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Abstract

Scaling up neural networks has led to remarkable perfor-
mance across a wide range of tasks. Moreover, performance
often follows reliable scaling laws as a function of training
set size, model size, and compute, which offers valuable guid-
ance as large-scale experiments are becoming increasingly
expensive. However, previous work on scaling laws has pri-
marily used private data & models or focused on uni-modal
language or vision learning. To address these limitations, we
investigate scaling laws for contrastive language-image pre-
training (CLIP) with the public LAION dataset and the open-
source OpenCLIP repository. Our large-scale experiments
involve models trained on up to two billion image-text pairs
and identify power law scaling for multiple downstream tasks
including zero-shot classification, retrieval, linear probing,
and end-to-end fine-tuning. We find that the training dis-
tribution plays a key role in scaling laws as the OpenAI
and OpenCLIP models exhibit different scaling behavior
despite identical model architectures and similar training
recipes. We open-source our evaluation workflow and all
models, including the largest public CLIP models, to en-
sure reproducibility and make scaling laws research more
accessible. Source code and instructions to reproduce this
study is available at https://github.com/LAION-
AI/scaling-laws-openclip.

1. Introduction

Large pre-trained models now achieve state-of-the-art
performance on a wide range of tasks. In particular, large
models have led to substantial advances in speech [56],
language [8, 17, 28, 57], vision [38, 84], and multi-modal
language-vision settings [33,54,55,59,62]. A key ingredient
in these breakthroughs has been self- or weakly-supervised
learning, which enabled the use of Internet-harvested train-
ing sets and reduced the need for human annotated data. In

Data Arch. ImageNet VTAB+ COCO

CLIP [55] WIT-400M L/14 75.5 55.8 61.1
Ours LAION-2B L/14 75.2 54.6 71.1
Ours LAION-2B H/14 78.0 56.4 73.4

Table 1. We study the scaling behavior of large CLIP models using
fully open-source training code and data. All models in our inves-
tigation are available, including the largest public CLIP models.
This table shows zero-shot performance at 224 pixel resolution,
displaying accuracy on ImageNet [15], average accuracy on 35
VTAB+ datasets [65, 85], and image retrieval recall at 5 on MS-
COCO image retrieval [46].

addition, recent pre-trained models relied on increasing the
compute, model, and data scale by orders of magnitude.

When varying model size, compute amount, and data
quantity, several papers have empirically observed that both
pre-training loss and downstream task performance reliably
improve with scale. Specifically, researchers have postulated
scaling laws in the form of power law relationships between
model performance and model compute, or data scale [35,
61, 73, 84]. Such scaling laws allow practitioners to predict
model performance for a given model and compute scale,
extrapolate to larger scales, and can be used to determine
pre-training regimes that obtain optimal model performance
for a fixed amount of compute [28, 35].

So far, the literature on empirical scaling laws has fo-
cused on language-only [28, 35, 73] or vision-only mod-
els [25, 61, 83]. In the multimodal domain of language and
vision, contrastive language-image models such as CLIP [55]
have recently achieved large performance gains in zero-
image classification, for instance improving zero-shot Im-
ageNet accuracy from the prior state-of-the-art of 12% to
76%. Moreover, these models demonstrate unprecedented
robustness to distribution shifts compared to prior supervised
models [55, 71, 78]. However, there is currently no system-
atic investigation for scaling trends in contrastive language-
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(a) Relationship between total training compute and zero-shot classification performance on downstream tasks. Left: ImageNet performance.
Right: average performance on five ImageNet robustness datasets (ImageNet-V2 [60], ImageNet-R [22], ImageNet-Sketch [75], ObjectNet [5],
and ImageNet-A [24]). Scaling model size, data size, and samples seen leads to better performance on zero-shot classification. Models trained on
OpenAI’s WebImageText (WIT) show a stronger scaling than models trained on LAION.

1011 1012

Total compute (GMAC per sample x samples seen)

30

35

40

45

50

M
S-

CO
CO

 (1
00

 - 
Re

ca
ll@

5%
)

E = 2.75 * C 0.08
E = 1.59 * C 0.05

1011 1012

Total compute (GMAC per sample x samples seen)

10

15

20

6

7

8
9

Fl
ick

r3
0K

 (1
00

 - 
Re

ca
ll@

5%
)

E = 15.51 * C 0.19

E = 2.21 * C 0.10

OpenCLIP
CLIP
Model
ViT-B/32
ViT-B/16
ViT-L/14
ViT-H/14
ViT-g/14
Samples seen
3B
13B
34B
Dataset
LAION-80M
LAION-400M
LAION-2B
CLIP-WIT

(b) Relationship between total training compute and zero-shot image retrieval performance on MS-COCO (Left) and Flickr30K (Right).
Scaling model size, data size, and samples seen leads to better performance on zero-shot image retrieval. Interestingly, in contrast to zero-shot
classification (Figure 1a), models trained on LAION show a stronger scaling trend than OpenAI CLIP models trained on OpenAI’s WebImageText
(WIT) dataset.

Figure 1. Relationship between total training compute and performance in zero-shot classification (1a) and retrieval (1b). We fit a power-law
on the Pareto frontier of the available models. Since total compute budgets (measured in GMAC) of different trained models are not exactly
aligned, we divide the total compute scale into bins and select the best model performance from each bin.

image learning. One substantial challenge in this direction
is that until recently, there were no datasets of sufficiently
large scale openly available for the research community to
undertake such experiments.

In this work, we conduct a scaling laws study for con-
trastive language-vision learning by utilizing the recently re-
leased LAION-5B [65] dataset of 5 billion image-text pairs.
To ensure that our experiments are fully reproducible, we use
the open source OpenCLIP [32] code to train CLIP models
while varying model, data, and samples seen. We evaluate
our CLIP models on several downstream tasks, including
zero-shot classification, image retrieval, and fine-tuning via
linear probing and end-to-end optimization. We observe
a consistent increase in performance when scaling model,
data, and compute, and derive scaling laws of power law
form across different downstream tasks (Figure 1a, 1b). In-

terestingly, when comparing our OpenCLIP and OpenAI’s
original CLIP models, we find larger scaling coefficients
for OpenCLIP models on zero-shot retrieval, while OpenAI
CLIP models show stronger scaling for zero-shot classifica-
tion. Table 1 shows two of our models and their results on
image classification and retrieval benchmarks.

We hypothesize that the training dataset is responsible for
the task-dependent differences in scaling behavior between
the OpenCLIP and OpenAI models. Our experiments have
used the same ViT architectures as the OpenAI models, and
the training recipes are largely matched. The main difference
in training recipes is the batch size due to different compute
environments, and our experiments with varying batch sizes
suggest that the batch size changes do not explain the change
in scaling trends.

Overall our findings highlight the design of pre-training
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datasets as an important direction to further improve image-
text models. Dataset designers should measure scaling be-
havior so that the generalization capabilities of image-text
models can continue to improve as we increase model size
and the amount of compute. Moreover, pre-training datasets
should be evaluated on a broad range of downstream tasks
because model scaling can differ substantially by task with
different pre-training sources leading to different scaling
behavior by task. We hope that our open-source and re-
producible scaling trends offer concrete starting points for
improving current image-text datasets and models.

2. Background and related work

Scaling laws for generalization and transfer. Strong em-
pirical evidence that increasing model or data scale is benefi-
cial was initially studied in the context of deep learning and
computer vision [26, 70]. For instance, in [26], the power
law relation between scale and model performance was high-
lighted. Empirical work stimulated theoretical studies that
provided justification for the observed generalization boost
with scale, investigating generalization error in overparame-
terized networks in the interpolation regime [6, 9].

Early empirical studies focused on the effect of training
scale on upstream performance, measuring the test loss from
the same distribution used for training. Subsequent studies
of large language models such as GPT-3 [8] demonstrated
broad generalization capabilities in models with substantially
larger scale. Moreover, neural scaling laws of the power law
form were derived for language models, connecting model,
data, and training compute scale to performance [28, 35, 73].
This also allowed accurate prediction of model performance
at larger scales, and researchers were able to determine the
scale parameters for achieving optimal performance given
a fixed amount of compute [28, 39]. Scaling law studies
were then also studied in the vision domain [61, 84], also
observing a power law dependency of performance on scale.

Scaling law studies were also conducted for transfer and
out-of-distribution performance [35, 73, 84]. In these studies,
researchers observed that performance on downstream tasks
benefits from increasing model, data, and training compute
scale [8, 35, 38, 84]. Interestingly, upstream performance
does not always correlate with downstream performance
[72, 73]. Since downstream performance most accurately
reflects a practical use cases, examining scaling behavior on
downstream tasks is increasingly important. Recent work has
also studied the effect of scale on other model characteristics,
such as performance after pruning and compression [11, 64]
and on susceptibility to catastrophic forgetting [58].

Scaling up language-vision learning. Learning from very
large amounts of weakly aligned image-text pairs has led
to the development of models with broad generalization ca-
pabilities. Notably, work on contrastive language-image

pre-training (CLIP [55]) showed dramatic improvement
compared to the previous state-of-the-art in zero-shot trans-
fer and unprecendented robustness to distribution shift
[18, 48, 51, 71]. The success of the initial CLIP study, which
used a private WIT-400M image-text pairs dataset and ViT-
L/14 as the largest scale vision encoder, motivated further
developments and numerous extensions that increased model
and data scale. ALIGN [33] used a private dataset of 1.8B
text-image pairs and a large EfficientNet-L2 as an image
encoder. BASIC [54] employed a large CoAttNet-7 model
with 2.4B parameters for the image encoder, also further
increasing dataset size up to 6.6B image-text pairs, using
supervised visual encoder pre-training and private datasets
(ALIGN and JFT-5B). LiT [86] used a private dataset of 4B
image-text samples for contrastive learning on a total of 18B
samples, scaling the visual encoder up to ViT-g/14, which
was pre-trained in a supervised manner using another pri-
vate dataset (JFT-3B). CoCa [81] used ViT-g/14 as a visual
encoder and both the ALIGN and JFT private datasets, and
an additional text captioning loss based on autoregressive
language modeling during pre-training. LiMoE [49] trained
a sparse mixture-of-experts (MoE) single tower architecture
that share a common backbone for both vision and text using
both private 3.6B image-text data from LiT and JFT-4B [84],
obtaining a ViT H/14 model at the largest scale. Flamingo [3]
uses a large private interleaved image-text dataset, using
NFNet-F6 as a visual encoder while scaling up the text en-
coder from 1.4B to 70B parameters. PaLI [12] trained a
multi-language multi-task text-image model using ViT-e (4B
parameters) as a visual encoder and mT5-XXL (13B param-
eters) as a text encoder, trained on a private dataset (WebLI)
with 29B image-text pairs. While these studies already show
clear merits of scaling up, they do not conduct a thorough
scaling investigation by systematically scaling model, data
and, training compute. Moreover, most studies involve a
customized multi-stage training procedure, where encoders
may be pre-trained separately with uni-modal losses, and
then tuned further with a contrastive image-text loss, while
also potentially freezing one of the encoders [54, 86]. This
makes it difficult to derive conclusions about the effect of
scale as pre-training procedures are heterogeneous. In ad-
dition, the private nature of the employed datasets impairs
reproduction and validation of the results, especially in cases
where pre-trained models are also not publicly available.

Open large-scale language-vision datasets. Conducting
scaling law studies requires sufficiently large pre-training
datasets. Earlier efforts to provide open image-text datasets
like MS-COCO [46], Visual Genome [42], YFCC-100M
[74], Conceptual Captions CC3M and CC12M [30, 67] do
not match the current scale of private data used to train large-
scale language vision models. More recently, larger image-
text datasets have been collected from Common Crawl [1].
The resulting datasets, LAION-400M [66] and LAION-5B
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[65] are publicly available, enabling training language-vision
models at larger scale [27, 49, 63]. Using the LAION toolset
[65], it also became possible to construct additional open
datasets, such as COYO-700M [10].

3. Datasets and Methods
3.1. Open large-scale datasets LAION-400M/2B

We use the LAION-400M [66] and LAION-5B [65]
datasets which are open, public image-text datasets validated
by the pre-training of state-of-the art multi-modal models
such as CLIP [55] and Stable Diffusion [63]. LAION-5B
contains an English image-text subset of 2.32 billion sam-
ples, which we refer to as LAION-2B in this work. Due to
its scale, transparency and open-source nature, LAION has
already been adopted by various works on language-vision
modelling, validating its suitability for systematic scaling
law studies.

3.2. Pre-training OpenCLIP across various scales

To systematically vary model scale, data scale and the
number of samples seen during pre-training, we selected a
scale range for each dimension. For model scale, we choose
CLIP architectures with ViT-B/32, ViT-B/16, ViT-L/14, ViT-
H/14 and ViT g/14 as visual encoders, scaling the text en-
coder in accord (see Appendix Table 25). For data scale,
we use LAION-80M (an 80M subset of LAION-400M),
LAION-400M, and LAION-2B. For training duration, we
choose 3B, 13B and 34B samples seen scales. Due to com-
pute constraints, for the larger H/14 and g/14 model scales,
we conduct only restricted measurements (done for LAION-
2B, with 34B samples seen for H/14, and with 13B samples
seen for g/14). This selection provides coverage at the scale
where we cannot afford to sample with the same density
as at the intermediate and lower model scales. To verify
that LAION-80M and LAION-400M are valid subsets of
LAION-2B, we conduct a control experiment by extracting
a random 400M subset of LAION-2B and comparing our
reference OpenCLIP ViT-B/32 models pre-trained on both
datasets. When doing so, we found no significant difference
(see Appendix Sec. B.2.3).

Compared to the original CLIP training procedure [55],
we work with larger batch sizes and adapt the learning rate
accordingly. We opt for larger batch sizes to allow for more
efficient distributed training; maximizing the local batch size
per GPU and using close to one thousand GPUs lead us to
global batch sizes in the range of 86-88K samples. In order
to assess the validity of re-using measurements obtained
with different batch sizes, we perform a number of control
experiments varying batch size from 32K to 86-88K, and
observe a difference of 0.2− 0.5% across different settings
(see Appendix Sec. B.2.3), which is small enough not to
confound observations on the effect of scale.

For each number of samples seen scale, we execute a sep-
arate training experiment with a cosine annealing learning
schedule adapted to the number of samples. This allows us
to assess performance of models pre-trained with different
training durations and avoid suboptimal training when using
the same schedule for runs of different length [28]. We tune
a small number of hyper-parameters (see Appendix Table
18), each scale point to optimize validation loss and pre-
vent training instabilities, and otherwise closely follow the
original CLIP training procedure [55], using the InfoNCE
loss, Adam with decoupled weight regularization [47] (i.e.,
AdamW) as an optimizer, with β1 = 0.9, β2 = 0.98 and
weight decay of 0.2. We train the models using mixed pre-
cision. For larger model scales (ViT-L/14, H/14, g/14), we
observed loss spikes during training which had an adverse
effect on performance. We fixed the issue by switching
from mixed precision with float16 to mixed precision with
bfloat16.1 We hypothesize that bfloat16 fixed the issue due
to larger models typically showing larger activation values
as observed by [16], making bfloat16 more suitable with its
wider dynamic range (8 exponent bits).

CLIP pre-training experiments on larger scales require
distributed training, as otherwise experiment execution times
are intractable. We use OpenCLIP [32], an open source
software that was adapted for distributed training on su-
percomputers. Using data parallel training via PyTorch
DDP [45, 53], we conduct experiments with up to 1520
NVIDIA A100 GPUs. Distributed training was executed
on JUWELS Booster [34], the supercomputer at Juelich Su-
percomputing Center (JSC, Germany), and partly also at
Stability AI AWS supercomputer [2]. For more details on
distributed training procedure and on experiment compute
budgets and runtimes, see Appendix Sec.A and Sec. B.2.4.

4. Scaling laws for different downstream tasks

4.1. Zero-shot transfer and robustness

One of the biggest advantages of open-vocabulary mod-
els like CLIP is that they can be used on downstream clas-
sification tasks by carefully designing text prompts corre-
sponding to class descriptions, without requiring any labeled
training example. Moreover, pre-trained CLIP models are
observed to excel on out-of-distribution robustness bench-
marks [48,55]. In this section, we study the effect of scale on
zero-shot classification, including an investigation on robust-
ness benchmarks. We evaluate the models on ImageNet [15],
ImageNet distribution shift datasets [5, 22–24, 75], and the
visual task adaptation benchmark (VTAB) [85]. We conduct
a simple duplication check for downstream datasets based on
the perceptual image hash library pHash [82], revealing no or

1We also tried to reduce the learning rate, change the learning rate
schedule, and use gradient clipping but none of these changes helped to
avoid the training instabilities.
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very little overlap with pre-training datasets (see Appendix
Sec. B.1).

Evaluation setup. We follow the setup of Radford et
al. [55]. For each downstream dataset, we use a set of pre-
defined prompts for each class, which we collected from
prior works [55, 86]. We compute the embedding of each
class by averaging over the embeddings of the prompts ob-
tained using the text tower, then we L2-normalize them.
Given a dataset {(xi, yi)}ni=1, we classify each image as
the class that has the largest cosine similarity with the (L2-
normalized) image embedding, ŷi = argmaxj(ϕ(xi)

T cj).
We evaluate the models using top-1 accuracy. For compar-
ison to OpenAI CLIP, we take ViT-B/32, B/16, and L/14
models pre-trained on the private WIT-400M dataset.

Effect of scale. Accuracy consistently improves when
increasing model, data and samples seen scale hand-in-hand.
Accuracy follows power laws, such that larger models ben-
efit from larger data and samples seen scale (Figure 1a).
The strongest ImageNet accuracy (78%) is obtained with
the largest total pre-training compute, using ViT-H/14 pre-
trained on LAION-2B data scale and 34B samples seen. For
additional results, see Appendix Sec. B.2.4.

Fitting power-law (E = βCα) on the Pareto frontier
of the available models, we measure scaling coefficients
αopenCLIP = −0.11 and αCLIP = −0.16 for zero-shot top-
1 ImageNet and αopenCLIP = −0.13 and αCLIP = −0.24
for ImageNet robustness datasets performance [22–24, 75].
For those tasks, we observe a scaling advantage for CLIP
pre-trained on WIT-400M over OpenCLIP pre-trained on
LAION-400M/2B. αopenCLIP is similar for ImageNet and
robustness datasets, suggesting that improving accuracy with
scale leads to corresponding improvement on robustness
benchmarks for OpenCLIP pre-trained on LAION.

We also find bottleneck effects when scaling. For instance,
OpenCLIP ViT-B/32 and ViT-B/16 models show no change
or deterioration of performance when increasing data scale
from 400M to 2B when using a smaller samples seen scale
(3B or 13B). Moving to the largest samples seen scale (34B)
then shows clear improvement for the larger 2B data scale,
indicating that the number samples seen is a bottleneck (see
also Appendix Table 19).

Using the obtained power law, we can make a prediction
for the performance of a well-tuned ViT-g/14 model when
using the largest data scale of 2B and samples seen scale of
34B, giving us error estimate of 20.9% (79.1% top-1 accu-
racy) on ImageNet. We predict even stronger performance
at larger scales. For instance, assuming 68B samples seen
we estimate top-1 accuracies of 79.7%, 80.7%, and 81.9%
for ViT-H/14, ViT-g/14 and ViT-G/14, respectively (see also
Appendix Sec. B.2.1).

4.2. Retrieval

Retrieval is another common way to evaluate zero-shot
capabilities of the models. In this section, we study the effect
of scale on both text and image zero-shot retrieval.

Evaluation setup. We compute text-image scores using the
cosine similarity between image and text embeddings and
rank the top-K images (resp. text captions) for each text
caption (resp. images) when evaluating on image (resp. text)
retrieval. We evaluate on MS-COCO [46] and Flickr30K
[80], following the evaluation setup and test splits from [36].
We use Recall@K as an evaluation metric where K = 5.

Effect of scale. Again we observe performance consistently
improves when increasing scale following power law trends
(Figure 1b). We measure scaling coefficients αopenCLIP =
−0.08 and αCLIP = −0.05 for zero-shot retrieval on MS-
COCO and αopenCLIP = −0.19 and αCLIP = −0.10 for
Flickr30K. In contrast to zero-shot accuracy, retrieval perfor-
mance shows a scaling advantage for OpenCLIP pre-trained
on LAION-400M/2B over CLIP pre-trained on WIT-400M.
We also observe scale bottleneck effects. For instance, Open-
CLIP ViT-L/14 model shows almost no improvement on
LAION-400M when increasing the number of samples seen
scale from 13B to 34B, indicating a data scale bottleneck.
When increasing data scale to 2B, we then observe clear
improvements when going from 13B to 34B samples (see
also Appendix Table 21 and 22).

4.3. Full and few-shot linear probing

Another common way to measure the quality of learned
representations is by training a linear classifier. While this
technique underperforms end-to-end fine-tuning, it is often
preferred because it requires far less compute [40, 55]. In
this section we train linear classifiers, also referred to as
linear probes, on the frozen representations of various CLIP
models and examine the effect of data and model scale.

Evaluation setup. Given a CLIP model with an image
tower ϕ, our goal is to learn W such that W⊤ϕ(x) clas-
sifies x as its label y. Given a dataset {(xi, yi)}ni=1, we
begin by saving the image features and labels for the dataset.
That is, for all image label pairs (x, y) in the dataset we
cache (ϕ(x), y). We then train a linear classifier W to min-
imize the cross entropy loss between softmax

(
W⊤ϕ(x)

)
and y. In preliminary experiments we found that this soft-
max regression achieved higher accuracy than linear regres-
sion. We use mini-batch stochastic optimization with the
Adam optimizer [37]. We use batch size 256 and select the
best result in a hyper-parameter sweep over learning rate
{0.1, 0.01, 0.001} and epochs {10, 20, 40} individually for
each model and dataset. For the ImageNet [15] and CI-
FAR100 datasets [43] we consider 10-shot, 25-shot, and
full-dataset linear classifers (Figure 2). Additionally, we
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Figure 2. Scaling model and data size leads to lower error linear classifers on ImageNet [15] and CIFAR-100 [43] in both the few-shot and
full dataset regime. We train linear probes for models with at least 13B samples seen (also see corresponding Table 5).
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We train linear probes for models with at least 13B samples seen
(also see corresponding Table 5).

train linear classifiers on the visual task adaptation bench-
mark (VTAB) [85] (Figure 3).

Effect of scale. For ImageNet, CIFAR100, and VTAB, scal-
ing up consistently improves the accuracy of a linear clas-
sifier (Figure 2, 3). For ImageNet and CIFAR100, this is
true in both the few-shot and full regimes. Moreover, among
models trained on the same data distribution, scaling up
follows a linear trend on a log-log plot. These results are
perhaps not too surprising given similar observations for

power laws on zero-shot downstream tasks in Section 4.1 as
well as the correlation between zero-shot and linear probe
performance observed by Radford et al. [55]. Nonetheless,
this result re-affirms that scaling up model and data size
leads to contunied accuracy improvements.

4.4. Fine-tuning

Next, we evaluate the effect of scale on fine-tuning perfor-
mance. Since fine-tuning is much more compute-intensive
than zero-shot and linear probing, we only evaluate a subset
of the pre-trained models.

Evaluation setup. We fine-tune and evaluate on ImageNet
with the timm [77] library, using the image encoder from
CLIP models trained on 2B data, 34B samples seen scale.
To get the best results, we consider two different schemes,
(A) fine-tune directly on ImageNet (B) first fine-tune on
a subset of the full ImageNet-22k we call ImageNet-12k2

then continue fine-tuning on ImageNet, similar to [4]. We
compare the results with OpenAI CLIP models fine-tuned
with the same settings, evaluating the models using top-1
accuracy on ImageNet and the ImageNet distribution shift
datasets [5, 22–24, 75]. The OpenCLIP models range from
82.6 to 88.5% top-1 on ImageNet, comparable to the best

2We filter classes with few examples from the full ImageNet-22k with
14M examples to get a better balanced subset and we end up with 12K
classes, 12M training examples, 470K validation examples.
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Figure 4. ImageNet and ImageNet robustness datasets classification performance for fine-tuned models.
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Figure 5. Scaling model and data size leads to lower error after jointly fine-tuning on eight downstream image classification tasks. In this
experiment, we fine-tune a single model jointly on all eight tasks, alternating batches from each task. We fine-tune only the parameters of the
vision encoder, using a fixed classification head for each task initialized with the weights from the zero-shot model.

released ImageNet models pretrained on public datasets [4].
For additional details, including strong supervised baselines,
see Appendix sec. B.2.2.

In addition, we fine-tune and evaluate on eight diverse
datasets where zero-shot models perform poorly [31, 55]:
Cars [41], DTD [14], EuroSAT [21], GTSRB [69], MNIST
[44], RESISC45 [13], SUN397 [79], and SVHN [50]. We
fine-tune a single model jointly on the eight downstream
tasks following Ilharco et al. [31], fine-tuning only the pa-
rameters of the vision encoder. The classification heads for
each task are obtained using the zero-shot text encoder, and
are kept frozen during fine-tuning. We fine-tune for 2000
iterations with a batch size of 128, learning rate 1e-5 and a
cosine annealing learning rate schedule with 200 warm-up
steps and the AdamW optimizer [47], with weight decay
0.1. We further explore the effect of fine-tuning on zero-shot
ImageNet accuracy in the Appendix Sec. B.2.2.

Effect of scale. For ImageNet fine-tuning, only the mod-
els with the largest data and samples seen were fine-tuned.
Despite the narrower scale range, a similar relationship in
the slope of the OpenAI CLIP vs OpenCLIP fit lines is ob-

served across the model scales (Figure 4). Moreover, scale
consistently improves accuracy when fine-tuning on other
downstream tasks (Figure 5). While trends vary with the
task, we find that the slope of the linear trend relating accu-
racy and total compute used for pre-training depends on the
pre-training dataset, typically favors CLIP WIT-400M, as
we observe in zero-shot experiments.

5. Discussion
Larger scale improves performance across different
downstream tasks. In line with previous studies [35, 61,
73, 84], our work observes scaling laws of power law form
across various downstream tasks. We empirically find that
scaling model, data and training samples seen results in con-
sistent improvements on downstream zero-shot classification,
retrieval, linear probing, and fine-tuning performance.

We also observe bottleneck behaviors [35, 84] that occur
when fixing one scaling dimension while increasing others.
For instance, OpenCLIP ViT-B/32 and ViT-B/16 are bot-
tlenecked by the number of samples seen at the 13B scale.
Increasing the number of samples seen to 34B reveals that
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LAION-2B brings clear improvement over LAION-400M,
which would remain hidden when fixing the number of sam-
ples seen scale to a lower value. Similar observations may
occur along other scaling dimensions. OpenCLIP ViT L/14
shows an example of data scale bottleneck on LAION-400M
scale, as increasing the number of samples seen from 13B to
34B does not lead to improvements. The benefit of using a
larger number of samples seen is then revealed when going
to the larger LAION-2B dataset.

Having derived scaling laws from our experimental ob-
servations, we are able to make predictions for both smaller
and larger scales. Extrapolation has its limits, as saturation
effects at both lower and higher scale ranges have been pre-
viously observed. We can however extrapolate to scales
close to the ones we have already measured. A prediction
for larger ViT-g/14 trained on LAION-2B with 34B sam-
ples delivers an estimate of 79.1% ImageNet top-1 accuracy.
This may appear at first sight modest compared to results re-
ported by BASIC (85.7% [54]), LiT (85.2% [86]) or CoCA
(86.1% [81]). However, these works leverage an internal
JFT dataset with labels which can be used for supervised
pre-training. Moreover, for 973/1000 ImageNet classes, re-
searchers were able to manually identify a correspondance
from a JFT class [78]. These works also use larger encoders,
larger private data, and pre-train the encoders in multiple
stages. Nonetheless, we estimate based on our empirical
findings that further increasing model and data scale could
result in competitive models even without using labeled data,
additional supervised pre-training stages or additional losses.
Finally, we observe that the improvement of zero-shot Ima-
geNet accuracy due to scaling up is accompanied by closely
aligned improvements on robustness benchmarks.

Scaling behavior depends on task type and pre-training
dataset. When measuring scaling coefficients for the ob-
served power laws, we see that OpenAI CLIP and Open-
CLIP have distinct scaling advantages over each other de-
pending on the downstream task. OpenCLIP pre-trained
on LAION-400M/2B data has stronger scaling trends for
zero-shot retrieval, while OpenAI CLIP pre-trained on pri-
vate WIT-400M data shows stronger scaling for zero-shot
ImageNet classification. We hypothesize that the observed
differences are due to differences in the pre-training data, as
we closely follow the architectures and pre-training recipes
used for the OpenAI CLIP models. WIT-400M may have a
stronger affinity to ImageNet as a result of the curation pro-
cedure, while LAION-400M/2B was filtered by a pre-trained
OpenAI ViT-B/32 model relying on its similarity measure-
ments for image-text pairs, which may have rendered the
dataset more suitable for retrieval based tasks. This hypothe-
sis can be tested by systematically varying dataset composi-
tion procedure (for example by using a stronger L/14 model
for filtering crawled data) and observing the effect on scaling
behavior across various task types.

Limitations of the current study. Observed scaling laws
are based on points we were able to obtain with available
compute resources. Therefore, the density of sampling the
scales space is low. We scan for hyperparameters on smaller
scales only, to avoid expensive tuning on larger scales, and
use the outcomes together with tuning already performed by
previous work to ensure pre-trained models on all scales are
not far from optimal. It was also not possible to obtain more
points for OpenAI ViT CLIP due to the private nature of the
WIT-400M dataset (see also Appendix Fig. 12 for additional
ResNet points confirming the observed trends). Moreover,
we conduct only a simple duplication check for downstream
data, which may leave few duplicates undetected. Previous
studies [55, 86] also reported that duplication in test sets do
not significantly alter most results, potentially due to the
very large scale and diversity of pre-training data.

6. Conclusion
We present a systematic study of scaling laws for con-

trastive language-image learning, investigating how scale
affects performance on several downstream tasks and across
adaptation methods. We find—in accord with previous
works on uni-modal learning [35, 84]—a power law rela-
tion between scale (model, data and the number of samples
seen) and downstream performance in a broad range of set-
tings, including zero-shot classification, retrieval, few- and
full-shot linear probing and fine-tuning. Interestingly, the
scaling behavior for OpenCLIP-LAION pre-trained mod-
els and for OpenAI-WIT-400M pre-trained models differ,
showing distinct benefits of one over another on different
downstream tasks. We hypothesize that such task-specific
scaling differences originate from the different pre-training
datasets. Predictions for model performance on larger scales
made on the basis of the scaling laws estimate 81.9% zero-
shot top-1 accuracy on ImageNet for a ViT-G/14 CLIP model
trained on 68B image-text samples from scratch.

Our study opens many directions for further investiga-
tions. Obtaining more data points for smaller and interme-
diate scales can provide enough sampling density to better
understand the optimal configuration of model size, dataset
size and number of samples seen given a fixed compute, sim-
ilar to works such as [28, 39]. Scaling laws for robustness
benchmarks [71] can be derived when controlling for larger
accuracies observed at larger scales. Further, treating vi-
sion and text encoder scales separately may lead to modality
specific scaling laws. A promising direction is to study the
effect of the pre-training dataset on scaling behavior. Our
observations so far hint that the data source may strongly in-
fluence task-specific scaling. This paves the road for studies
on foundation datasets [68]. Having open datasets [65, 66]
and open source tools [32] at hand, such experiments can be
conducted and reproduced in a common effort by the broader
research community.
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