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Figure 1. We present an automatic high-resolution wire segmentation and removal pipeline. Each triad shows the high-resolution input
image, our automatic wire segmentation result masked in red, and our full-resolution wire removal result. The visual quality of these
photographs is greatly improved with our fully-automated wire clean-up system.

Abstract
Wires and powerlines are common visual distractions

that often undermine the aesthetics of photographs. The
manual process of precisely segmenting and removing them
is extremely tedious and may take up hours, especially
on high-resolution photos where wires may span the en-
tire space. In this paper, we present an automatic wire
clean-up system that eases the process of wire segmenta-
tion and removal/inpainting to within a few seconds. We
observe several unique challenges: wires are thin, lengthy,
and sparse. These are rare properties of subjects that com-
mon segmentation tasks cannot handle, especially in high-
resolution images. We thus propose a two-stage method that
leverages both global and local contexts to accurately seg-
ment wires in high-resolution images efficiently, and a tile-
based inpainting strategy to remove the wires given our pre-
dicted segmentation masks. We also introduce the first wire
segmentation benchmark dataset, WireSegHR. Finally, we
demonstrate quantitatively and qualitatively that our wire
clean-up system enables fully automated wire removal with
great generalization to various wire appearances.

1. Introduction

Oftentimes wire-like objects such as powerlines and ca-
bles can cross the full width of an image and ruin an other-
wise beautiful composition. Removing these “distractors”
is thus an essential step in photo retouching to improve the
visual quality of a photograph. Conventionally, removing a
wire-like object requires two steps: 1) segmenting out the
wire-like object, and 2) removing the selected wire and in-
painting with plausible contents. Both steps, if done manu-
ally, are extremely tedious and error-prone, especially for
high-resolution photographs that may take photographers
up to hours to reach a high-quality retouching result.

In this paper, we explore a fully-automated wire seg-
mentation and inpainting solution for wire-like object seg-
mentation and removal with tailored model architecture and
data processing. For simplicity, we use wire to refer to
all wire-like objects, including powerlines, cables, support-
ing/connecting wires, and objects with wire-like shapes.

Wire semantic segmentation has a seemingly similar
problem setup with generic semantic segmentation tasks;
they both take in a high-resolution image and generate
dense predictions at a pixel level. However, wire semantic
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segmentation bears a number of unique challenges. First,
wires are commonly long and thin, oftentimes spanning the
entire image yet having a diameter of only a handful of pix-
els. A few examples are shown in Figure 2. This prevents
us from getting a precise mask based on regions of inter-
est. Second, the input images can have arbitrarily high res-
olution up to 10k×10k pixels for photographic retouching
applications. Downsampling such high-resolution images
can easily cause the thin wire structures to disappear. This
poses a trade-off between preserving image size for infer-
ence quality and run-time efficiency. Third, while wires
have regular parabolic shapes, they are often partially oc-
cluded and can reappear at arbitrary image location, thus
not continuous. (e.g. [20, 36]).

To account for these challenges, we propose a system
for automatic wire semantic segmentation and removal. For
segmentation, we design a two-stage coarse-to-fine model
that leverages both pixel-level details in local patches and
global semantics from the full image content, and runs ef-
ficiently at inference time. For inpainting, we adopt an ef-
ficient network architecture [35], which enables us to use a
tile-based approach to handle arbitrary high resolution. We
design a training strategy to enforce color consistency be-
tween the inpainted region and the original image. We also
present the first benchmark dataset, WireSegHR, for wire
semantic segmentation tasks, where we collect and anno-
tate high-resolution images with diverse scene contents and
wire appearances. We provide analyses and baseline com-
parisons to justify our design choices, which include data
collection, augmentation, and our two-stage model design.
Together, these design choices help us overcome the unique
challenges of accurately segmenting wires. Our contribu-
tions are as follows:

• Wire segmentation model: We propose a two-stage
model for wire semantic segmentation that leverages
global context and local information to predict accu-
rate wire masks at high resolution. We design an in-
ference pipeline that can efficiently handle ultra-high
resolution images.

• Wire inpainting strategy: We design a tile-based in-
painting strategy and tailor the inpainting method for
our wire removal task given our segmentation results.

• WireSegHR, a benchmark dataset: We collect a
wire segmentation benchmark dataset that consists of
high resolution images, with diversity in wire shapes
and scene contents. We also release the manual an-
notations that have been carefully curated to serve as
ground truths. Besides, we also propose a benchmark
dataset to evaluate inpainting quality.

2. Related Work
Semantic segmentation Semantic segmentation has been
actively researched over the past decade. For example, the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Challenges of wire segmentation. Wires have a diverse
set of appearances. Challenges include but are not limited to (a)
structural complexity, (b) visibility and thickness, (c) partial oc-
clusion by other objects, (d) camera aberration artifacts, and vari-
ations in (e) object attachment, (f) color, (g) width and (h) shape.

DeepLab series [4–6] has been one of the most widely used
set of semantic segmentation methods. They leverage di-
lated convolutions to capture long-range pixel correlations.
Similarly, CCNet [14] attend to non-local regions via a two-
step axial attention mechanism. PSPNet [48] use multi-
scale pooling to extract high-resolution features.

Recently, the self-attention mechanism [37] has gained
increasing popularity. Transformer-based models for se-
mantic segmentation [11, 12, 17, 18, 26, 31, 39, 51] sig-
nificantly outperform convolution-based networks since
the attention modules benefit from their global receptive
fields [39], which let the models attend to objects that span
across larger portions of the feature map.

While these above methods work well in common object
semantic segmentation, when applied to our task of wire
segmentation in high-resolution images, they either drop
significantly in segmentation quality or require long infer-
ence times. We show in Section 6 that directly applying
these methods to our task yields undesirable results.
High-resolution image segmentation Segmentation in
high-resolution images involves additional design consid-
erations. It is computationally infeasible to perform in-
ference on the full-resolution image with a deep network.
As a result, to maximally preserve image details within the
available computation resources, many methods employ a
global-local inference pipeline. For instance, GLNet [7]
simultaneously predict a coarse segmentation map on the
downsampled image and a fine segmentation map on local
patches at the original resolution, then fuse them to pro-
duce the final prediction. MagNet [15] is a recent method
that proposes to iteratively predict and refine coarse seg-
mentation maps at multiple scales using a single feature ex-
tractor and multiple lightweight refinement modules. Cas-
cadePSP [8] train a standalone class-agnostic model to re-
fine predictions at a higher resolution from a pretrained seg-
mentation model. ISDNet [10] propose to use an extremely
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lightweight subnetwork to take in the entire full-resolution
image. However, the subnetwork is limited in capacity and
thus segmentation quality. We share the same idea with
these past works on using a coarse-to-fine approach for wire
segmentation, but modify the architecture and data process-
ing to tailor to wires.

Wire/Curve segmentation While few works tackle wire
segmentation in high-resolution images, there are prior
works that handle similar objects. For example, Transmis-
sion Line Detection (TLD) is an actively researched area in
aerial imagery for drone applications. Convolutional neu-
ral networks are used [2, 23, 28, 46] to segment overhang-
ing power cables in outdoor scenes. However, wire patterns
in TLD datasets are relatively consistent in appearance and
shape – evenly spaced and only spanning locally. In con-
trast, we handle more generic wires seen in regular pho-
tographic contents, where the wire appearance has much
higher variety.

Some other topics are loosely related to our task. Lane
detection [20,34,36] aims to segment lanes for autonomous
driving applications. These methods benefit from simple
line parameterization (e.g., as two end-points), and strong
positional priors. In contrast, as shown in Figure 2, wires
vary drastically in shapes and sizes in our task, thus making
them difficult to parameterize.

High-Resolution Image Inpainting Image inpainting
has been well-explored using patch synthesis-based meth-
ods [3, 9, 22, 38] or deep neural networks [16, 25, 29, 40, 43,
44]. Zhao et al. leveraged the powerful image sysnthesis
ability of StyleGAN2 [21] and proposed CoModGAN [49]
to push the image generation quality to a newer level, and
was followed by [19, 50]. Most of these deep models can-
not be applied to inpainting tasks at high-resolution images.
The latest diffusion-based inpainting model like DALLE-
2 [30], LDM [32], and StableDiffusion etc. also suffer from
long inference time and low output resolution. ProFill [45]
was first proposed to address high resolution inpainting via
a guided super resolution module. HiFill [42] utilized a con-
textual residual aggregation module and the resolution can
be up to 8K. LaMa [35] applied the fourier convoluational
residual blocks to make the propagation of image structures
well. LaMa was trained on only 256× 256 images, but can
be used for images up to 2K with high quality. Recently,
Zhang et al. [47] proposed to use guided PatchMatch for
any-resolution inpainting and extended the deep inpainting
results from LaMa to modern camera resolution. The tex-
tures are better reused, while the structure and line comple-
tion at high-resolution can still be challenging. In this paper,
we aim at removing wires from high resolution photos. The
problem can become easier if we run inpainting in a local
manner since wires are usually thin and long. Therefore,
we propose to revisit LaMa for wire removal, and run the
inference in a tile-based fashion.

(A) Input (B) Annotation (C) Zoom-in

Figure 3. Wire Annotation Example. An example wire annota-
tion in our dataset. Our annotation (B) is accurate in different wire
thicknesses (red), variations in wire shapes (orange) and accurate
wire occlusions (yellow).

3. Dataset Collection and WireSegHR
3.1. Image Source and Annotations

Our definition of wires include electrical wires/cables,
power lines, supporting/connecting wires, and any wire-
like object that resemble a wire structure. We collect high-
resolution images with wires from two sources: 80% of the
images are from photo sharing platforms (Flickr, Pixabay,
etc.), and 20% of the images are captured with different
cameras (DSLRs and smartphones) in multiple countries on
our own. For the internet images, we collect 400K candi-
date images by keyword-searching. Then, we remove du-
plicates and images where wires are the only subjects. We
then curate the final 6K images that cover sufficient scene
diversity like city, street, rural area and landscape.

Our wire annotation process contains two rounds. In
the first round, annotators draw detailed masks over wires
at full-resolution. The annotated masks enclose the main
wire body and the boundary, oftentimes including a gradi-
ent falloff due to aliasing or defocus. The boundary region
annotation is crucial so as to avoid residual artifacts during
wire removal. In the second round, quality assurance is car-
ried out to re-annotate unsatisfactory annotations. We show
an example of our high-quality wire annotations in Figure 3.

3.2. Dataset Statistics

In Table 1, we list the statistics of our dataset and com-
pare them with existing wire-like datasets. Our dataset is
the first wire dataset that contains high-resolution photo-
graphic images. The dataset is randomly split into 5000
training, 500 validation, and 500 testing images. We release
420 copyright-free test images with annotations.

4. High-Resolution Wire Segmentation
Wires appear visually different from common objects –

being thin, long, sparse and oftentimes partially occluded.
We find the following two design choices crucial to build-
ing an effective wire segmentation system: 1) having a two
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Figure 4. Our wire removal system. A system overview of our wire segmentation and removal for high resolution images. Input is
concatenated with min- and max-filtered luminance channels. The downsampled input is fed into the coarse module to obtain the global
probability. In the local stage, original-resolution patches are concatenated with the global probability map to obtain the local logit map.
After a segmentation mask is predicted, we adopt LaMa architecture and use a tile-based approach to achieve wire removal. See Section 4, 5
for details.

Dataset
# Wire
Images

Min.
Image Size

Max.
Image Size

Median
Image Size

Powerline [41] 2000 128×128 128×128 128×128
PLDU [46] 573 540×360 540×360 540×360
PLDM [46] 287 540×360 540×360 540×360
TTPLA [2] 1100 3840×2160 3840×2160 3840×2160

Ours 6000 360×240 15904×10608 5040×3360

Table 1. Statistics of our wire dataset compared to others.

stage framework so that coarse prediction from global con-
text guides precise segmentation from local patches and 2)
maximally preserving and augmenting image features and
annotations of wires throughout the pipeline.

4.1. The Two-stage Coarse to Fine Model

Figure 4 shows the two-stage segmentation pipeline. It
consists of a coarse and a fine module, which share an en-
coder E and have their own decoder DC and DF . Intu-
itively, the coarse module aims to capture the global con-
textual information from the entire image and highlight the
image regions possibly containing wires. Conditioned on
the predictions from the coarse module, the fine module
achieves high-resolution wire segmentation by only look-
ing at local patches likely containing wires.

Given a high-resolution image Iglo, we first bilinearly
downsample it to Idsglo with a fixed size p× p and feed it into
the coarse module. The module predicts the global prob-
ability map Pglo = SoftMax(DC(E(Idsglo))) containing the
activation of the wire regions.

For each patch Iloc of size p × p cropped from the full-
resolution image Iglo, and the corresponding conditional
probability map Pcon cropped from Pglo, we predict the lo-

cal probability Ploc = SoftMax(DF (E(Iloc, Pcon))). Note
that E is shared between the coarse and the fine module,
thus it should take inputs with the same number of chan-
nels. Therefore, for the coarse module, we concatenate an
additional zero channel with the input image to make the
channel number consistent.

We apply Cross Entropy (CE) loss to both the global Pglo
and local probability map Ploc, comparing with their ground
truth annotations Gglo and Gloc.

Lglo = CE(Pglo, Gglo)

Lloc = CE(Ploc, Gloc)
(1)

The final loss L is the sum of the two:

L = Lglo + λLloc, (2)

where we set λ = 1 for training. Similar to Focal
loss [24] and Online Hard Example Mining [33], we bal-
ance the wire and background samples in the training set by
selecting patches that contain at least 1% of wire pixels.

To perform inference, we first feed the downsampled im-
age to the coarse module, which is the same as training.
Local inference is done by running a sliding window over
the entire image, where the patch is sampled only when
there is at least some percentage of wire pixels (determined
by α). This brings two advantages: First, we save compu-
tation time in regions where there are no wires. Second,
the local fine module can leverage the information from the
global branch for better inference quality.

4.2. Wire Feature Preservation

As wires are thin and sparse, applying downsampling to
the input images may make the wire features vanish entirely.
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To mitigate this challenge, we propose a simple feature aug-
mentation technique by taking the min and max pixel lumi-
nance values of the input image over a local window. Ei-
ther the local min or the max value makes the wire pix-
els more visually apparent. In practice, we concatenate the
min- and max-filtered luminance channels to the RGB im-
age and condition map, resulting in 6 total channels as input.
We name this component MinMax.

Besides feature augmentations, we also adapt the archi-
tecture to maximally preserve the sparse wire annotations.
We propose to use “overprediction” and achieve this by us-
ing max-pool downsampling on the coarse labels during
training, which preserves activation throughout the coarse
branch. We name this component MaxPool. We provide
ablation studies for these components in Section 6.

5. High-Resolution Wire Inpainting

Given a full-resolution wire segmentation mask esti-
mated by our wire segmentation model, we propose an in-
painting pipeline to remove and fill in the wire regions. Our
approach addresses two major challenges in wire inpaint-
ing. First, recent state-of-the-art deep inpainting methods
do not handle arbitrary resolution images, which is criti-
cal for high-resolution wire removal. Second, deep inpaint-
ing methods often suffer from color inconsistency when the
background has uniform (or slowly varying) colors. This
issue is particularly significant for wires, as they are often
in front of uniform backgrounds, such as the sky or build-
ing facades. The commonly used reconstruction loss, such
as L1, is not sensitive to color inconsistency, which further
exacerbates this issue.

We thus revisit the efficient deep inpainting method
LaMa [35]. Compared with other inpainting models, LaMa
has two major advantages. First, it contains the Fourier
convolutional layers which enables an efficient and high-
quality structural completion. This helps complete building
facades and other man-made structures with fewer artifacts.
Second, its high inference efficiency makes a tile-based in-
ference approach possible for high resolution images.

To address color inconsistency, we propose a novel
“onion-peel” color adjustment module. Specifically, we
compute the mean of the RGB channels within the onion-
peel regions Mo = D(M,d) − M of the wire mask M ,
where D is the binary dilation operator, and d is the kernel
size. The color difference for each channel c ∈ R,G,B be-
comes Biasc = E[Mo(xc−yc)], where x is the input image,
and y is the output from the inpainting network. The final
output of the inpainting model is: ŷc = yc + Biasc. Loss
functions are then applied to ŷc to achieve color consistency
while compositing the final result yout = (1 − M) ⊙ x +
M ⊙ ŷ.

6. Experiments
6.1. Implementation Details

Wire Segmentation Network. We experiment with
ResNet-50 [13] and MixTransformer-B2 [39] as our shared
feature extractor. We expand the input RGB channel to six
channels by concatenating the conditional probability map,
min- and max-filtered luminance channels. For the min and
max filtering, we use a fixed 6x6 kernel. We use separate
decoders for the coarse and fine modules, denoted as DC

and DF respectively.
We use the MLP decoder proposed in [39] for the Mix-

Transformer segmentation model, and the ASPP decoder
in [6] for our ResNet-50 segmentation model. In both the
segmentation and inpainting modules, we take the per-pixel
average of the predicted probability when merging overlap-
ping patches. To crop Pcon from Pglo, we upsample the
predicted Pglo to the original resolution, then crop the pre-
dicted regions according to the sliding window position.

To train the segmentation module, we downsample the
image Iglo to p × p to obtain Idsglo. From Iglo, we randomly
crop one p × p patch Iloc that contains at least 1% wire
pixels. This gives a pair of Idsglo and Iloc to compute the
losses. During inference, Idsglo is obtained in the same way
as training, while multiple Iloc are obtained via a sliding
window sampled only when the proportion of wire pixels is
above α. All feature extractors are pretrained on ImageNet.

We train our model on 5000 training images. The model
is trained for 80k iterations with a batch size of 4. We set
patch size p = 512 during training. For all ResNet models,
we use SGD with a learning rate of 0.01, a momentum of
0.9 and weight decay of 0.0005. For MixTransformer mod-
els, we use AdamW [27] with a learning rate of 0.0002 and
weight decay of 0.0001. Our training follows the “poly”
learning rate schedule with a power of 0.9. During infer-
ence, we set both the global image size and local patch size
p to 1024. Unless otherwise specified, we set the percentage
for local refinement to 1% (α = 0.01).

Wire Inpainting Network. We adopt LaMa [35] for wire
inpainting by finetuning on an augmented wire dataset.
To prepare the wire training set, we randomly crop ten
680×680 patches from the non-wire regions of each image
in our training partition. In total, we have 50K more train-
ing images in addition to the 8M Places2 [52] dataset, and
increase its sampling rate by 10× to balance the dataset. We
also use all the ground truth segmentation maps in our train-
ing set to sample wire-like masks. During training, we start
from Big-LaMa weights, and train the model on 512× 512
patches. We also prepare a synthetic wire inpainting qual-
ity evaluation dataset, containing 1000 images at 512× 512
with synthetic wire masks. While running inference on full-
resolution images, we apply a tile-based approach, by fixing
the window size at 512× 512 with an 32-pixel overlap.
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6.2. Wire Segmentation Evaluation

Quantitative Evaluation We compare with several
widely-used object semantic segmentation and high-
resolution semantic segmentation models. Specifically, we
train DeepLabv3+ [6] with ResNet-50 [13] backbone un-
der two settings: global and local. In the global setting,
the original images are resized to 1024×1024. In the lo-
cal setting, we randomly crop 1024×1024 patches from the
original images. We train our models on 4 Nvidia V100
GPUs and test them on a single V100 GPU. For high-
resolution semantic segmentation models, we compare with
CascadePSP [8], MagNet [15] and ISDNet [10]. We de-
scribe the training details of these works in the supplement.

We present the results of in Table 2 tested on Wire-
SegHR. We report wire IoU, F1-score, precision and recall
for quantitative evaluation. We also report wire IoUs for
images at three scales, small (0 – 3000×3000), medium
(3000×3000 – 6000×6000) and large (6000×6000+),
which are useful for analyzing model characteristics. Fi-
nally, we report average, minimum and maximum inference
times on WireSegHR.

As shown in Table 2, while the global model runs fast, it
has lower wire IoUs. In contrast, the local model produces
high-quality predictions, but requires a very long inference
time. Meanwhile, although CascadePSP is a class-agnostic
refinement model designed for high-resolution segmenta-
tion refinement, it primarily targets common objects and
does not generalize to wires. For MagNet, its refinement
module only takes in probability maps without image fea-
tures, thus failing to refine when the input prediction is inac-
curate. Among these works, ISDNet is relatively effective
and efficient at wire prediction. However, their shallow net-
work design trades off capacity for efficiency, limiting the
performance of wire segmentation that is thin and sparse.

Compared to the methods above, our model achieves the
best trade-off between accuracy and memory consumption.
By leveraging the fact that wires are sparse and thin, our
pipeline captures both global and local features more effi-
ciently, thus saving a lot of computation while maintaining
high segmentation quality.
Qualitative Evaluation We provide visual comparisons
of segmentation models in Figure 6. We show the “lo-
cal” DeepLabv3+ model as it consistently outperforms its
“global” variant given that “local” predicts wire masks in a
sliding-window manner at the original image resolution. As
a trade-off, without global context, the model suffers from
over-prediction. CascadePSP is designed to refine common
object masks given a coarse input mask, thus fails to pro-
duce satisfactory results when the input is inaccurate or in-
complete. Similarly, the refinement module of MagNet does
not handle inaccurate wire predictions. ISDNet performs
the best among related methods, but the quality is still un-
satisfactory as it uses a lightweight model with limited ca-

pacity. Compared to all these methods, our model captures
both global context and local details, thus producing more
accurate mask predictions.

Ablation Studies In Table 3, we report wire IoUs after
removing each component in our model, including Min-
Max, MaxPool, and Coarse condition concatenation. We
find that all components play a significant role for accurate
wire prediction, particularly in large images. Both MinMax
and MaxPool are effective in encouraging prediction, which
is shown by the drop in recall without either component,
also shown in Figure 6. Coarse condition, as described in
Section 4, is crucial in providing global context to the local
network, without which the wire IoU drops significantly.

Table 4 shows the wire IoUs and inference speed of our
two-stage model as α changes. We observe a consistent
decrease in performance as α increases. On the other hand,
setting α to 0.01 barely decreases IoU, while significantly
boosting inference speed, which means the coarse network
is effectively activated at wire regions.

6.3. Wire Inpainting Evaluation
We evaluate our wire inpainting model using the syn-

thetic dataset. Results are shown in Table 5. Our model
structure is highly related to LaMa [35]. The difference is
the training data and the proposed color adjustment module
to address color inconsistency. We also compare our meth-
ods with PatchMatch [3] based on patch synthesis, Deep-
Fillv2 [44] based on Contextual Attention, CMGAN [50]
and FcF [19] based on StyleGAN2 [21] and LDM [32]
based on Diffusion. Inference speed is measured on a single
A100-80G GPU. Visual results on synthetic and real im-
ages are shown in Figure 7. PatchMatch, as a traditional
patch synthesis method, produces consistent color and tex-
ture that leads to high PSNR. However, it performs severely
worse on complicated structural completion. StyleGAN-
based CMGAN and FcF are both too heavy for wires that
are thin and sparse. Besides, diffusion-based models like
LDM tends to generate arbitrary objects and patterns. Deep-
Fill and the official Big-LaMa both have severe color in-
consistency issue, especially in the sky region. Our model
has a balanced quality and efficiency, and performs well on
structural completion and color consistency. Note that we
use a tile-based method at inference time. The reason the
tile-based strategy can be employed is due to the wire char-
acteristics: sparse, thin and lengthy. More high-resolution
inpainting results are in the supplementary materials.

7. Discussion
7.1. Comparison with Google Pixel 6

Recently, Google Pixel 6 [1] announced the “Magic
Eraser” photo feature that automatically detects and re-
moves distractors. Note that this is a product feature and
is not specifically designed for wires, and thus is hardly
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Model
Wire
IoU

F1 Precision Recall
IoU

(Small)
IoU

(Medium)
IoU

(Large)
Avg. Time

(s/img)
Min. Time

(s/img)
Max. Time

(s/img)

DeepLabv3+ (Global) [6] 37.77 54.83 69.68 45.20 51.62 38.89 31.89 0.22 0.07 0.78
DeepLabv3+ (Local) [6] 48.66 65.46 68.13 63.0 60.23 51.44 40.17 3.27 0.05 16.59

CascadePSP (Pretrained) [8] 20.44 33.94 62.19 23.34 33.64 21.80 13.78 2.32 0.37 36.79
CascadePSP (Retrained) [8] 26.85 42.33 52.44 35.49 48.22 28.97 15.80 2.25 0.37 25.37

MagNet [15] 33.71 50.42 87.69 35.38 43.59 32.67 34.48 3.89 0.54 17.97
MagNet-Fast [15] 37.87 54.94 67.98 46.09 46.75 35.88 41.42 1.36 0.55 5.33

ISDNet (R-18) [10] 46.52 63.50 77.56 53.75 55.09 47.15 43.34 0.29 0.12 0.86
ISDNet (MiT-b2) [10] 47.90 64.77 77.38 55.70 54.48 46.77 49.51 0.26 0.13 1.02

Ours (R-50) 47.75 64.64 74.86 56.87 60.68 50.19 38.19 1.24 0.13 4.67
Ours (MiT-b2) 60.83 75.65 83.62 69.06 63.52 59.83 62.93 0.82 0.07 3.36

Table 2. Performances of common semantic segmentation and recent high-resolution semantic segmentation models on our dataset. We
find that our dataset poses many challenges that high-resolution segmentation models fail to tackle effectively.

V3p (whole), v3p (slide), CascadePSP (retrained), MagNet (not -fast), ISDNet (r18), IsdNet(mitb2), Ours (r50), Ours 
(mitb2)

(E) MagNet(A) Input (F) ISDNet (G) Ours(B) Label (D) Cascade PSP(C) DeepLabv3+ 
(Local)

Figure 5. Qualitative comparison of several semantic segmentation models. A common object semantic segmentation model
(DeepLabv3+) either fails to find thin wires or overpredicts due to lack of global context. On the other hand, CascadePSP and Mag-
Net, being refinement-based models, cannot work well on wires when the predictions are inaccurate or missing. While ISDNet can capture
many thin wires regions, it cannot produce a high-quality prediction. In contrast, our model is able to both capture accurate wire regions
and produce fine wire masks, and maintain low inference time.

comparable with our method. We compare against this fea-
ture by uploading the images to Google Photos and apply-
ing “Magic Eraser” without manual intervention. We find
that “Magic Eraser” performs well on wires with clear back-
ground, but it suffers from thin wires that are hardly visible
and wires with complicated background. We show two ex-
amples in the supplementary material.

7.2. Failure cases
While our proposed wire segmentation model produces

high-quality masks in most situations, there are still some
challenging cases that our model cannot resolve. In par-
ticular, wires that are heavily blended in with surrounding
structures/background, or wires under extreme lighting con-
ditions are challenging to segment accurately. We show sev-
eral examples in the supplementary material.
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(E) No MinMax(A) Input (F) No MaxPool (G) Ours(D) Label(C) Input 
Max-filtered

(B) Input  
Min-filtered

Figure 6. Qualitative comparison of our model components. MinMax enhances wire image features when they are too subtle to see in
RGB, while MaxPool encourages aggressive predictions in the coarse branch. Both components enable the model to pick up more regions
for the final wire mask prediction.

Model
Wire
IoU F1 Precision Recall

IoU
(Small)

IoU
(Medium)

IoU
(Large)

Ours 60.83 75.65 83.62 69.06 63.52 59.83 62.93
– MinMax 60.01 75.01 84.87 67.2 63.67 58.99 61.97
– MaxPool 59.86 74.89 85.25 66.78 61.45 59.40 60.76

– Coarse 56.92 72.55 82.91 64.49 62.83 57.42 54.47

Table 3. Ablation study of our model components.

α
Wire
IoU

F1 Precision Recall
Avg. Time

(s/img)
Speed up

0.0 60.97 75.75 82.63 69.93 1.91 1×
0.01 60.83 75.65 83.62 69.06 0.82 2.3×
0.02 60.35 75.27 83.97 68.20 0.75 2.5×
0.05 55.17 71.11 84.84 61.20 0.58 3.3×
0.1 42.44 59.59 86.06 45.57 0.4 4.8×

Table 4. Ablation on the threshold for refinement. At α = 0.0, all
windows are passed to the fine module.

Model PSNR↑ LPIPS↓ FID↓ Speed (s/img)
PatchMatch [3] 50.29 0.0294 5.0403 -
DeepFillv2 [44] 47.01 0.0374 8.0086 0.009

CMGAN [50] 50.07 0.0255 3.8286 0.141
FcF [19] 48.82 0.0322 4.7848 0.048

LDM [32] 45.96 0.0401 10.1687 4.280
Big-LaMa [35] 49.63 0.0267 4.1245 0.034

Ours (LaMa-Wire) 50.06 0.0259 3.6950 0.034

Table 5. Quantitative results of inpainting on our synthetic wire
inpainting evaluation dataset (1000 images). Our model achieves
the highest perceptual quality in terms of FID, and has a balanced
speed and quality.

8. Conclusion

In this paper, we propose a fully automated wire seg-
mentation and removal system for high-resolution imagery.
We demonstrate a segmentation method that maximally pre-
serves sparse wire features and annotations, with a two-

Zoomed-in Patch and Wire Mask Big-LaMa Ours (Big-LaMa-Wire)

Zoomed-in Patch and Wire Mask Adobe Photoshop (PatchMatch) Ours (Big-LaMa-Wire)

Input PatchMatch LDM Big-LaMa Ours(Big-LaMa-Wire)

Figure 7. Inpainting Comparison. Our model performs well
on complicated structure completion and color consistency, espe-
cially on building facades and sky regions containing plain and
uniform color.

stage model that effectively uses global context and local
details. The predicted segmentation mask is used in our
tile-based wire inpainting model that has been demonstrated
to produce seamless inpainting results. We also introduce
WireSegHR, the first benchmark wire dataset with high-
quality annotations. We hope our proposed method will
provide insights into tackling semantic segmentation with
high resolution image and annotation properties, and that
our benchmark dataset encourage further research in wire
segmentation and removal.

2190



References
[1] Pixel 6, a smarter chip for a smarter phone - google store.

https://store.google.com/product/pixel_
6?hl=en-US. (Accessed on 11/14/2021). 6

[2] Rabab Abdelfattah, Xiaofeng Wang, and Song Wang. Ttpla:
An aerial-image dataset for detection and segmentation of
transmission towers and power lines. In Proceedings of the
Asian Conference on Computer Vision, 2020. 3, 4

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans.
Graph., 28(3):24, 2009. 3, 6, 8

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 2

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 2

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 2, 5, 6, 7

[7] Wuyang Chen, Ziyu Jiang, Zhangyang Wang, Kexin Cui,
and Xiaoning Qian. Collaborative global-local networks for
memory-efficient segmentation of ultra-high resolution im-
ages. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 8924–8933,
2019. 2

[8] Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, and Chi-Keung
Tang. Cascadepsp: toward class-agnostic and very high-
resolution segmentation via global and local refinement. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8890–8899, 2020. 2, 6,
7

[9] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B
Goldman, and Pradeep Sen. Image melding: Combining in-
consistent images using patch-based synthesis. ACM Trans-
actions on graphics (TOG), 31(4):1–10, 2012. 3

[10] Shaohua Guo, Liang Liu, Zhenye Gan, Yabiao Wang, Wuhao
Zhang, Chengjie Wang, Guannan Jiang, Wei Zhang, Ran Yi,
Lizhuang Ma, et al. Isdnet: Integrating shallow and deep
networks for efficient ultra-high resolution segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4361–4370, 2022. 2, 6,
7

[11] Ali Hassani and Humphrey Shi. Dilated neighborhood atten-
tion transformer. 2022. 2

[12] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and
Humphrey Shi. Neighborhood attention transformer. 2022.
2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5, 6

[14] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 603–612, 2019. 2

[15] Chuong Huynh, Anh Tuan Tran, Khoa Luu, and Minh
Hoai. Progressive semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16755–16764, 2021. 2, 6, 7

[16] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and locally consistent image completion. ACM
Transactions on Graphics (ToG), 36(4):1–14, 2017. 3

[17] Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita
Orlov, and Humphrey Shi. OneFormer: One Transformer to
Rule Universal Image Segmentation. 2023. 2

[18] Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Ji-
achen Li, Steven Walton, and Humphrey Shi. Semask: Se-
mantically masking transformer backbones for effective se-
mantic segmentation. arXiv, 2021. 2

[19] Jitesh Jain, Yuqian Zhou, Ning Yu, and Humphrey Shi. Keys
to better image inpainting: Structure and texture go hand in
hand. arXiv preprint arXiv:2208.03382, 2022. 3, 6, 8

[20] Oshada Jayasinghe, Damith Anhettigama, Sahan Hemachan-
dra, Shenali Kariyawasam, Ranga Rodrigo, and Peshala
Jayasekara. Swiftlane: Towards fast and efficient lane de-
tection. arXiv preprint arXiv:2110.11779, 2021. 2, 3

[21] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020. 3, 6

[22] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark
Pauly, and Johannes Kopf. Self tuning texture optimization.
In Computer Graphics Forum, volume 34, pages 349–359.
Wiley Online Library, 2015. 3

[23] Bo Li, Cheng Chen, Shiwen Dong, and Junfeng Qiao. Trans-
mission line detection in aerial images: An instance segmen-
tation approach based on multitask neural networks. Signal
Processing: Image Communication, 96:116278, 2021. 3

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 4

[25] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In Proceedings of
the European conference on computer vision (ECCV), pages
85–100, 2018. 3

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 2

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

2191



[28] Van Nhan Nguyen, Robert Jenssen, and Davide Roverso. Ls-
net: Fast single-shot line-segment detector. arXiv preprint
arXiv:1912.09532, 2019. 3

[29] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536–2544, 2016. 3

[30] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 3
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[41] Ömer Emre Yetgin, Ömer Nezih Gerek, and Ömer Nezih.
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