
Transformer-based Unified Recognition of Two Hands Manipulating Objects

Hoseong Cho Chanwoo Kim Jihyeon Kim Seongyeong Lee
Elkhan Ismayilzada Seungryul Baek

UNIST, South Korea

Abstract

Understanding the hand-object interactions from an
egocentric video has received a great attention recently. So
far, most approaches are based on the convolutional neural
network (CNN) features combined with the temporal encoding
via the long short-term memory (LSTM) or graph convolution
network (GCN) to provide the unified understanding of two
hands, an object and their interactions. In this paper, we
propose the Transformer-based unified framework that provides
better understanding of two hands manipulating objects. In
our framework, we insert the whole image depicting two hands,
an object and their interactions as input and jointly estimate
3 information from each frame: poses of two hands, pose of an
object and object types. Afterwards, the action class defined
by the hand-object interactions is predicted from the entire
video based on the estimated information combined with the
contact map that encodes the interaction between two hands
and an object. Experiments are conducted on H2O and FPHA
benchmark datasets and we demonstrated the superiority of our
method achieving the state-of-the-art accuracy. Ablative studies
further demonstrate the effectiveness of each proposed module.

1. Introduction
Estimating poses and actions of an egocentric video involving

two hands and an object is an important factor of various appli-
cations such as augmented reality (AR), virtual reality (VR) and
human computer interaction (HCI). Previously, there has been
much progress in the hand pose estimation [3–5,11,12,18,31,33,
38,43,53,61] and in the object 6D pose estimation [10,26,28,36,
51,57,58] separately from each other. Recently, there has been
a surge in demand for understanding hand-object interactions,
leading to the emergence of methods for joint pose estimation of
hands and objects [22,23,39]. However, most methods focus on
the separate problem either for the pose estimation [9,13,20,39]
or for the interaction recognition [6,42,48]. Furthermore, most
approaches developed the pose estimation method based on
the already cropped tight bounding boxes of hands and objects
which are not realistic. Therefore, the pose estimation accuracy

open chips grab cappuccino

Figure 1. Example results of pose estimation and interaction
recognition for two hands manipulating objects. Our method first
estimates hand poses, object poses and object types. Then, interaction
class is estimated using estimated information combined with contact
maps. (Row 1) example input video v for open chips and grap
cappuccino; (Row 2) contact maps for left hand mLeft, object mO,
and right hand mRight; (Row 3) estimated 3D poses of hands h, a 3D
object pose o and the estimated interaction class a.

is frequently affected by the performance of the detector.
To tackle the issue, Tekin et al. [50] proposed an unified

framework that estimates the 3D hand pose, the object 6D pose
and their action classes. They developed the pose estimator
extending the architecture of [45] towards 3D space and
recognize actions using estimated hand and object poses. The
long short-term memory (LSTM) [25]-based architecture is
further used to map the information towards the action classes.
Kwon et al. [32] further extended the framework towards
involving two hands rather than one hand: They estimated 3D
poses of two hands, 6D pose of an object and their action classes.
The proposed method involves the graph convolutional network
(GCN) to model the hand-object interaction considering the
geometric relation between hand and object. In both works,
estimated hand and object poses (i.e. skeletons) were used as
the cue to the interaction recognition.
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In this paper, we propose the Transformer-based unified
framework (H2OTR) to estimate poses of two hands, object
pose, object types and interaction classes between hands and ob-
ject. We construct the Transformer-based architecture similarly
to [7, 60] and it is able to predict the poses from each frame
without hand/object detectors or any additional post-processing
such as non-maximal suppression (NMS). It also estimates hand-
object interaction classes from the entire videos. We additionally
exploit the contact map between hand and object meshes by
recovering hand meshes from hand poses via inverse kinematics.
We demonstrated that the contact map expresses the explicit
relational information between hands and object and is used
as the crucial cue for the hand-object interaction recognition
task. We summarize our contributions in this paper as follows:

• We propose the Transformer-based unified framework for
estimating poses of two hands, object poses, object types
and hand-object interaction classes at a single inference
step.

• We introduce a novel interaction recognition method
which utilizes a contact map. To the best of our knowledge,
this is the first work to exploit the contact map as a cue
for interaction recognition.

• We achieve the state-of-the-art performance in pose
estimation and interaction recognition tasks using
H2O [32] and FPHA [18] datasets.

2. Related work
In this section, we introduce related researches about our

work: 1) Hand and object pose estimation from monocular RGB
images, 2) Hand-object interaction recognition, 3) Transformer
in vision tasks.

2.1. Hand and object pose estimation

3D Hand pose estimation. Hand pose estimation has been
studied extensively in recent years. Traditionally, 3D hand pose
estimation has been mainly done in a depth image using the
Kinect sensor. Depth-based hand pose estimation generally
utilizes datasets that can handle various camera perspectives,
pose variations and shape. However, annotating such datasets
is very expensive. In order to solve this problem, Baek et al. [3]
proposed a method of synthesizing data in skeleton space. They
synthesized depth map entries by utilizing hand pose generator
which is learned to synthesize depth maps from skeleton entries.
Hand pose estimation from a single RGB image are also being
steadily appearing [4,5,12,31,38,61]. Zimmerman et al. [61]
first proposed to estimate the 3D hand pose on regular RGB
images using deep CNNs. Recently, Lin et al. [38] proposed
a graph convolution reinforced Transformer methodology that
estimates pose and mesh on a single image. More recently,
related research has been expanded to the 3D hand pose estima-
tion based on various viewpoints and video inputs [11,18,53].

Garcia-Hernando et al. [18] collected RGB-D video, and
estimated 3D hand pose from the video frame. Chen et al. [11]
estimated 3D hand poses with the self-supervised learning
methodology without involving explicit 3D annotations.
Object 6D pose estimation. The main idea of object 6D pose
estimation is to estimate the 6 degrees of freedom (6-DoF)
position and orientation of rigid objects in 3D space. Object
pose estimation has been actively studied until recently, and
they are performed on both depth and single RGB images.
Most recent methods [10,36,57] directly regress object poses
using CNNs to map the observed image into the 3D object
poses. Representatively, Chen et al. [10] proposed a model
for estimating category-level 6D object size and pose. They
learned canonical shape space to solve the intra-class shape
variation issue. However, direct pose estimation is affected by
the occlusion driven from other obstructions or various lighting.
To relieve the issue, correspondence-based method has been
proposed recently. Tekin et al. [51] presented a single-shot
method for detecting the position of a object in a single RGB
image and estimating a 6D pose. In addition, methods for
performing pose refinement based on roughly estimated initial
poses were also shown in multiple literatures [26,28,58].
Hand-object pose estimation. Recently, studies to understand
the interaction between hands and objects [2, 13, 27, 39]
have been active. Hasson et al. [23] first created a synthetic
dataset ”Obman” in which hands and objects interact with, and
proposed a methodology for reconstructing hands and objects
at the same time. Afterwards, real datasets [9,18,20] involving
hand-object interaction began to emerge, methodologies for
estimating the object 6D pose and 3D hand pose were proposed
at the same time. However, in the real-world scenario, people
mostly interact with objects with two-hands, whereas the
existing datasets and methods only consider the single-hand
cases. Then, Kwon et al. [32] proposed the H2O dataset that
captured the scenario where two-hands and an object are
interacting each other, and proposed a method for estimating the
poses of two-hands and an object simultaneously based on [45].

2.2. Hand-object interaction recognition

Action recognition is a classic vision task and it is
mainly performed using the RGB-based features such as
3Dconv [52], I3D [8], Two-stream [47] and SlowFast [17].
Earlier works [6,15,16,42,44,48] on the hand-object interaction
recognition task adopted similar appearance cues to recognize
the hand-object interaction in the egocentric viewpoint.
Recently, Garcia-Hernando et al. [18] showed that 2D and
3D hand poses are more helpful than RGB-based features in
recognizing hand actions. Tekin et al. [50] and Kwon et al. [32]
proposed an unified framework that performs pose estimation
of hands and objects and the hand-object interaction recognition
via long short-term memory (LSTM) or graph convolutional
network (GCN), respectively. In this paper, we present the
Transformer-based unified framework for the same task.
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2.3. Transformers in vision

Transformer showed excellent performance in natural
language field. It has also been extended to the field of computer
vision and has been successfully applied to various tasks such
as object segmentation, detection, and pose estimation. Doso-
vitskiy et al. [14] solved the long-range dependency problem
between the pixels of CNN architecture by dividing the image
into patches. So, they achieved the state-of-the-art performance
in the image classification task. Lin et al. [37,38] and Hampali et
al. [21] used Transformer architecture for pose reconstruction
and estimation. Carion et al. [7] proposed the Transformer-based
architecture that deals with the object detection task without
additional processing such as NMS. However, they had
problems with high computational cost and slow convergence
time. To relieve the issue, many studies [34, 40, 55, 59, 60]
have been appeared. Especially, Zhu et al. [60] predicted
the reference point for each object query of the decoder and
performed cross-attention only with the offset points of the
reference point. As a result, they improved computational cost
and slow convergence speed. Human-object interaction (HOI) is
a task that predicts human and object bounding boxes and their
interactions. Several methods [29,30,49] have demonstrated the
state-of-the-art performance by utilizing the above-mentioned
advantages. Carion et al. [7]’s work has been recently applied
to a multi-human pose estimation task [41, 62]. Unlike the
top-down or bottom-up methods, they could estimate robust
poses without additional post-processing. In this paper, we
dealt with the similar problem in the two hands manipulating
object scenario which involves its own challenges different
from object detection or human pose estimation tasks.

3. Transformer-based unified framework for two
hands and an object: H2OTR

We propose the Transformer-based unified framework, called
H2OTR fH2OTR :V → [H,O,C,A] that simultaneously estimates
outputs of 4 tasks from a given video v∈V ⊂RNV ×W×H×3:
hand poses h ∈ H ⊂ RNV ×2×21×3, object poses o ∈ O ⊂
RNV ×21×3, probability of object types c∈C⊂RNV ×Nc , and
probability of interaction classes a∈A⊂RNa×1, where NV ,
W , H, Nc and Na denote the number of frames in a video,
width and height of the video frames, number of object-types
and the number of interaction classes, respectively.

Our H2OTR fH2OTR = [fHOP, f IA] is divided into two
sub-modules: the hand-object pose estimation network
fHOP :V → [H,O,C] that estimates hand poses H, object poses
O and object types C from each frame of the video V and the
hand-object interaction recognition network f IA : [H,O,C]→A
that performs the interaction recognition of the whole video V
using the estimated hand poses H, object poses O and object
types C as the input.

The hand pose vector h is defined as 21×3-dimensional
array that indicates xyz-coordinates of 21 hand poses. The

object pose vector o is defined as 21× 3-dimensional array
that consists of xyz-coordinates of 8 corners, 12 edge midpoints
and the centroid of the 3D bounding box that tightly surrounds
the objects. The object 6D pose is recovered in the hand-object
interaction recognition network f IA from o applying the rigid
alignment [19] between the predicted object pose and the
ground-truth object pose. The object type is defined based on
the class of foreground objects such as ‘chips’, ‘book’, etc,
combined with a ‘background’ class and it also include two
more classes for ‘left hand’ and ‘right hand’.

In the remainder of this section, we will investigate more
details on each sub-module.

3.1. Hand-object pose estimation

The hand-object pose estimator fHOP : V → [H,O,C] is
involved at this stage, to estimate the poses of two hands, object
poses and object types. It first extracts the multi-scale image fea-
tures si∈S⊂R

H

2i
×W

2i
×d from each frame x∈X⊂RW×H×3

contained in the overall video v ∈ V and input them into
the encoder, decoder and prediction head of the Transformer
architecture. We will elaborate each step in the remainder of
this subsection.
Backbone. We employed the ImageNet pre-trained
ResNet50 [24] architecture as our backbone network. Given
each frame x of the overall video v, the backbone network is ap-
plied to extract multi-scale feature maps, denoted as s3,s4 and s5.
The spatial dimension of si is represented as H

2i ×
W
2i . After that,

to project the channel dimension of each feature map equally
as d dimension, we use the 1×1 convolution layer as follows:

sproj
i =Convi(si), sproj

i ∈R
H

2i
×W

2i
×d (1)

where d = 256, i = 3,4,5 is used and Convi(·) denotes the
1 × 1 convolution layer in each multi-scale level. We also
obtain the additional feature map sproj

6 ∈ RH
64×

W
64×d from s5

via convolution layer which has 3×3 kernels and stride 2. We
flatten each feature map sproj

i along the spatial-axis resulting in
a vector s′i∈R

H

2i
·W
2i

×d. The input to the Transformer encoder
s ∈ R

∑6
i=3(

H

2i
·W
2i

)×d is obtained by adding 2D positional
embeddingPi∈R

H

2i
·W
2i

×d and level embeddingLi∈R
H

2i
·W
2i

×d

to the i-th scale feature map s′i and concatenating responses in
all scales as follows:

s=

6∥∥∥
i=3

(s′i+Pi+Li) (2)

where
∥∥ is the concatenation operation, level embedding Li is

learnable parameters to distinguish multi-scale feature maps
and Pi is a sinusoidal positional embedding describing spatial
locations.
Encoder. Since the scale of the hand and object varies greatly
in the image space according to the distance from the camera,
multi-scale feature maps may useful to predict instances with
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Figure 2. Schematic of overall framework. Our network consists of two-stages: First, the pose estimator fHOP processes each frame x of a video v
involving two hands manipulating objects. We extract multi-scale image features si using ResNet-50 [24] and pass them on the Transformer Encoder-
Decoder Layer. The output of fHOP is prediction for 3D hand poses h, object poses o and classes c. Second, the interaction recognizer f IA receives
the set of estimated 3D hand poses, object poses and classes combined with the contact map m to estimate the hand-object interaction classes a.

various scales in our task. However, multi-scales exhibit higher
computational cost than a single feature map; to relieve this,
we use the deformable attention operation in the encoder layer
as in [60]. The overall encoder is composed of a stack of 6
encoder layers, and each encoder layer consists of a multi-head
deformable self-attention layer with 8 heads followed by a feed
forward network. Given input features s, the encoder extracts
updated features s′′ ∈R

∑6
i=3(

H

2i
·W
2i

)×d which are used in the
deformable cross-attention operation of the decoder.
Decoder. The object queries z ∈ Z ⊂ RN×d are learnable
parameters which are randomly initialized. The decoder updates
object queries to estimate the pose of each instance. The
object queries extract features from the encoder output feature
maps s′′ for deformable cross-attention. The reference point
r∈R2×1 denotes the xy spatial locations specifying where to
attend in the 2D spatial features for the object queries, and it
is estimated from the object queries z via a fully-connected
(FC) layer. The decoder is also a stack of 6 decoder layers,
and each decoder layer consists of a self-attention layer, a
multi-head deformable cross-attention layer having 8 heads [60]
and a feed forward network. Finally, we get the updated output
queries z′ ∈RN×d from the decoder. The updated queries z′

are fed into the prediction head to predict N sets of hand poses
h∈R21×3, object poses o∈R21×3 and probability of object
types c∈RNc×1.
Prediction head. In the Transformer-based object detection
framework [7,60], the bounding box is predicted from the same

head for all types of classes. Contrary to this, since the data
distributions of hand poses and object poses are far different in
our pipeline, we used separate head fhand :Z→H, fobj :Z→O
for hands and objects to predict two offsets ∆h∈R21×3 and
∆o ∈ R21×3 from z′. The final hand and object poses are
predicted by adding the offset to the reference points, as follows:

h=ρ(∆h+ρ−1(r)), o=ρ(∆o+ρ−1(r)), (3)

where ρ is a sigmoid function and r∈R2×1 is a reference point
on the frame x. In addition, class probabilities c ∈RNc×1 is
predicted by another head fcls :Z→C as follows:

c=fcls(z
′) (4)

Finally, we get the prediction set y={h,o,c}. The predicted
poses of hands and objects are in the UVD space and they are
later converted into the camera space using the camera intrinsic
parameters.
Reference point refinement. Since the reference point r is
used to specify the location to sample the feature vector in the
image, it is important to locate the reference points r at the
position of the instances. Therefore, we used the mechanism
to refine the reference points r to increase the performance,
similar to [60]. The reference points are refined based on hand
pose h and object pose o predicted from decoder layers. Let
the hand poses, object poses and probability of object types
predicted by the i-th query in the l-th decoder layer as hl

i, o
l
i,
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cli, respectively. Then, the reference point of the i-th query in
the l+1-th decoder layer is calculated as follows:

r
(l+1)
i =

{
cH(hl

i), if cli denotes hand,
cO(oli), if cli denotes object (5)

where cH(·), cO(·) are the operations to find the center of hand
pose and the center of the object, respectively.

3.2. Hand-object interaction recognition

The hand-object interaction recognition network
f IA : [H,O,C]→A is involved at this stage, to recognize the
hand-object interaction classes a∈A. We input the sequences
of estimated hand poses h∈H, object poses o∈O and object
types c∈C combined with the contact map m∈M information
as input to predict the interaction class a∈A. First, we generate
the hand and object vertices V = {VLeft,VRight,VO} and
then generate the contact maps m = {mLeft,mRight,mO}.
Then, we map them towards the hand-object interaction class
a via Transformer composed of encoder layers having the
self-attention mechanism followed by the feedforward network.

3.2.1 Contact map generation

Benefits of contact maps. Variations in poses of hands and
objects are important cues for recognizing interactions between
hands and objects. However, we observed that recognizing
interactions solely based on the poses of hands and objects
is non-trivial in many cases. As shown in Fig. 3 (a), the first
row denotes the frame from the video having the open chips
interaction and the second row denotes the frame from the video
having the take out chips in H2O dataset [32]. In both actions,
hands move away from the object (i.e. chips) over time. Since
the relative movement of hands and objects are similar in two
videos, it is non-trivial to discriminate their interactions based
solely on the pose information. On the contrary, in Fig. 3(b), we
visualized the contact map that is able to explicitly represent the
part where two hands and an object are contacted. We think this
is a more effective clue to recognize the interaction between
hands and objects even when their poses are similar.
Construction of contact maps. The contact map can be
obtained using the meshes of two hands and an object. While
the mesh estimation could be performed similarly to [4,23], we
take the inverse kinematic (IK) approach which is more efficient.
We propose to apply the HybrIK [35] method developed for
the human body mesh reconstruction task in the hand domain
to obtain the finger angle by finding the relative rotation
matrix that rotates the template hand poses t = {tk}Kk=1 to
the estimated hand poses h= {hk}Kk=1. Differently from the
human bodies, each finger of hands do not involve the twist
angles as fingers cannot be twisted respect to the bones; while
it involves only swing angles. Exploiting the characteristics, we
obtain the angles of the fingers from the estimated 3D poses

(a) Video frame (b) Contact map for palm/back of a right hand

Figure 3. Example cases showing the importance of the contact map
m: The first row is a frame from the open chips video and the second
row is a frame from the take out chips video in H2O dataset. The
third and fourth columns show the contact map obtained from palm
and back of the right hand. While poses are similar in two videos;
the contact map activation could be a robust feature for discriminating
interactions between hands and objects.

h in the deterministic way, as follows:

nk=
tk×hk

∥tk×hk∥
,cosαk=

tk ·hk

∥tk∥·∥hk∥
,sinαk=

tk×hk

∥tk∥·∥hk∥
. (6)

By the Rodrigues formula, the swing rotation matrix Rk is
further derived as follows:

Rk=I+sinαk[nk]×+(1−cosαk)[nk]
2
× (7)

where I is the 3× 3 identity matrix and [nk]× is the skew-
symmetric matrix of nk. The rotation matrix Rk is converted
into the 6D rotation representation and the hand pose parameters
θ is obtained for MANO hand model [46].

We denote the vertices of generated left and right hand
meshes as VLeft∈R778×3,VRight∈R778×3, respectively. In ad-
dition, we sample 2,000 vertex indices from the ground-truth ob-
ject mesh and generate a sampled object verticesVO∈R2,000×3.
Then, we transform them from the object space to the camera
space using the predicted 6D poses. Finally, we use the distance-
based encoding proposed in [27] to generate the contact map m
that is composed of contact maps for left hand mLeft∈R778×1,
right hand mRight ∈ R778×1 and object mO ∈ R2,000×1. The
formula that is used to calculate the i-th vertex of contact map
m={mLeft,mRight,mO}, i.e. mi is as follows:

mi=1−2·(ρ(2D(Vi,Vj))−0.5) (8)

where ρ is the sigmoid function, D is the distance function for
calculating the distance between i-th vertex Vi and its nearest
neighbor Vj. When Vi denotes the vertex of hand contact
maps (i.e. mLeft or mRight), the object vertex is used for Vj,
and when the Vi denotes the vertex of the object contact map
(i.e. mO), hand vertices are used for Vj.
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3.3. Mapping towards the actions

The input to the Transformer is the vector vt that
concatenates information at the t-th frame as follows:

vt = [vLeft
t

⊤;vRight
t

⊤;vO
t
⊤;o⊤t ]

⊤ (9)

where ot denote the estimated object type probability at time
t and vLeft

t ,vRight
t ,vO

t ∈R100×1 are obtained by projecting the
vector that concatenates the mesh vertices V and contact maps
m of left hand, right hand, and object in 100 dimensional space
through the FC layers fL,fR,fO as follows:

vleft
t = fL([V

Left
t ;mLeft

t ]),

vright
t = fR([V

Right
t ;mRight

t ]),

vO
t = fO([V

O
t ;m

O
t ]). (10)

We use the learnable action token α∈R(300+Nc)×1 and vector
vt at each time t as inputs of the Transformer layer. The action
token is refined by aggregating information about all frames
through the self-attention. The action token of the last layer
predicts the interaction class a ∈ A through the MLP. Since
f IA can model the long-range contextual relationship in a video,
it is possible to recognize the interaction classes by capturing
changes in hand-object interactions over time.

3.4. Training H2OTR

Since the Transformer-based methods have the high compu-
tational cost, we separately train the hand-object pose estimator
fHOP and the hand-object interaction classifier f IA in two stages.
Training hand-object pose estimator fHOP.Our hand-object
pose estimation network fHOP predicts N prediction sets of
{yi}Ni=1 where yi = {hi,oi,ci}. Let yGT = {yGT

k }Kk=1 is the
set of yGT

k = {hGT
k ,oGT

k ,cGT
k } which is the ground-truth set

involving K instances. Depending on whether the instance is
a hand or an object, either hGT or oGT is exploited while setting
unused ones as the zero vector. Since N is set as larger number
than the normal number of instances K in the image, we pad
the zero vector ∅ with yGT to make it to the N sets. We search
for the permutation of the N elements σ∈SN with the lowest
cost to find a bipartite matching between these two sets.

σ̂ = argmin
σ∈SN

N∑
i

Cmatch, (11)

where the matching costCmatch is defined measuring the distance
between the ground truth yk and the prediction yσ(k) as follows:

Cmatch = 1{ck≠0}·−log([fhand(z
′
σ(k))]ck)

+ 1{ck∈H}·∥fhand(z
′
σ(k))−hGT

k ∥1
+ 1{ck∈O}·∥fobj(z

′
σ(k))−oGT

k ∥1 (12)

where 1{·} is the indicator function that outputs 1 only when the
statement is true, output 0 otherwise. The cost consists of classi-
fication score, hand and object pose scores. Also, it is calculated
only when the label ck is not 0 indicating the background.

For a permutation σ̂ where the ground-truth set yGT is best
matched to, we applied the hungarian loss LH to train the
hand-object pose estimation network fHOP as follows:

LH(f
HPO) = 1{ck≠0}·−log([fhand(z

′
σ̂(k))]ck)

+ 1{ck∈H}·∥fhand(z
′
σ̂(k))−hGT

k ∥1
+ 1{ck∈O}·∥fobj(z

′
σ̂(k))−oGT

k ∥1. (13)

The hungarian loss is calculated for all pairs (k,σ̂(k)) in the
best permutation σ̂.
Training hand-object interaction recognizer f IA. The
hand-object interaction recognizer f IA predicts the interaction
class probabilities a. To train it, we used the cross-entropy loss
Laction that defines the distance between the ground truth action
aGT={aGT

i }Na
i=1 and the predicted interaction class probability

a={ai}Na
i=1 as follows:

Laction(f
IA)=−

Na∑
i=1

aGT
i ·log(ai). (14)

4. Experiments
We use the Pytorch for our implementation. The size of the

input image is set to be 960× 540 and the random rotation
is applied as a data augmentation. We use AdamW optimizer
with a different learning rate for each network: the learning rate
of 2×10−4 is used for Transformer, 2×10−5 is used for the
backbone network and weight decay of 1×10−4 is used. We
used 4 RTX 3090 GPUs and set the batch size as 8 for each GPU.

4.1. Datasets and evaluation metrics

We evaluated our method on two datasets: H2O [32] and
FPHA [18]. Both datasets provide 3D hand poses, object 6D
poses, object types and interaction classes.
H2O. The H2O dataset involves an interacting scenario with
two hands and an object, and it contains 4 subjects and 8 objects.
This provides a multi-view images including an egocentric view,
but we only used images from the egocentric view. For our
pose estimation step, We used 55,742 images to train, 11,638 to
validate and 23,391 to test. For interaction recognition, we used
569 video clips to train, 122 to validate, 242 to test. The test
split contains only 1 subject which is unseen during training.
FPHA. The FPHA dataset provides annotations for only one
hand and an object in the egocentric view. We use the action
split by 1:1 ratio, and the trainset consists of 600 videos and
the testset consists of 575 videos for pose estimation. The
FPHA provides 3D annotations for only 4 objects involving
10 interaction classes. Since our method needs the object mesh,
we use the subset where object 3D annotation is available for
interaction recognition.
Evaluation metrics. For hand and object pose estimation, we
compute the mean end-point error (mm) over 21 poses. The
error measures the Euclidean distance between predictions and
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Table 1. Quantitative comparison to state-of-the-art methods for pose estimation on test sets of
H2O and FPHA datasets. Since [23,50] are single hand methods, they reported results separately
for left and right hand-objects. Our method outperforms previous methods with a significant
margin. Best results are bold-faced.

Method H2O FPHA
Left.h Right.h Object L/R Right.h Object

Hasson et al. [22] 39.6 41.9 67.5/66.1 18.0 22.3
Tekin et al. [50] 41.4 38.9 48.1/52.6 15.8 24.9
Kwon et al. [32] 41.5 37.2 47.9 - -
Wen et al. [56] 35.0 36.1 - 15.8 -

Aboukhadra1 et al. [1] 36.8 36.5 73.9 - -
Ours 24.4 25.8 45.2 15.0 21.0

Table 2. Quantitative comparison to
state-of-the-art methods for interaction
recognition on test sets of H2O and
FPHA. Best results are bold-faced.

Method H2O FPHA
Acc. Acc.

C2D [54] 70.7 -
I3D [8] 75.2 -

SlowFast [17] 77.7 -
Tekin et al. [50] 68.9 97.0
Kwon et al. [32] 79.3 -
Wen et al. [56] 86.4 -

Ours 90.9 98.4

Table 3. Ablation study on the reference point refinement for
the hand-object pose estimator fHOP.

- w/o refinement w/ refinement

H2O
Left.h 27.9 24.4

Right.h 31.1 25.8
Object 51.0 45.2

FPHA Right.h 24.8 15.0
Object 40.8 21.0

Table 4. Ablation study on hand-object interaction recognizer f IA.

Modality Sampling
points

H2O FPHA
Val Acc. Test Acc. Test Acc.

Pose - 90.2 89.3 91.9
Mesh w/o Contact 2000 91.8 86.8 96.8

Mesh w/ Contact

500 87.7 85.1 96.8
1000 91.0 87.6 96.8
1500 91.8 88.4 98.4
2000 92.6 90.9 98.4

Mesh w/Contact (10-NN) 2000 90.2 82.2 98.4

place cappuccino place cappuccino place cappuccino grab book grab book grab book

Figure 4. Examples of hand-object poses and interacting classes on H2O dataset predicted by our H2OTR. (Row 1) Input frame, (Row 2) Contact
map in interaction space, (Row 3) Contact map in canonical poses, (Row 4) Estimated hand/object poses and interacting classes.

ground truths. For interaction recognition, we compute the top-1
accuracy. The top-1 accuracy is the conventional accuracy i.e.,
model prediction must be exactly the expected ground-truth.

4.2. Experimental results

Comparison with state-of-the-art methods for pose estima-
tion. We compared our model with state-of-the-art methods
which estimate the poses from full images on test sets of H2O
and FPHA datasets. Table 1 summarizes the results for hand
and object pose error. Hasson et al. [22] and Tekin et al. [50]

predict single hand’s pose and object pose. Also, Wen et al. [56]
predicts only hand poses without object poses. Others predict
for two hands and an object. Our method outperformed all
previous works and achieved the state-of-the-art accuracy for
hand-object pose estimation. Fig. 4 and 5 show the qualitative
results of our framework on test sets in H2O and FPHA datasets,
respectively. More qualitative results are accompanied in the
supplemental pages and video.
Comparison with state-of-the-art methods for action recog-
niton. We compared the hand-object interaction recognition
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close juiceclose soap close soap close soap close juice close juice

Figure 5. Examples of hand-object poses and interacting classes on FPHA dataset predicted by our H2OTR. (Row 1) Input frame, (Row 2) Contact
map in interaction space, (Row 3) Contact map in canonical poses, (Row 4) Estimated hand/object poses and interacting classes.

accuracy with state-of-the-art methods summarized in Table 2.
In [17,54], they used only the RGB image sequences, and [8]
used optical flow as additional information. [32, 50, 56] use
the recurrent model, graph neural network, Transformer,
respectively to recognize interaction class. In all works, the
output from the pose estimator is fed into the interaction
classifier. Since the dynamics of hand and object poses contain
considerable information, it shows higher accuracy when using
poses as modality. We shows better performance than the
existing methods exploiting both predicted poses and contact
maps.
Ablation studies. We verified our design choices in this subsec-
tion. Table 3 shows the performance difference depending on
whether the reference point refinement (described in Sec. 3.1)
is applied or not. When the refinment is applied, the predicted
pose error is decreased a lot by 3.5mm in the left hand, 5.3mm
in the right hand, and 5.8mm in the object. Table 4 shows the
performance difference according to the modality used for the
interaction recognition. We achieved the best performance when
using both contact maps (‘Contact’) and mesh vertices (‘Mesh’).
‘Pose’ denotes the raw 21 hand poses estimated. Additionally,
we conducted experiments using the number of nearest
vertices. Since using the relative distance between all vertices
is infeasible to memory, we report the result of the experiment
with 10 nearest vertices denoted as ’10-NN’. While it is feasible
in the memory, the accuracy (ie. 82.2%) is limited. Furthermore,
we present the performance obtained by utilizing alternative
architectures, such as CNN for pose estimation and LSTM for
interaction recognition, instead of a transformer-based approach
in Table 5. The ‘CNN+f IA’ denotes a method combining
CNN-based pose estimator [32] with our Transformer-based
interaction recognizer f IA and ‘fHOP+LSTM’ denotes a method
that combines our Transformer-based pose estimator fHOP

with the LSTM [25], respectively. This demonstrates the

Table 5. Ablation study on architecture design.

Method Left.h Right.h Object Acc.

CNN [32] + f IA 45.9 41.2 57.0 80.9
fHOP + LSTM [25] 24.4 25.8 45.2 82.6

fHOP+f IA 24.4 25.8 45.2 90.9

effectiveness of our pipeline that constitutes both parts as the
Transformer-based architecture rather than the CNN or LSTM.

5. Conclusion

In this paper, we propose a unified framework which consist
of a hand-object pose estimator and a hand-object interaction
recognizer. Our network performs 4 tasks simultaneously: hand
and object pose estimation, object type classification, hand-
object interaction recognition. We additionally proposed to use
the contact map as a cue for hand-object interaction recognition.
We achieved the state-of-the-art accuracy in every tasks and also
demonstrated that each component works in the meaningful way.
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