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Abstract

From an image of a person, we can easily infer the nat-
ural 3D pose and shape of the person even if ambiguity ex-
ists. This is because we have a mental model that allows us
to imagine a person’s appearance at different viewing direc-
tions from a given image and utilize the consistency between
them for inference. However, existing human mesh recovery
methods only consider the direction in which the image was
taken due to their structural limitations. Hence, we propose
“Implicit 3D Human Mesh Recovery (ImpHMR)” that can
implicitly imagine a person in 3D space at the feature-level
via Neural Feature Fields. In ImpHMR, feature fields are
generated by CNN-based image encoder for a given image.
Then, the 2D feature map is volume-rendered from the fea-
ture field for a given viewing direction, and the pose and
shape parameters are regressed from the feature. To uti-
lize consistency with pose and shape from unseen-view, if
there are 3D labels, the model predicts results including the
silhouette from an arbitrary direction and makes it equal
to the rotated ground-truth. In the case of only 2D labels,
we perform self-supervised learning through the constraint
that the pose and shape parameters inferred from different
directions should be the same. Extensive evaluations show
the efficacy of the proposed method.

1. Introduction

Human Mesh Recovery (HMR) is a task that regresses
the parameters of a three-dimensional (3D) human body
model (e.g., SMPL [34], SMPL-X [42], and GHUM [57])
from RGB images. Along with 3D joint-based methods [7,
32, 46], HMR has many downstream tasks such as AR/VR,
and computer graphics as a fundamental topic in computer
vision. In recent years, there has been rapid progress in
HMR, particularly in regression-based approaches [6,19,22,
25–27,30,49,55,62]. However, despite these achievements,
the existing algorithms still have a gap with the way humans
do, so most of them do not show robust performance against
the inherent ambiguity of the task.

Figure 1. Mental model of human that infers pose and shape
from a single image. From an image of a person, we infer pose
and shape robustly by imagining the person’s appearance not only
from the direction in which the image was taken, but also from
other viewing directions (e.g., left and right sides).

Consider the image of a baseball player running, as
shown in Fig. 1. For the given single image, we can easily
infer that the person’s right elbow and left leg are extended
backward in a 3D space, despite the presence of inherent
ambiguity (e.g., depth and occlusion). This is because we
have a mental model that allows us to imagine a person’s ap-
pearance at different viewing directions from a given image
and utilize the consistency between them for inference. Re-
cently, many state-of-the-art studies have successfully uti-
lized knowledge similar to that used by humans such as hu-
man dynamics [20] and temporal information [8,23,35,55].
However, to the best of our knowledge, there have been no
studies proposed methods that consider 3D space for HMR
similar to the way we infer pose and shape through appear-
ance check between different views in 3D space.

To overcome this issue, we propose “Implicit 3D Human
Mesh Recovery (ImpHMR)” that can implicitly imagine a
human placed in a 3D space via Neural Feature Fields [40].
Our assumption is that if the model is trained to infer a hu-
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man’s pose and shape at arbitrary viewing directions in a
3D space from a single image, then the model learns better
spatial prior knowledge about human appearance; conse-
quently, the performance in the canonical viewing direction
in which the image was taken is improved.

To achieve this, we incorporate Neural Feature Fields
into regression-based HMR methods. In ImpHMR, it gen-
erates feature fields using a CNN-based image encoder for a
given image to construct a person in 3D space, as shown in
Fig. 2. A feature field represented by a Multi-Layer Percep-
tron (MLP) is a continuous function that maps the position
of a point in 3D space and a ray direction to a feature vec-
tor and volume density. In a feature field, which is implicit
representation, all continuous points in a space can have a
respective feature and volume density. Hence, the feature
field is more expressive than explicit representation [59] and
more suitable for representing human appearance from dif-
ferent viewing directions in 3D space.

To infer the pose and shape parameters from the Fea-
ture Field, the 2D feature map is generated by volume ren-
dering for a given viewing direction, and the parameters
are regressed from the rendered feature. Unlike previous
methods, our model can look at a person from an arbitrary
viewing direction by controlling the viewing direction deter-
mined by camera extrinsic (i.e., camera pose). Therefore, to
utilize consistency with pose and shape from unseen-view,
if there are 3D labels, ImpHMR predicts results including
silhouette used as geometric guidance from an arbitrary di-
rection and makes it equal to the rotated ground-truth. In
addition, in the case of only 2D labels, we perform self-
supervised learning through the constraint that SMPL pa-
rameters inferred from different directions should be the
same. These constraints help feature fields represent a bet-
ter 3D space by disentangling human appearance and view-
ing direction; as a result, SMPL regression from canoni-
cal viewing direction in which the image was taken is im-
proved. To verify the efficacy of our method, we conduct
experiments on 3DPW, LSP, COCO, and 3DPW-OCC. The
contributions of our work can be summarized as follows:

• We propose a novel HMR model called “ImpHMR” that
can implicitly imagine a human in 3D space from a given
2D observation via Neural Feature Fields.

• To utilize consistency with pose and shape from unseen-
view, we propose arbitrary view imagination loss and ap-
pearance consistency loss.

• We propose the geometric guidance branch so that the
model can learn better geometric information.

• ImpHMR has 2 ∼ 3 times faster fps than current SOTAs
thanks to efficient spatial representation in feature fields.

• We confirm that having the model imagine a person in
3D space and checking consistency between human ap-
pearance from different viewing directions improves the

HMR performance in the canonical viewing direction in
which the image was taken.

2. Related Work
2.1. Human Mesh Recovery

Human mesh recovery works have been conducted based
on two approaches: optimization-based approaches [3, 29]
and regression-based approaches [19,41,45]. Recent works
tend to focus on regression-based approaches.

Optimization-based Approaches. Early works in this
field have mainly focused on the optimization-based ap-
proaches fitting parametric human body models. SM-
PLify [3] fits the parametric model, SMPL [34] to min-
imize errors between the projection of recovered meshes
and 2D/3D evidence, such as silhouettes or keypoints. In
addition, prior terms are adopted to penalize the unrealis-
tic shape and pose. In subsequent studies, 2D/3D infor-
mation was utilized in the fitting procedure, and optimiza-
tion with more expressive models in the multi-view has
been suggested [18, 29, 61, 64]. Recently, hybrid approach,
which combining optimization and regression-based ap-
proaches, has been proposed and provides a more accu-
rate pseudo ground-truth 3D (e.g., SPIN [25] and EFT [17])
for 2D images. Despite the accurate results generated via
optimization-based approaches, the fitting processes still re-
mained slow and sensitive to initialization.

Regression-based Approaches. To avoid the issues of
optimization-based methods, recent works have adopted
regression-based approaches and utilized the powerful
learning capability of deep neural networks [6, 9, 10, 14, 19,
25, 41, 45]. Deep networks were directly used to regress
model parameters from a single RGB image and supervised
with 2D/3D annotations, such as 3D shape ground truth,
keypoints, silhouettes, and parts segmentation. Regression-
based methods have made significant advances by adopting
network architectures that were suitable to learn different
types of supervision signals [28,39,43–45,47,52,53,58,60].
Zhang et al. [62] proposed a pyramidal mesh alignment
feedback that allows images and meshes to be well aligned,
paying attention to the fact that there is no forward feedback
when conventional regressors infer SMPL parameters itera-
tively. In addition, Li et al. [30] proposed a hybrid approach
with joint estimation using inverse kinematics, and [24, 63]
and [22, 49] proposed a method for a situation with occlu-
sion and multi-person, respectively. Furthermore, recent
studies have successfully utilized knowledge similar to that
used by humans, such as human dynamics [20] and tempo-
ral information [8, 23, 35, 55]. However, to the best of our
knowledge, there have been no studies that proposed meth-
ods that consider 3D space for HMR similar to the way we
infer pose and shape through appearance checks between
different views in 3D space.
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Figure 2. Overview of ImpHMR architecture. Given an image of a person, ImpHMR can implicitly imagine the person in 3D space and
infer SMPL parameters viewed from an arbitrary viewing direction ϕ through Feature Fields Module. The model infers parameters from
arbitrary directions during training to have a better 3D prior about person; consequently, regression performance in Canonical Viewing
Direction is improved. For simplicity, we omit notation ϕ and write loss functions in Sec 3.4 abstractly according to the form of the output.

2.2. Implicit Neural Representations

Neural Radiance Fields. Previously, in 3D reconstruc-
tion, differentiable rendering techniques have been adopted
to overcome the requirement for 3D supervision [4, 33]. A
radiance field is a continuous function whose input is a set
of a 3D location and a 2D ray direction, and its output is an
RGB color value and a volume density [5, 37]. To exploit
the effective non-linear mapping capability of deep neural
networks, Mildenhall et al. [38] proposed to learn Neural
Radiance Fields (NeRFs) by parameterizing with a Multi-
Layer Perceptron (MLP) and successfully combining with
volume rendering for novel view synthesis.

Neural Feature Fields. Since the success of NeRFs [38],
generative models for neural radiance fields have been pro-
posed [40, 48]. To get better representations of objects,
Niemeyer et al. [40] proposed Generative Neural Feature
Fields (GIRAFFE) that replace the color output with a
generic feature vector. In addition, neural feature fields con-
dition the MLP on latent vectors of the shape and appear-
ance of objects. Therefore, unlike NeRFs that fits the MLP
to multi-view images of a single scene, neural feature fields
have the capability to generate novel scenes. In this study,
we adopt Neural Feature Fields to design a mental model
that imagines a human in a 3D space from a single image.

3. Methodology
The overall framework of the proposed method is shown

in Fig. 2. In this section, we provide a detailed explanation
of the proposed method. First, we recapitulate the outline
of Neural Feature Fields [40] and SMPL body model [34].
Then, we describe the model architecture and training ob-
jective of the proposed method.

3.1. Neural Feature Fields

A Neural Feature Field [40] is a continuous function h
that maps a 3D point x ∈ R3 and a ray direction r ∈ S2 to
a volume density σ ∈ R+ and an Mf -dimensional feature
vector f ∈ RMf . When h is parameterized by a deep neural
network, the low-dimensional input x and r are first mapped
to higher-dimensional features through the positional en-
coding [38,51] so that they can be mapped to feature vectors
f capable of representing complex scenes. Concretely, each
element of x and r is mapped to a high-dimensional vector
through the positional encoding, as follows:

γ(t, L) =

(sin(20tπ), cos(20tπ), . . . , sin(2Ltπ), cos(2Ltπ))
(1)

where the scalar value t is an element of x and r, and L is
the number of frequency octaves.

Unlike Neural Radiance Fields (NeRFs) [38] that out-
puts an RGB color value, Neural Feature Fields have the
potential to be utilized in various downstream tasks be-
cause it outputs a feature vector for a given 3D point and
a ray direction. For the generative perspective, Niemeyer et
al. [40] proposed a novel generative model for Neural Fea-
ture Fields. In their model, called GIRAFFE, the object
representations are represented by Neural Feature Fields
(denoted as h) parameterized by Multi-Layer Perceptron
(MLP). In order to express different objects (in our case,
people with different poses and shapes), the MLP is condi-
tioned on latent vectors representing the object’s shape (zs)
and appearance (za) as follows:

h : RLx × RLr × RMs × RMa → R+ × RMf

(γ(x), γ(r), zs, za) 7→ (σ, f)
(2)
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where Lx and Lr denote output dimensions of the positional
encodings; Ms and Ma denote dimension of zs and za re-
spectively; σ and f denote a volume density and a feature
vector. Finally, the model generates a realistic and control-
lable image through volume and neural rendering from in-
ferred feature fields representing a specific scene.

In this work, we incorporate such a representation into
conventional regression-based human mesh recovery so that
the algorithm can implicitly imagine a person placed in a
three-dimensional space.

3.2. SMPL Body Model

SMPL [34] is a parametric human body model. It pro-
vides a function M(θ,β) that takes pose and shape param-
eters (denoted as θ ∈ R72 and β ∈ R10 respectively) as
inputs and outputs a body mesh M ∈ R6890×3. The pose
parameters consist of a global body rotation and 23 relative
joint rotations. The shape parameters are the first 10 co-
efficients in the PCA shape space. For a given mesh, 3D
joints J can be obtained by linear combination of the mesh
vertices, J = WM , with pre-trained linear regressor W .

3.3. Model Architecture

The intuition behind our method is that if the model
is trained to infer a human’s pose and shape at arbitrary
camera viewing directions in 3D space, the model learns
spatial prior knowledge about human’s appearance; conse-
quently, the performance in the canonical viewing direction
in which the image was taken is improved. To achieve this,
as depicted in Fig. 2, our model mostly follows the HMR
paradigm [19] where the input is an image of a person and
output is the set of SMPL body model parameters, but there
is a major difference in the Feature Fields Module. In this
section, we first describe the operation of the Feature Fields
Module consisting of Feature Fields Generation and Vol-
ume Rendering, and then explain Parameter Regression and
Geometric Guidance Branch using the module.

Feature Fields Generation. The goal of the Feature
Fields Module is to construct the person in 3D space at
the feature-level so that the model can look at the person
from an arbitrary viewing direction. Given an input image
I , we first encode the image using the CNN Encoder g (i.e.,
ResNet-50 [12] before the global average pooling) and ob-
tain the feature vector z = g(I) ∈ R2048×7×7. The encoded
feature vector z may contain both information about the
foreground and background of the given image. Thus, we
use the Foreground Attention [56] A and obtain the human-
related feature vector zfg = GAP (A(z)) ∈ R2048, where
GAP (·) denotes global average pooling. Finally, the MLP
(denoted as h) representing feature fields is conditioned on
the latent vector zfg, and implicitly expresses the human in
a 3D space.

Figure 3. Volume rendering procedure in a neural feature field.
To extract a 2D feature map from the Feature Field, sample points
on the ray direction ri,j . From the volume density σ and feature
vector f , the 2D feature map is obtained by Numerical Integration.

Volume Rendering. In the feature field, we can look at
the person represented by the feature field from an arbitrary
viewing direction by controlling the camera pose (i.e., cam-
era extrinsic). For the camera pose, since the ambiguity of
the human pose occurs in the horizontal direction, we fix
the elevation of the camera pose to 0° and control only the
azimuth (denoted as ϕ). For simplicity, we denote the cam-
era pose as ϕ. Also, we define the direction in which the
image was taken as Canonical Viewing Direction (ϕ = 0).

To infer the human pose and shape viewed from a view-
ing direction ϕ, the 2D feature map fϕ ∈ R2048×H×W

should be obtained from the feature field by volume ren-
dering [38], where H and W denote the spatial resolutions
of the feature. Given the camera pose ϕ, let {xi,j,n}Ns

n=1 be
sample points on the ray direction ri,j for the (i, j) location
of the 2D feature map, where Ns is the number of sample
points. We omit i and j for simplicity. Then, as shown in
Fig. 3, we can obtain a feature vector fn ∈ R2048 and a
volume density σn for each 3D point x as follows:

(σn, fn) = h(γ(xn), γ(r), zfg). (3)

where γ denotes the positional encoding.
Finally, using Numerical Integration as in [40], volume

rendered feature vector frend ∈ R2048 is obtained as follows:

frend =

Ns∑
n=1

τnαnfn τn =

n−1∏
k=1

(1− αk) αn = 1− e−σnδn

(4)

where τn is the transmittance, αn the alpha value for xn,
and δn =

∣∣|xn+1 − xn|
∣∣
2

the distance between neighboring
sample points. We repeat this process for each spatial loca-
tion (i, j) and obtain the 2D feature map fϕ ∈ R2048×H×W ,
as in [40]. Finally, to use the feature map for SMPL parame-
ter regression, we generate feature vector zϕ = AGG(fϕ) ∈
R2048, where AGG(·) denotes aggregation layer consisting
of single depthwise convolution.

Parameter Regression. We have obtained the feature
vector zϕ that contains the information about the person
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Figure 4. SMPL parameter and silhouette regression with con-
trolling camera viewing direction. Top: regression from the
Canonical Viewing Direction (ϕ = 0), as in conventional meth-
ods. Bottom: regression from an arbitrary viewing direction.

viewed from the camera pose ϕ through Feature Fields
Module. From the feature vector zϕ, ImpHMR predicts the
SMPL model Θϕ = {θϕ,βϕ,πϕ} using the regressor R(·)
as Θϕ = R(zϕ), where each element of Θϕ denotes the
pose, shape, and camera parameters inferred from the view-
ing direction ϕ respectively. Note that, when ϕ = 0 (in
short, ϕ0), ImpHMR outputs Θϕ0 that is the inference result
viewed from the direction in which the image was taken,
as in conventional regression-based methods, and otherwise
outputs the inference result viewed from a viewing direction
ϕ, as shown in Fig. 4. Therefore, after the training, we use
the ϕ fixed to 0 for testing.

From the predicted parameters Θ, we can generate the
body mesh with vertices M = M(θ,β) ∈ R6890×3. Sub-
sequently, using the pre-trained linear regressor, 3D joints
J ∈ RNj×3 (J3D in Fig. 2) can be regressed from the mesh
vertices M , where Nj is the number of joints. Furthermore,
2D keypoints K ∈ RNj×2 (J2D in Fig. 2) are obtained as
K = Π(J), where Π(·) denotes the projection function
from weak-perspective camera parameters π ∈ [s, t] (s and
t denote the scale and translation parameters, respectively).

Geometric Guidance Branch. ImpHMR is trained to
regress the rotated ground-truth viewed from an arbitrary
viewing direction ϕ to learn spatial prior of human’s appear-
ance (see Sec. 3.4). However, unlike GIRAFFE, which gen-
erates images, our model regresses parameters (i.e., SMPL),
so there might not be enough information for the model to
learn the geometry of 3D space. Thus, as shown in Fig. 4,
we have the model reconstruct the silhouette Sϕ (viewed at
direction ϕ) from the 2D feature map fϕ using deconvolu-
tion D(·) as Sϕ = D(fϕ). To explicitly give geometric su-
pervision for unseen-view, we generate the G.T. silhouette
from the G.T. SMPL mesh rotated by the viewing direction
using NMR [21], as shown in Fig. 5. Note that, the geomet-
ric guidance branch is used only for training.

Figure 5. Generating ground-truth silhouettes viewed from
unseen-view. G.T. silhouette from an arbitrary viewing direction
is generated by rotating the mesh of SMPL G.T. and rendering it.

3.4. Training Objective

The final goal of our method is to improve the regres-
sion performance in the canonical viewing direction (ϕ0) by
having the model learn spatial prior about the person in 3D
space. In this section, we describe the following three ob-
jectives for training: Canonical View Regression, Arbitrary
View Imagination, and Appearance Consistency Loss.

Canonical View Regression Loss. This is the constraint
for inference from canonical viewing direction (ϕ0) just like
previous methods [19,25]. 2D keypoints Kϕ0

and 3D joints
Jϕ0 are obtained from inferred SMPL parameters (i.e., θϕ0 ,
βϕ0 , and πϕ0 ), making them close to their G.T. as follows:

Lreg = λ2d||Kϕ0
− K̂||+ λ3d||Jϕ0

− Ĵ ||

+λpose||θϕ0
− θ̂||+ λshape||βϕ0

− β̂||,
(5)

where || · || is the squared L2 norm; K̂, Ĵ , θ̂, and β̂ denote
the ground-truth 2D keypoints, 3D joints, and SMPL pose
and shapes, respectively following the notation of [62].

Arbitrary View Imagination Loss. To leverage the con-
sistency of pose and shape from unseen-views, we train the
model to infer human’s appearance viewed at arbitrary di-
rections. Thus, if 3D labels exist, we use the constraint that
the predicted result from an arbitrary viewing direction ϕ
(sampled from the distribution of camera pose pcam) should
be equal to the ground-truth rotated by −ϕ as follows:

Limag = Eϕ∼pcam [λ3d||Jϕ − Ĵ−ϕ||+ λsilh.||Sϕ − Ŝ−ϕ||

+λpose||θϕ − θ̂−ϕ||+ λshape||βϕ − β̂||],
(6)

where Ĵ−ϕ is ground-truth 3D joints rotated by −ϕ in hor-
izontal direction, Ŝ−ϕ is G.T. silhouette viewed at −ϕ, and
θ̂−ϕ is ground-truth pose rotated by −ϕ only for the global
orientation, and pcam ∼ U [0, 2π]. Using the constraint, we
can disentangle human appearance and viewing direction,
resulting in better spatial prior about humans in 3D space.

Note that we rotate the ground-truth by −ϕ because the
viewing direction and shown person’s appearance are ro-
tated oppositely. In addition, for the ground-truth shape pa-
rameters β̂, we do not apply the rotation because it is inde-
pendent of the viewing direction.
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Appearance Consistency Loss. ImpHMR can make pre-
dictions in various viewing directions from a single image.
By utilizing this capability of the model, we perform self-
supervised learning through the constraint that SMPL pa-
rameters inferred from different directions (sampled from
pcam) should be the same if there are only 2D labels as:

Lcons = Eϕ1,ϕ2∼pcam [λpose||θ′
ϕ1

− θϕ2 ||
+λshape||βϕ1

− βϕ2
||],

(7)

where θ′
ϕ1

denotes the modified parameters where only the
global orientation of the inferred pose parameters θϕ1

is
changed by ϕ2 − ϕ1 amount. Finally, our overall loss func-
tion is Lall = Lreg +Limag +Lcons. We selectively use each
loss function depending on whether 3D labels are available
or not and our model is trained end-to-end manner.

4. Experiments
4.1. Datasets and Evaluation Metrics

Following previous works [19, 24, 25], we use a mix-
ture of 2D and 3D datasets. We use MPI-INF-3DHP [36]
and Human3.6M [13] with ground-truth SMPL as our 3D
datasets for training. Also, MPII [1], COCO [31], and
LSPET [16] with the pseudo-ground-truth SMPL provided
by [17] are used as 2D datasets. As in PARE [24], we divide
the training process into two phases to reduce the overall
training time. We first train our model on COCO for abla-
tion studies, and then obtain the final performance using a
mixture of all datasets for comparison with SOTA methods.
For evaluation, we use 3DPW [54] and 3DPW-OCC [63]
for quantitative evaluation. Our method is evaluated using
mean per joint position error (MPJPE), Procrustes-aligned
mean per joint position error (PA-MPJPE), and per-vertex
error (PVE) metrics. For qualitative evaluation, we evaluate
the quality of the inferred mesh on 3DPW, LSP [15], and
COCO validation sets. More description about datasets is
in the supplementary material.

4.2. Experimental Results

In this section, we validate the effectiveness of the pro-
posed method. First, we compare the performance of Im-
pHMR with previous SOTA methods. Then, we confirm
whether ImpHMR has the ability to infer human appear-
ance viewed from different viewing directions in 3D space.
Finally, the efficacy of each of the methods is validated.

Comparison with State-of-the-Art. First, we evaluate
the human mesh recovery performance of ImpHMR. Ta-
ble 1 shows the quantitative results of previous state-of-the-
art and our method on 3DPW test split. As shown in Tab. 1,
our method (denoted as “ImpHMR (Ours)”) shows superior
performance compared to other methods for all metrics in
both temporal- and frame-based approaches. In particular,

3PDW

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Te
m

po
ra

l

HMMR [20] 116.5 72.6 139.3
DSD [50] - 69.5 -
Arnab et al. [2] - 72.2 -
Doersch et al. [11] - 74.7 -
VIBE [23] 93.5 56.5 113.4
TCMR [8] 95.0 55.8 111.3
MPS-Net [55] 91.6 54.0 109.6

Fr
am

e-
ba

se
d

HMR [19] 130.0 76.7 -
GraphCMR [26] - 70.2 -
SPIN [25] 96.9 59.2 116.4
PyMAF [62] 92.8 58.9 110.1
I2L-MeshNet [39] 100.0 60.0 -
ROMP [49] 89.3 53.5 105.6
HMR-EFT [17] - 54.2 -
PARE [24] 82.9 52.3 99.7

ImpHMR (Ours) 81.8 49.8 96.4
ImpHMR (Ours) w. 3DPW 74.3 45.4 87.1

Table 1. Results on 3DPW. Best in bold, second-best underlined.
Values are in mm. “ImpHMR (Ours)” and “ImpHMR (Ours) w. 3DPW”
denote the model trained w/o and w. 3DPW train set, respectively.

Figure 6. Qualitative results. Qualitative comparison of the pro-
posed method with SPIN [25] and HMR-EFT [17] on COCO val-
idation set and 3DPW test split.

ImpHMR shows an -4.4mm (8.1%) performance improve-
ment in PA-MPJPE metric compared to HMR-EFT [17].
Also, it shows a -1.1mm (1.3%), -2.5mm (4.8%), and -
3.3mm (3.3%) improvement in MPJPE, PA-MPJPE, and
PVE, respectively, compared to PARE [24], the most pre-
vious best performing model. Also, we report the results of
the model trained using 3DPW train split (denoted as “Im-
pHMR (Ours) w. 3DPW” in Tab. 1) to see the performance of
the model when using the ground-truth SMPL labels. Com-
pared to when the dataset is not used, ImpHMR shows a
significant performance improvement and outperforms all
methods by a large margin.

We perform an evaluation on 3DPW-OCC [63], an

21153



Figure 7. Inferred SMPL mesh and silhouettes viewed from
different viewing directions. Results inferred by changing the
viewing direction clockwise by 90◦ from canonical viewing direc-
tion. Note that the inference results are not by rotating the mesh
inferred from the canonical viewing direction, but directly infer-
ring a person viewed from different directions in 3D space.

occlusion-specific dataset, to verify the performance of Im-
pHMR in the presence of ambiguity (e.g., occlusion). Ta-
ble 2 shows the result. For fair comparison, all meth-
ods in the table are trained on the same datasets (i.e., Hu-
man3.6M [13], COCO [31], and, 3DOH [63]). As shown in
Tab. 2, ImpHMR outperforms the occlusion-specific meth-
ods Zhang et al. [63] and PARE [24], including HMR-
EFT [17], by a large margin. This demonstrates that the
structure and learning method of ImpHMR is suitable for
modeling situations in which ambiguity is present.

For qualitative comparisons, we compare our method
with SPIN [25] and HMR-EFT [17]. As shown in the Fig. 6,
ImpHMR outputs a mesh that is well aligned with the image
even when a person with extreme poses or ambiguity exists.

Results from Different Viewing Directions. In this sec-
tion, we verify that ImpHMR successfully imagines a per-
son in 3D space. To do this, we report the mesh recon-
struction results from different viewing directions ϕ (i.e.,
0◦, 90◦, 180◦, and 270◦) for a given image of a person. As
shown in Fig. 7, we confirm that ImpHMR can imagine a
person’s appearance not only from the canonical viewing
direction, but also from the image from the left, right, and
back of the person. Note that the inference results are not
by rotating the mesh inferred from the canonical viewing di-
rection, but the results of directly inferring a person viewed
from different directions in 3D space. A viewing direction
can be an arbitrary angle; herein, we report only the results

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Zhang et al. [63] - 72.2 -
HMR-EFT [17] 94.4 60.9 111.3
PARE [24] 90.5 56.6 107.9

ImpHMR (Ours) 86.5 54.4 104.7

Table 2. Results on 3DPW-OCC. For fair comparison, all meth-
ods are trained using the same datasets (i.e., Human3.6M, COCO,
and 3DOH). Best in bold.

Method SPL. 1 SPL. 2 SPL. 3 LSP dataset

Lreg 0.0763 0.0875 0.0711 0.0844
Lreg + Limag 0.0618 0.0512 0.0639 0.0774
Lreg + Limag + Lcons 0.0361 0.0314 0.0445 0.0561

Table 3. Entanglement between shape and viewing direction.
Each value denotes the degree of variation of the inferred shape
when inferred by changing the viewing direction. All methods are
trained using COCO dataset.

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Baseline 101.6 58.3 117.2
w

/o
D
(·
) Lreg 96.5 58.9 116.0

Lreg + Limag 94.9 57.9 114.2
Lreg + Limag + Lcons 93.5 57.5 113.1

Lreg + Limag + Lcons 92.7 57.0 112.1

Table 4. Effectiveness of each proposed method. The results are
evaluated on the 3DPW dataset. Values for all metrics are in mm.
w/o D(·) denotes the method trained without Geometric Guidance
Branch. All methods are trained using COCO dataset.

from the 4 different angles.
Additionally, the last row of Fig. 7 is the person’s sil-

houettes in Sample 3 viewed from various directions by us-
ing D(·), and it can be seen that the inferred silhouettes are
similar to what a human imagines. This demonstrates that
spatially meaningful information is contained in a volume-
rendered 2D feature map fϕ by an appropriate guide of Ge-
ometric Guidance Branch.

To quantitatively verify the 3D spatial construction capa-
bility of ImpHMR, we measure the Entanglement between
the Shape and the Viewing direction (in short, ESV). If the
3D space is well constructed in Neural Feature Fields, the
body shape should be consistent despite changes in view-
ing direction. Therefore, we change the viewing direction
from 0◦ to 360◦ at 1◦ intervals and define the average of
the standard deviations of the inferred shape parameters as
ESV, which is the degree of entanglement. We measure the
ESV for each sample image in Fig. 7 and the entire LSP [15]
dataset. As shown in Tab. 3, we can notice that the degree
of entanglement decreases as the proposed constraints are
added. This indicates that ImpHMR successfully disentan-
gles body shape and viewing direction, as a result imagining
a person in a 3D space well. A detailed description of ESV
is in the supplementary material.
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Figure 8. Inferred SMPL mesh from different viewing direc-
tions with Explicit representation. Results inferred by changing
the direction clockwise by 90◦ from canonical viewing direction.

Ablation Studies. To verify the efficacy of each of the
proposed methods, we evaluate the performance change by
adding each method. For a fair comparison, we train a
baseline model (denoted as “Baseline” in Tab. 4) that has
the same model architecture and the number of parameters
as ImpHMR (except AGG(·)) but does not perform feature
fields generation and volume rendering. As shown in Tab. 4,
we can notice that all methods provide a positive contri-
bution. Compared to Baseline, it can be seen that there is
an improvement even when just generating a feature vector
through volume rendering within feature fields (denoted as
Lreg). This verifies the inference method of ImpHMR is
suitable for HMR tasks. In addition, as shown in Tab. 3 and
Tab. 4, by adding the proposed constraints, including sil-
houette loss with geometric guidance branch, the better the
model disentangles the person’s appearance and viewing di-
rection in 3D space, and the performance increases accord-
ingly. Through this, we can confirm that our assumption
about the proposed method is valid.

Table 5 shows the ablation of the model architecture (i.e.,
aggregation layer AGG and foreground attention A). We
use three types of AGG: global average pooling (GAP),
convolution (Conv.), and depth-wise convolution (DW-
Conv.), and report the performance of combinations with A.
As can be seen in Tab. 5, AGG shows good performance in
the order of DWConv, GAP, and Conv. We can notice that
foreground attention has a positive effect except for Conv.
We finally adopted the best-performing set of Tab. 5 (e).

ImpHMR uses neural feature fields, an implicit represen-
tation, to imagine a person in 3D. However, as a means of
expressing 3D space, there is also an explicit representation
such as the voxel-based method (e.g., PTN [59]). To ex-
plore the suitability of explicit representation, we check the
performance of the baseline in which Feature Fields Mod-
ule of ImpHMR is replaced by a voxel-based representa-
tion. For the volumetric representation, we use Perspective
Transformer Nets [59] (PTN). For a fair comparison, we set
the voxel resolution to 4×4×4, the same as ImpHMR. Since
PTN can perspective project features for a given camera ex-
trinsic, we train the baseline using the same constraints (i.e.,
Lreg , Limag , and Lcons) as in ImpHMR. Figure 8 shows
the inference results of the baseline, and we can notice that
it fails to model 3D space. This indicates that implicit rep-
resentation is more suitable for modeling a person in 3D.

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

HMR-EFT [17] 99.0 59.9 -

AGG Aggregation A Attention

(a) GAP with A 95.3 57.6 114.5
(b) GAP without A 95.8 57.9 114.9

(c) Conv. with A 96.0 58.0 114.6
(d) Conv. without A 95.2 57.7 114.9

(e) DWConv. with A 92.7 57.0 112.1
(f) DWConv. without A 94.7 57.9 113.8

Table 5. Ablation study of the model architecture. “AGG Ag-
gregation” denotes the type of aggregation layer in volume render-
ing. “A Attention” denotes whether foreground attention is used.
All methods are trained using COCO dataset.

Method Res.1 Res.2 Res.4 Res.6

HMR-EFT [17] 115.5 - - -
PyMAF [62] 33.6 - - -
PARE [24] 27.5 - - -

ImpHMR (Ours) 88.8 88.4 87.1 78.2

Table 6. Comparison of inference speed. The numbers are in
frames per second (fps). The Res. denotes the spatial resolution
of a 2D feature map in volume rendering for our method. Thanks
to efficient spatial representation in feature fields, ImpHMR shows
about 2 ∼ 3 times faster fps compared to PyMAF and PARE.

Table 6 compares the inference speed between ImpHMR
and the current SOTA methods. For fair evaluation, frames
per second (fps) is calculated by averaging the time it took
for each model to infer 10000 times of an input image of
224×224 size on RTX 2080Ti GPU. As shown in Tab. 6, we
can notice that ImpHMR is slightly slower than HMR-EFT,
but still has real-time performance. Especially, ImpHMR
has 2 ∼ 3 times faster fps than PyMAF and PARE, which
are current SOTA methods. This is because ImpHMR is
capable of efficient spatial representation within neural fea-
ture fields compared to the latest SOTA methods that utilize
spatial information.

5. Conclusion and Future Works
We have introduced a novel HMR model called “Im-

pHMR” that can implicitly imagine a human in 3D space
from a given 2D observation via neural feature fields. To
utilize consistency with pose and shape from unseen-views,
we propose arbitrary view imagination loss and appearance
consistency loss. Also, we propose geometric guidance
branch that helps the model can learn better geometric infor-
mation. ImpHMR has 2 ∼ 3 times faster fps than current
SOTAs thanks to efficient spatial representation in feature
fields. Also, extensive evaluation proves that our method
is valid. For future works, we can make a more occlusion-
robust model by carefully modeling volume density.
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