1, π2, · · · , πK} consisting of a set of K = 101 dis-
tinct puzzles. We call each π a root puzzle. To train deep
learning models, we need large datasets, and to this end, we
create new non-identical puzzle instances for each root puz-
zle. That is, for each π ∈ R, we programmatically produce
Pπ =

{
pπ1 , p

π
2 , · · · , pπnπ

}
, where pπ denotes a new instance

of root puzzle π. Thus, our full dataset D = ∪π∈RPπ .
To choose the root puzzles, one may consider a variety

of sources, e.g., puzzle books, IQ tests, online resources,
etc. In this work, we derived them from the Math Kanga-
roo (MK) USA Olympiad [3], which is an annually held
mathematical competition meant for kids from first to tenth
grade. For this paper, we selected problems designed for
children of ages 6–8 (typically first and second graders).
Given that MK is a professionally-held competition, it con-
tains high quality content with significant diversity in chil-
dren’s skills needed for solving the puzzles and offer care-
ful categorization of the algorithmic complexity/difficulty
needed for solving them. Table 2 shows some example root
puzzles from our SMART-101. Further, and most impor-
tantly, the puzzles being part of a competition, helps gather
statistically significant scores on children’s performances,
which is perhaps difficult to obtain otherwise.
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(a) MK’s root puzzle (b) our generated instance #1 (c) our generated instance #2 (d) our generated instance #3

Question: A bee collected pollen from all
the flowers inside the rectangle but outside
the triangle. From how many flowers did the
bee collect pollen? Options: A: 9, B: 10, C:
13, D: 17, E: 20

Question: We want to pick up all the flow-
ers that are inside the rectangle and inside
the circle simultaneously. How many flow-
ers should we pick up? Options: A: 5, B: 6,
C: 2, D: 1, E: 3

Question: We want to pick up all the flow-
ers that are inside the circle but outside the
rectangle simultaneously. How many flow-
ers should we pick up? Options: A: 7, B:
14, C: 15, D: 9, E: 11

Question: All the flowers that are outside
both the circle and triangle simultaneously
are picked up. The number of flowers which
are picked up is: Options: A: 27, B: 24, C:
26, D: 29, E: 23

Question: A village with 12 houses has
four straight roads and four circular roads.
The map shows 11 of the houses. On each
straight road there are 3 houses. On each cir-
cular road, there are also 3 houses. Where on
the map should the 12th house be put? Op-
tions: A, B, C, D, E

Question: A town with 6 houses has 3
straight pathways and 3 circular pathways.
The image shows 5 of the houses. On each
straight pathway there are 2 houses. On each
circular pathway, there are also 2 houses.
Which location on the image should the 6th
house be built? Options: A, B, C, D, E

Question: A small town with 12 huts has 4
straight lanes and 4 circular lanes. The map
depicts 11 of the huts. On each straight lane
there are 3 huts. On each circular lane, there
are also 3 huts. Which location on the map
should the 12th hut be put? Options: A, B,
C, D, E

Question: A community with 30 condos has
6 straight paths and 6 circular paths. The pic-
ture illustrates 29 of the condos. On each
straight path there are 5 condos. On each
circular path, there are also 5 condos. Which
place on the picture should the 30th condo
be added? Options: A, B, C, D, E

Question: In one jump, Jake jumps from one
circle to the neighboring circle along a line,
as shown in the picture. He cannot jump into
any circle more than once. He starts at circle
S and needs to make exactly 4 jumps to get
to circle F. In how many different ways can
Jake do this? Options: A: 3, B: 4, C: 5, D:
6, E: 7

Question: In one jump, Pamela jumps from
one circle to the neighboring circle along a
line, as shown in the picture. She cannot
jump into any circle more than once. She
starts at circle 2 and needs to make exactly 4
jumps to get to circle 0. In how many differ-
ent ways can she do this? Options: A: 6, B:
11, C: 2, D: 10, E: 0

Question: In one jump, Louis jumps from
one circle to the neighboring circle along a
line, as shown in the picture. He cannot jump
into any circle more than once. He starts at
circle 4 and needs to make exactly 2 jumps to
get to circle 1. In how many different ways
can Louis do this? Options: A: 3, B: 2, C: 0,
D: 1, E: 6

Question: In one jump, Chris jumps from
one circle to the neighboring circle along a
line, as shown in the picture. He cannot jump
into any circle more than once. He starts at
circle 1 and needs to make exactly 7 jumps to
get to circle 6. In how many different ways
can Chris do this? Options: A: 10, B: 8, C:
7, D: 2, E: 1

Table 2. Examples of the root puzzles (left) from the Math Kangaroo Olympiad [3] and our generated puzzle instances, belonging to
categories: counting (top), logic (middle), and path tracing (bottom). The answer is marked in red.

3.2. Programmatic puzzle augmentation

In this subsection, we detail our approach to replicate a
root puzzle into its diverse instances; potentially expand-
ing the dataset to a size that is large enough for adequately
training deep neural networks. While, one may resort to
standard data augmentation methods (such as cropping, ro-
tations, etc.) to produce data from the root puzzles, such
an approach may be unsuitable, because: (i) such opera-
tions may make the problem invalid, e.g., flipping an image
to augment it might make a question on the orientation of
an object incorrect, and (ii) such augmentations might not
change the puzzle content much, e.g., rotating an image of

a circle. A different direction is perhaps to create more puz-
zles via human help, e.g., Amazon Turkers. However, this
will need specialized creative skills that could be difficult to
obtain and can be expensive.

Intuitively, as we are seeking a model to learn an under-
lying algorithm for solving the puzzles, we should consider
puzzle augmentations that make a model algorithmically-
equivariant to their solutions. Inspired by this insight, we
propose to programmatically augment the puzzles via re-
making a root puzzle using a computer program and ran-
domly changing the program settings to diversify the puz-
zles. Specifically, as our goal is for a reasoning method
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to learn an “algorithm” to solve a puzzle (rather than us-
ing only the perception modules), we randomly change the
visual, lingual, and contextual puzzle attributes using con-
tent from a variety of domains, thereby bringing in signifi-
cant diversity in each recreated puzzle instance. To accom-
plish this, the new puzzle images are sampled from varied
sources, e.g., the Icons-50 dataset [27], random internet cli-
parts, etc., and their spatial organizations, colors, textures,
shapes, etc. are all randomly-sampled.

While the above approach for puzzle augmentation
seems straightforward, it needs to be noted that to replicate
each root puzzle, sometimes special expertise is needed to
produce suitable images, the associated questions, and pro-
duce answers that are correct. To illustrate this intricacy,
in Table 2, we illustrate three puzzles and their augmenta-
tions using our approach. Below, we provide details of their
augmentation programs.
Table 2 Row 1. We first randomly sample two different
types of shapes s1 and s2 from a shape set, with random spa-
tial locations and sizes. Optionally, we also including dis-
tractors. Second, we randomly sample the flower instances
from the Icons-50 dataset [27] and paste them to the im-
ages such that the boundaries of s1 and s2 do not intersect
with those of the icons. Third, we randomly sample the re-
lationship associated with s1 and s2 from {inside, outside}
to create the question and compute the answer.
Table 2 Row 2. For a problem setting with n circles (and
roads), the replication of this puzzle amounts to finding an

X =

[
X11, X12

X21, X22

]
, where X11 = X22 and X12 = X21 with

Xij’s being n×n integer matrices under the constraint that
their rows and columns sum to k (the number of houses in
the puzzle). This problem is cast as an integer programming
problem and solved using the GLPK toolkit [1] for random
puzzle attributes.
Table 2 Row 3. We sample the number of nodes N from
[4, Nmax], and sample random graphs with number of edges
in

[
N, N(N−1)

2

]
. We use the NetworkX Python package

[2, 24] for rendering random graphs, post which we ran-
domly sample source and target nodes to generate a ques-
tion. Next, we find all simple paths between the vertices,
compute their lengths, and choose one target path in the
generated question to form the correct answer.

3.3. Details of the dataset

We categorize the 101 root puzzles in the SMART-101
dataset into eight different classes based on the type of ba-
sic skill needed to solve them, namely: (i) variants of count-
ing (e.g., counting lines, basic shapes, or object instances),
(ii) basic arithmetic (e.g., simple multiplication), (iii) logi-
cal reasoning (e.g., Is X taller than Y but shorter than Z?),
(iv) algebra (e.g., Is the sum of the sides of a cube X?), (v)
spatial reasoning (e.g., Is X behind Y?), (vi) pattern find-

(a) (b)

Figure 2. Analysis of the various statistics of problems in the
SMART-101 dataset. (a) shows the distribution of problems
among the eight classes of predominant math skills needed to solve
them. In (b), we plot the composition of various skills that are po-
tentially needed to solve a problem.

ing (e.g., If the pattern in X is repeated, which point will it
pass through?), (vii) path finding (e.g., which option needs
to be blocked so that X will not reach Y in a maze?), and
(viii) measurement (e.g., for a grid X if each cell is 1 cm,
how long is X?). In Figure 2, we show the distribution of
puzzles in SMART-101 across these classes.3

As one can see from the sample puzzles provided in Ta-
ble 2, it is not just the above skills that one needs to solve
them, instead their solution demands a composition of the
above skills. For example, to solve the puzzle in the first row
of Table 2, one needs to recognize the pattern for similar
flowers, spatially reason whether each flower is within or
outside a given shape, and count the flowers. The class dis-
tribution in Figure 2(a) characterizes the basic skill needed
(e.g., counting) to solve this problem, and might not provide
the full skill diversity. Thus, in Figure 2(b), we provide a
more comprehensive analysis of the various compositions
of skills needed to solve the of problems in SMART-101.
As is clear from this pie chart, each puzzle in our dataset
demands a multitude of skills – attesting to the complexity
of the task and the challenge it offers.
Question Augmentation. To create new questions for puz-
zle instances, we follow a combination of three different
strategies: (i) for puzzle questions with numbers, we replace
them with new numbers sampled from a range, (ii) replace
the sentence structure with manually-generated templates,
and (iii) use slotted words in the template, where the words
in the slots are sampled from potential synonyms, while en-
suring the question is grammatically correct, sensible, and
captures the original goal and difficulty of the puzzle.

4. SMART-101 reasoning model

Each puzzle in SMART-101 has distinct problem charac-
teristics and diverse ranges for their answers (e.g., numeric,
alphabets, sentences, and words); thus, using a single loss

3Note that this categorization was done among the authors via a manual
categorization and voting on the root puzzles.
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Figure 3. An illustration of our learning and reasoning model.

for all puzzles may be sub-optimal. While, one may re-
sort to multi-task learning (MTL), however having samples
from all puzzles to train in MTL may need large batches that
can be difficult to scale. Further, we desire our model to be
trained and evaluated in few-shot settings. A natural way
to resolve all the above challenges is to consider a meta-
learning architecture [21], pictorially described in Figure 3.

Mathematically, let gα and ℓβ be the image backbone
and the language backbone (combined with an RNN to ag-
gregate the word embeddings) shared across all the puzzles
in D respectively, where α and β capture their parameters.
As distinct root puzzle images have specific characteristics
for the solution (e.g., some of the images have their answer
options embedded within the image), we found it useful to
have a puzzle-specific image head. To this end, we attach
a small (2-layered) multi-layer perceptron (MLP), denoted
hπ
γ , to the output of the image backbone, where hπ

γ is spe-
cific to each root puzzle π and has its own parameters γ.
Using these modules, our prediction model for puzzle π is:

fπ
θ (I,Q) := predπζ (fuseν((h

π
γ (gα(I)) + ℓβ(Q))), (2)

where fuseν denotes a shared MLP to fuse the image and
language embeddings and predπζ is a puzzle-specific pre-
diction head that maps a given puzzle tuple to the domain of
the puzzle answers (with its own parameters). For example,
a puzzle answer may be a sequence, for which predπζ would
be an RNN, while for another puzzle, the response could
be an integer in 1–100, for which predπζ could be an MLP
classifier with 100 softmax outputs. We abstractly represent
trainable parameters in various modules by θ.

To train the model in Eq. (2), we optimize:

min
Θ

Eπ∼RE(I,Q,a)∼Pπ
lossπ

(
fπ
θ (I,Q)− a

)
, (3)

where Θ = ∪π∈R {θ}π and lossπ is a puzzle-specific loss
that is activated based on the root puzzle π for an instance
(I,Q, a) in a given batch. Specifically, we sample the

tasks (puzzles) and instances from those tasks to form mini-
batches to train the puzzle-specific heads for several itera-
tions, followed by combining the gradients from the tasks to
update the backbones through the puzzle heads, as in [21].
Note that a is the correct answer and lossπ could be: (i) a
softmax cross-entropy loss (selecting in a discrete answer
range) or (ii) an ℓ1 regression loss predicting a scalar value.

At inference, we select the answer from the options as:

â = argmax
α∈A

simπ

(
fπ
θ (I,Q), α

)
, (4)

where simπ captures the similarity of a predicted answer
value against the choices in A, and simπ is specific to the
problem π (e.g., euclidean distance for numerals).

5. Experiments
In this section, we detail the experimental protocol to

evaluate the models for solving SMART-101.

5.1. Data splits

We propose four different data splits that evaluate var-
ied generalization properties of an method/model to solve
SMART-101. The splits are: (i) Puzzle Split (PS) with the
goal to evaluate extreme generalization. In this setting, we
split the root puzzles into 77-3-21 (train-val-test).4 The per-
formance is evaluated on the test set consisting of puzzles
that the model has never seen during training (as a zero-
shot solver). (ii) As PS is perhaps extremely challenging
for today’s machine learning approaches, we include a Few-
shot Split (FS), where the model sees m (= 100) instances
from all the 21 puzzles used as the test set in PS. (iii) In-
stance Split (IS) evaluates the in-distribution performance
of a model (supervised learning). For IS, we split all the
instances of all root puzzles into 80-5-15 (%). IS receives
puzzle-specific information on all puzzles and is the easiest
setting for a model to perform. (iv) Answer Split (AS) that
evaluates the generalization to answers that a model has not
seen during training. In this split, we compute the distribu-
tion of all answers (a in Eq. 3) across instances for a root
puzzle, find the median answer, and remove all instances
that have this median answer from the training set; these
instances are used only during inference.

5.2. Evaluation

We use two metrics to evaluate performance: (i) the solu-
tion accuracy Sacc that computes the frequency with which
the correct solution was produced by a model and (ii) the
option selection accuracy Oacc that measures the frequency
with which the correct option was selected by a model. To
clarify, for the root puzzle in Table 2 Row 1, let us say a

4In PS test, we use 2 counting, 5 logic, 4 algebra, 1 path, 1 measure-
ment, 4 spatial, 3 arithmetic, and 1 pattern puzzles.
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model produced an answer 8. Since 8 is not in the option
set, the closest option 9 will be selected, i.e., the correct op-
tion will be selected even if the wrong answer is produced.
In this case, its Oacc=100%. while its Sacc=0%.

5.3. Backbone models

We evaluate popular pretrained image, language, and
vision-and-language backbones5 using the reasoning archi-
tecture in Figure 3; see the extended paper [12] for details.
Image Backbones. We consider three groups of models:
(i) ResNets, (ii) Transformers, and (iii) contrastively pre-
trained models. For (i), we use ResNet-50 and ResNet-
18 [26]. For (ii) we use several variants, including Vision-
Transformers (ViT) [16], Swin-Transformers [40] (Swin-T
and Swin-B) and Cross-Transformers [69]. While we fine-
tune ViT and Swin-Ts from pre-trained models, we train
Cross-Transformers from scratch on our dataset. For self-
supervised pre-trained models, we use SimSiam [11] based
on ResNet-50 and Masked Autoencoders [25](MAE).
Language Backbones. As alluded to above, we use ei-
ther a learned feature embedding (Emb.) for encoding the
questions (using a vocabulary of ∼7K words created on
SMART-101) or a SOTA embedding model and its asso-
ciated tokenizer. We consider 3 text embedding models: (i)
GPT-2 [53], (ii) BERT [15], and (iii) GloVe [50].
Vision-and-Language Models. We also consider multi-
modal pre-trained models that are specifically trained for
aligning vision with language. In this setting, we consider
the recent CLIP [52] and FLAVA [61].

5.4. Experimental Results

In Table 3, we present our results using our reasoning
framework and varied backbones on both Sacc and Oacc

metrics, and against human performance.
Second Grader Performance: The main goal of this paper
is to gauge the performance of SOTA deep neural networks
against those of second-graders. In Table 3, we report av-
eraged category-wise performances of children (in grades 1
and 2) who participated in the Math Kangaroo competition
(see [12] for details). Overall, children perform at nearly
77% average accuracy on all the 21 PS puzzles.
Baselines: To ensure that SMART-101 answer options are
devoid of any biases, we report two baseline performances
that do not involve any learning, namely: (i) greedy, that
selects the most frequent answer from the training set in-
stances for each root puzzle, and (ii) uniform, that randomly
samples an answer. Table 3 shows that Oacc for all the base-
line methods is nearly 20%, suggesting that our answer op-
tions are uniformly distributed among the five choices.
Supervised Learning (IS) Performances: For these
experiments, we use the learned word embeddings

5All the pretrained backbone models are downloaded from public
repositories, specifically https://huggingface.co/models.

(Emb.). Surprisingly, we find that in IS, ResNet models
(R18/R50/SimSiam) perform significantly better than most
Transformer models on average (Table 3-IS). To ensure this
is not an implementation artifact, we repeat our experi-
ments either via training the models from scratch (Cross-
Transformers) or fine-tuning pretrained models (Swin-B,
Swin-T, ViT-16, and MAE). These models offer varied
amounts of global and local self-attention for reasoning. Ta-
ble 3 shows that most Transformer variants we compare to
do relatively well in Arithmetic (∼40% on Sacc for ViT-16,
∼34% for Swin-T and MAE, etc.), while they perform the
least on tasks that need path tracing. We find that prtrained
vision-and-language models (FLAVA and CLIP) perform
slightly better than Transformers and show improved per-
formances on counting, logic, and pattern finding. Using
R50 image backbone, we further evaluate the performances
against various language model choices. We find in Table 3-
IS that richer (pretrained) language models such as GloVe,
GPT2 or BERT improve the performance over Emb., with
benefits in almost all puzzle categories.
Analysis of Generalization: The fundamental goal of this
paper is to understand the generalization abilities of SOTA
deep models. In Table 3 (under Puzzle Split), we report re-
sults analyzing extreme generalization using Transformers,
CLIP, and FLAVA. In these experiments, we used the pub-
licly available pretrained backbones and trained only puzzle
heads. From the table, we find that SOTA models fail en-
tirely, often selecting a random answer (Oacc∼20%). We
also evaluate our best setting (R50 + BERT) via fine-tuning
(FT) R50 with classification (Cls.) and regression (Reg.)
losses; however, without any improvement.

To ameliorate extreme generalization, we explore the
few-shot (FS) setting where the model is shown m instances
of a puzzle during training that is otherwise hidden in the
PS split. Even for an m = 100, Table 3 (FS) shows that the
Sacc improves by nearly 6% (from ∼ 10% in PS to ∼ 16%
in FS), suggesting that the model has perhaps learned sev-
eral useful embeddings and may learn new skills quickly.
Next, using R50 + BERT, in classification and regression
settings, we evaluate answer generalization (on AS split).
Table 3 (AS) shows our classification model fails entirely
on AS (0% on Sacc). This is unsurprising as on the AS
split, the deep model is masked from seeing a particular an-
swer, which is used only during testing. However, Table 3
(FS) also shows that using regression allows the model to
interpolate the seen answers, leading to an Sacc of 16.3%.
Ablation studies: Table 4 reports the ablations on puzzle-
specific image heads and meta-learning as against multi-
task learning (MTL). As is expected, when adding the puz-
zle heads, the performance improves. We find that using
meta-learning is important and leads to a dramatic (∼12%)
improvement in performance. Our results also confirm that
both vision and language are essential to solve SMART-101.

10840



Puzzle Category → Count Arithmetic Logic Path Trace Algebra Measure Spatial Pattern Finding Average

Puzzle Split (PS) – Extreme Generalization Experiments

Avg. 2nd Grader Performance 72.8 81.3 82.2 81.1 64.5 90.4 74.8 88.6 77.1
Greedy (baseline) 19.1/21.4 14.0/21.4 18.5/21.1 21.8/21.1 13.5/21.5 23.1/20.9 18.2/21.2 21.4/21.4 17.7/21.3

Uniform (baseline) 7.74/20.0 8.00/20.0 7.61/20.0 18.9/20.0 6.94/20.0 5.62/20.0 14.2/20.0 20.0/20.0 11.20/20.0
MAE + BERT 5.89/19.1 5.24/26.7 5.23/25.9 0.0/0.0 8.34/17.9 0.0/0.0 2.85/10.6 0.0/0.0 4.74/17.4

SimSiam + BERT 6.44/18.3 7.14/22.4 6.56/27.0 6.54/18.5 3.62/24.5 12.1/26.7 14.8/23.4 0.0/21.2 8.09/23.8

Swin T + BERT 8.02/12.5 3.14/20.1 10.1/23.9 17.1/20.4 6.77/21.3 11.1/21.9 12.4/17.6 21.3/21.3 9.49/20.2
ViT-16 + BERT 9.41/22.7 5.77/26.8 6.95/25.1 4.72/18.7 5.57/15.1 8.68/21.3 11.6/21.5 18.9/19.7 8.51/21.6

CLIP 9.04/17.4 3.70/19.9 8.50/25.9 25.9/25.9 8.36/30.0 9.42/22.9 15.9/21.7 22.9/22.9 11.9/24.1
FLAVA 12.0/29.6 2.90/18.4 7.27/28.7 0.0/0.0 1.99/28.2 0.0/0.0 6.70/11.6 0.0/0.0 7.35/25.2

R50 + BERT (FT + Cls.) 10.9/18.3 6.96/15.8 12.8/20.8 19.6/19.7 7.95/15.1 16.9/26.7 13.4/17.7 0.0/21.2 11.7/18.9
R50 + BERT (FT + Reg.) 12.0/22.8 5.08/21.3 4.24/16.2 18.4/18.4 4.89/22.2 15.1/25.9 11.9/17.9 19.0/19.0 8.21/19.7

Few-Shot Split (FS) Experiments

R50 + BERT (Cls.) 24.5/33.2 15.6/23.3 23.8/28.8 0.0/0.0 13.2/25.1 0.0/0.0 10.2/15.2 0.0/0.0 15.1/21.8
R50 + BERT (Reg.) 19.8/33.6 13.9/26.3 18.2/26.9 18.7/18.7 10.3/24.4 11.6/25.8 20.8/29.8 21.9/22.3 16.7/26.5

Instance Split (IS) – Supervised Learning Experiments

Greedy (baseline) 21.7/22.6 8.97/21.5 18.5/21.0 22.7/21.2 10.2/21.1 12.8/21.1 22.3/21.3 20.6/21.3 17.3/21.6
Uniform (baseline) 9.41/20.0 3.65/20.0 7.91/20.0 11.1/20.0 5.01/20.0 3.63/20.0 15.5/20.0 16.7/20.0 8.41/20.0

Swin-T + Emb. 23.1/35.1 33.7/41.0 20.3/28.8 16.7/18.6 17.7/29.5 26.3/34.3 24.5/29.1 17.5/26.5 22.5/30.8
Swin-B + Emb. 22.0/34.0 29.4/36.5 17.7/26.1 16.7/17.0 17.1/30.2 25.0/34.2 26.2/30.7 21.5/29.6 21.6/29.9

Cross-Transformer + Emb. 20.5/30.4 6.3/15.3 15.5/22.9 15.1/15.6 8.7/23.9 10.7/18.2 21.7/24.7 19.0/27.3 14.7/22.8
ViT-16 + Emb. 25.6/36.4 39.7/47.1 21.2/30.8 15.5/16.3 20.1/33.8 39.4/40.8 29.0/33.0 20.3/29.6 25.9/33.5
MAE + Emb. 25.4/36.7 34.2/43.2 21.6/31.5 16.4/16.7 20.0/33.3 32.0/39.7 28.2/32.9 18.6/26.6 24.5/33.0

SimSiam + Emb. 39.9/49.4 8.61/19.2 40.2/49.7 24.1/26.1 14.1/23.2 29.5/39.6 34.3/37.2 37.5/43.7 27.6/35.3
R18 + Emb. 44.0/54.0 8.8/19.8 41.1/47.6 24.5/26.7 13.7/26.5 30.9/40.2 43.3/45.5 29.5/34.8 29.4/37.4

R50 + Emb. 42.1/51.9 8.47/19.6 41.3/47.7 25.1/27.1 12.8/22.6 32.9/42.8 45.6/48.0 41.8/47.9 29.7/37.3
R50 + GloVe 46.0/56.3 39.2/48.5 53.9/56.4 26.7/28.9 21.5/32.4 58.9/68.5 48.5/50.4 43.3/47.8 40.0/47.2
R50 + GPT2 47.0/57.9 44.8/53.1 55.1/58.6 26.1/28.4 27.2/39.3 61.0/71.3 49.0/50.2 42.5/48.4 42.1/49.6
R50 + BERT 48.5/59.3 46.1/54.9 56.7/60.2 26.5/28.4 28.5/39.7 65.6/75.4 44.3/46.2 39.9/45.3 42.8/50.2

CLIP 41.3/52.9 18.2/29.3 33.3/41.1 19.8/21.9 12.9/24.9 27.8/42.8 32.2/36.2 29.9/36.1 27.3/36.4
FLAVA 47.7/58.1 20.2/29.7 41.4/47.1 25.4/27.1 19.6/31.2 30.5/41.9 33.2/35.7 38.3/44.2 32.3/40.2

Answer Split (AS) – Answer Generalization Experiments

R50 + BERT (FT + Cls.) 0.1/23.8 1.5/13.2 0.0/16.8 0.0/1.6 0.4/17.3 0.0/21.1 0.0/6.0 0.0/15.0 0.19/10.2
R50 + BERT (FT + Reg.) 12.0/28.4 10.4/25.7 19.6/30.8 9.5/10.6 3.64/18.3 9.42/28.6 14.1/21.1 25.5/30.9 16.3/23.4

Table 3. SMART-101 performances of various image and language backbones in our framework on PS, FS, IS, and AS splits. We also
report the second-grader performances. Each entry shows Sacc/Oacc (%; higher is better). The image backbones in IS are all fine-tuned.

Method Sacc ↑ Oacc ↑
Instance split

R50 + BERT 42.8 50.2

No meta learning/MTL 29.7 37.3
Image only (no question) 28.3 36.3
Question only (no image) 15.1 23.2

Single image head 25.0 34.3

Few-shot split

R50 + BERT 16.7 26.5
No meta learning/MTL 14.7 25.2

Table 4. Ablation studies using the R50 + BERT model.

6. Conclusions

We started by asking the question: are deep neural net-
works SMARTer than second graders? Our analysis in Ta-

ble 3 shows that the performances of SOTA deep models are
significantly below second graders on SMART-101 (77%
against 20%). Surprisingly, even under the supervised set-
ting (IS) – when the networks have seen similar instances of
a puzzle – the performance is inferior (43%). However, with
sufficient training data, SOTA models do demonstrate some
level of learning algorithmic skills (e.g., arithmetic, spatial
reasoning, etc.), yet struggle on simple algebra or path trac-
ing problems. To conclude, the answer to our overarching
question is clearly no, and there appears to be a significant
gap in the perceived competency of AI models and their
true algorithmic reasoning abilities. We hope SMART-101
offers a solid step to make advancements in that direction.6
Acknowledgements: We thank Joanna Matthiesen (CEO, Math
Kangaroo USA) for providing the human performance statistics
and permission to use the MK puzzle images in this paper.

6More details, experiments, and results are in our extended paper [12].
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workx. In Gaël Varoquaux, Travis Vaught, and Jarrod Mill-
man, editors, Proceedings of the 7th Python in Science Con-
ference, pages 11 – 15, Pasadena, CA USA, 2008. 5

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 7

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 7

[27] Dan Hendrycks and Thomas G Dietterich. Benchmarking
neural network robustness to common corruptions and sur-
face variations. arXiv preprint arXiv:1807.01697, 2018. 5

10842
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ing research directions in abstract visual reasoning. arXiv
preprint arXiv:2202.10284, 2022. 2

[43] Marvin Minsky. Steps toward artificial intelligence. Pro-
ceedings of the IRE, 49(1):8–30, 1961. 2

[44] Marvin Minsky. Society of mind. Simon and Schuster, 1988.
2

[45] Melanie Mitchell. Abstraction and analogy-making in arti-
ficial intelligence. Annals of the New York Academy of Sci-
ences, 1505(1):79–101, 2021. 1

[46] Lauren J Myers and Lynn S Liben. Graphic symbols as “the
mind on paper”: Links between children’s interpretive the-
ory of mind and symbol understanding. Child Development,
83(1):186–202, 2012. 3

[47] Weili Nie, Zhiding Yu, Lei Mao, Ankit B Patel, Yuke
Zhu, and Anima Anandkumar. Bongard-LOGO: A new
benchmark for human-level concept learning and reason-
ing. Advances in Neural Information Processing Systems,
33:16468–16480, 2020. 2, 3

[48] OpenAI. Gpt-4 technical report, 2023. 1
[49] Niv Pekar, Yaniv Benny, and Lior Wolf. Generating correct

answers for progressive matrices intelligence tests. In Ad-
vances in Neural Information Processing Systems, 2020. 2

[50] Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. GloVe: Global vectors for word representa-
tion. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014. 7

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 3

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In International
Conference on Machine Learning (ICML), 2021. 7

[53] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. OpenAI Blog, 2019. 7

[54] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 1

[55] Joshua S Rule, Joshua B Tenenbaum, and Steven T Pianta-
dosi. The child as hacker. Trends in cognitive sciences,
24(11):900–915, 2020. 1

[56] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 1

10843



[57] Shailaja Keyur Sampat, Yezhou Yang, and Chitta Baral.
Visuo-linguistic question answering (VLQA) challenge. In
Findings of the Association for Computational Linguistics:
EMNLP, pages 4606–4616, 2020. 3

[58] Sasha Sheng, Amanpreet Singh, Vedanuj Goswami, Jose Al-
berto Lopez Magana, Wojciech Galuba, Devi Parikh, and
Douwe Kiela. Human-adversarial visual question answering.
In Thirty-fifth Conference on Neural Information Processing
Systems, 2021. 3

[59] Jiaxin Shi, Hanwang Zhang, and Juanzi Li. Explainable and
explicit visual reasoning over scene graphs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8376–8384, 2019. 2

[60] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.
1

[61] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. Flava: A foundational language and vision
alignment model. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15638–15650, 2022. 3, 7

[62] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang,
Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 3

[63] Atharv Sonwane, Sharad Chitlangia, Tirtharaj Dash,
Lovekesh Vig, Gautam Shroff, and Ashwin Srinivasan. Us-
ing program synthesis and inductive logic programming to
solve bongard problems. arXiv preprint arXiv:2110.09947,
2021. 3

[64] Steven Spratley, Krista Ehinger, and Tim Miller. A closer
look at generalisation in RAVEN. In European Conference
on Computer Vision, 2020. 2, 3

[65] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun
Bai, and Yoav Artzi. A corpus for reasoning about natural
language grounded in photographs. In Annual Meeting of
the Association for Computational Linguistics, 2019. 3

[66] Damien Teney, Peng Wang, Jiewei Cao, Lingqiao Liu, Chun-
hua Shen, and Anton van den Hengel. V-PROM: A bench-
mark for visual reasoning using visual progressive matrices.
In AAAI Conference on Artificial Intelligence, volume 34,
2020. 2

[67] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet
Singh, Adina Williams, Douwe Kiela, and Candace Ross.
Winoground: Probing vision and language models for visio-
linguistic compositionality. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5228–5238, 2022. 3

[68] Lara M Triona and David Klahr. A new framework for under-
standing how young children create external representations
for puzzles and problems. In Notational Knowledge, pages
159–178. Brill, 2007. 3

[69] Wenxiao Wang, Lu Yao, Long Chen, Binbin Lin, Deng Cai,
Xiaofei He, and Wei Liu. CrossFormer: A versatile vision
transformer hinging on cross-scale attention. In Interna-
tional Conference on Learning Representations, ICLR, 2022.
7

[70] Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual
entailment task for visually-grounded language learning. In
Visually Grounded Interaction and Language (ViGIL) Work-
shop at the Thirty-second Conference on Neural Information
Processing Systems, 2018. 3

[71] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
From recognition to cognition: Visual commonsense reason-
ing. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019. 3

[72] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-
Chun Zhu. RAVEN: A dataset for relational and analogi-
cal visual reasoning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5317–5327, 2019. 2, 3

[73] Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai,
and Heng Tao Shen. The gap of semantic parsing: A survey
on automatic math word problem solvers. IEEE transactions
on pattern analysis and machine intelligence, 42(9):2287–
2305, 2019. 3

[74] Wenhe Zhang, Chi Zhang, Yixin Zhu, and Song-Chun Zhu.
Machine number sense: A dataset of visual arithmetic prob-
lems for abstract and relational reasoning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 1332–1340, 2020. 3

[75] Tao Zhuo, Qiang Huang, and Mohan Kankanhalli. Unsu-
pervised abstract reasoning for raven’s problem matrices. In
IEEE Transactions on Image Processing, 2021. 2

10844


