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Figure 1. Semantic segmentation maps highlighted by image classes and background predictions for each patch in the images. These maps
show that ICE visualizes class-specific explainability of DeiT-S [33], leading to unsupervised foreground and background segmentation.

Abstract
Vision transformers use [CLS] tokens to predict image

classes. Their explainability visualization has been stud-
ied using relevant information from [CLS] tokens or fo-
cusing on attention scores during self-attention. Such vi-
sualization, however, is challenging because of the depen-
dence of the structure of a vision transformer on skip con-
nections and attention operators, the instability of non-
linearities in the learning process, and the limited reflec-
tion of self-attention scores on relevance. We argue that the
output vectors for each input patch token in a vision trans-
former retain the image information of each patch location,
which can facilitate the prediction of an image class. In
this paper, we propose ICE (Adversarial Normalization: I
Can visualize Everything), a novel method that enables a
model to directly predict a class for each patch in an im-
age; thus, advancing the effective visualization of the ex-
plainability of a vision transformer. Our method distin-
guishes background from foreground regions by predicting
background classes for patches that do not determine im-
age classes. We used the DeiT-S model, the most repre-
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sentative model employed in studies, on the explainabil-
ity visualization of vision transformers. On the ImageNet-
Segmentation dataset, ICE outperformed all explainabil-
ity visualization methods for four cases depending on the
model size. We also conducted quantitative and qualita-
tive analyses on the tasks of weakly-supervised object lo-
calization and unsupervised object discovery. On the CUB-
200-2011 and PASCALVOC07/12 datasets, ICE achieved
comparable performance to the state-of-the-art methods.
We incorporated ICE into the encoder of DeiT-S and im-
proved efficiency by 44.01% on the ImageNet dataset over
that achieved by the original DeiT-S model. We showed
performance on the accuracy and efficiency comparable
to EViT, the state-of-the-art pruning model, demonstrating
the effectiveness of ICE. The code is available at https:
//github.com/Hanyang-HCC-Lab/ICE.

1. Introduction

The emergence of vision transformers in the field of
computer vision has driven improvements in model per-
formance [2, 5]. Unlike a CNN model, a vision trans-
former learns the association between image patches and
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classifies images using a [CLS] token. A CNN model and
a vision transformer have structural differences that lead
to variances in explainability visualization approaches. A
representative approach is GradCAM, which demonstrates
the explainability of CNN models by reflecting the impor-
tance of pixel levels using the feature maps and gradients
of the models. However, it is somewhat difficult to effec-
tively apply GradCAM to vision transformers because the
structural characteristics of vision transformers pose several
challenges, such as skip connections, dependency on atten-
tion operators, and unstable learning due to non-linearities.

To overcome these challenges, previous research mainly
used attention score information between [CLS] tokens and
other patches to discriminate patches with a significant im-
pact on learning and visualizing the explainability of vi-
sion transformers [2, 35]. Later studies have evaluated the
degree to which each attention head contributes to perfor-
mance [36] or integrated the relevance and attention scores
in layers through the proposal of a relevance propagation
rule [3]. Most recently, the optimization of relevance maps
has improved the explainability of a vision transformer by
assigning a lower relevance to the background region of an
image, whereas high relevance is placed on the foreground
region [4]. Despite the advantage of this optimization, chal-
lenges to explainability visualization for vision transform-
ers remain given their structural characteristics [3, 4].

We note that the output embedding vectors for each in-
put patch token in a vision transformer retain the image
information of each patch location, and these vectors can
help predict image classes. Based on this motivation, in
this paper, we propose ICE (I Can visualize Everything),
a novel method that uses the output embedding vectors of
a vision transformer for each patch token, except for [CLS]
tokens, in visualizing explainability. ICE initially assumes
that the class of all patches is a background and gradually
learns the direction in which the class of each patch in an
image is predicted. With this approach, we propose a loss
function for adversarial normalization that combines back-
ground and classification losses for each patch token. ICE
predicts a class for each patch in a foreground region of an
image where the object of the class is likely to exist and
classifies other regions as a background.

To evaluate the explainability visualization performance
of ICE, we mainly used DeiT-S [33], pre-trained with Ima-
geNet [25], the most representatively adopted model in pre-
vious studies. On the ImageNet-Segmentation [14] dataset,
ICE (with DeiT-S) achieved improvements of 4.05% and
3.94% in pixel-wise accuracy and mean intersection over
union (mean IoU), respectively, compared with state-of-
the-art methods. To verify the scalability and robustness
of ICE, we additionally considered ViT AugReg (AR) [31]
and evaluated ICE for four cases depending on the model
size (i.e., Small and Tiny). Through qualitative analyses,

we showed that ICE was good at predicting not only the
class of a single object but also the same class of multiple
objects in an image. We found that other methods failed to
segment objects, especially in multi-object conditions.

We further evaluated the foreground and background
separation performance of ICE on unsupervised seman-
tic segmentation, weakly supervised object localization,
and unsupervised object discovery tasks using the Pas-
calVOC07/12 [11] validation sets and the CUB-200-
2011 [37] dataset. As a result, ICE (with DeiT-S)
achieved comparable and superior performance compared
to the existing self-supervised learning-based methods (i.e.,
DINO [7], DINO-based LOST [8], and DINO-based To-
kenCut [9]). We found that ICE could distinish between
background and foreground regions despite the presence of
multiple objects of different sizes and classes that were not
learned in the images of PascalVOC07/12 (Figure 1).

Regarding our experiment in efficiency on inference, we
incorporated ICE into the encoder of DeiT-S and achieved
an improved efficiency of 44.01% on ImageNet [25] com-
pared with the original DeiT-S, while maintaining compa-
rable accuracy. ICE also achieved accuracy and efficiency
comparable to that of EViT, the state-of-the-art pruning
method [20].

Our contributions are as follows.

• We propose ICE that can be employed to vision trans-
formers based on the notion of patch-wise classifica-
tion and adversarial normalization. DeiT-S models
with ICE and ICE-f improve class-specific explainabil-
ity visualization performance (Section 4.2).

• We show that ICE significantly improves foreground
and background separations over the original DeiT-S
and. Even without segmentation or object location
labels, ICE achieves comparable or superior perfor-
mance than existing self-supervised learning methods
(Sections 4.3 and 4.4).

• We demonstrate that ICE is effective in background
patch selection by showing comparable efficiency and
accuracy of DeiT-S that incorporates the ICE’s capa-
bility to its encoder, to EViT (Section 4.5).

With the experimental results as grounding, we discuss
the scalability of our methodology in terms of improving
the efficiency of a vision transformer-based model.

2. Related Work

The visualization methodologies applicable to vision
transformers can be divided into two: (a) gradient or at-
tribute propagation-based visualization, which is applied
primarily to CNN-based models, and (b) visualization
methods that consider transformer structure.
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Figure 2. The overview of ICE. First, ICE performs patch-wise classification using an output vector for each patch token of a vision
transformer. We set an additional background label, and ICE predicts the total number of [classes + one background class] in patch-wise
classification. Next, ICE is trained to distinguish the background and the class region of an image through adversarial normalization. The
figure on the right shows an explainability visualization result of ICE predicting for the class ‘ram, tup’ of ImageNet. ICE has visualization
characteristics that highlight overall explainable regions with high relevance to a class label as much as possible.

2.1. Explainability in Computer Vision

The gradient-based method normally used in CNN uses
gradients calculated for each layer through backpropaga-
tion. Initially, studies proposed explainability visualization
that uses input multiplied by gradient within a model learn-
ing process for image classification tasks [29]. Later re-
search advocated visualization that adopts the average value
of gradients [30, 32]. However, these methods are class-
agnostic in visualizing explainability, regardless of the pre-
dicted class. Among gradient-based methods, a represen-
tative class-specific approach is GradCAM [26]. Grad-
CAM uses a weighted gradient feature map that considers
the gradients and input features of a network layer. How-
ever, GradCAM has not been effectively applied to explain-
ability visualization for vision transformers because of the
structural nature of the transformers, which classify image
classes using [CLS] tokens [3].

The attribute-based method, another methodology used
in CNN, visualizes a model’s explainability by exploiting
the contribution decomposition of previous layers from pre-
diction to input. A typical approach in this respect is Layer-
wise Relevance Propagation (LRP) [36], which is based on
a method of propagating the relevance score obtained from
a predicted class to an input image. Other attribute-based
methods include RAP [22], AGF [15], DeepLIFT [28], and
DeepSHAP [21]; however, all these have class-agnostic
characteristics. Methods that are attribute-based and
have class-specific characteristics include Contrastive-LRP
(CLRP] [13]) and Softmax-Gradient-LRP (SGLRP [17]),
whose applicability is constrained by the fact that they vi-
sualize LRP propagation results for a class, which are con-
trasted with the results of all other classes to highlight dif-

ferences between classes.
Various visualization methods have been successfully

applied to CNN. However, they still have unoptimized prop-
erties for the structural characteristics of vision transformers
that utilize [CLS] tokens in prediction. They also deal with
discrete tokens of input data. In this work, we evaluated
the performance of explainability visualization by compar-
ing it with GradCAM, a class-specific method and one of
the most effective CNN-oriented approaches to visualizing
the explicability of vision transformers. Since our method
directly visualizes class-specific explainability without ad-
ditional contrasting stages, we did not compare the perfor-
mance of our method with those that are attribute-based and
have class-specific characteristics (e.g., CLRP, SGLRP).

2.2. Explainability for Vision Transformers

Existing studies on explainability visualization for vision
transformers focused on attention scores [1, 5, 7]. How-
ever, using information from raw attention poses limita-
tions to the complete use of the structural characteristics of
vision transformers, which include multiple learning mod-
ules [24]. Given the nature of a transformer layer, informa-
tion is continuously mixed according to layer, thus causing
difficulties in effectively applying explainability visualiza-
tion that relies only on attention scores to vision transform-
ers [1]. The Rollout [1] method involves quantifying infor-
mation on radio waves from the input layer to the prediction
layer. It assumes that attentions are linearly combined into
subsequent contexts. However, this often tends to highlight
unrelated tokens.

Partial LRP [11] visualizes explainability by reflecting
relevance scores, meaning that individual attention heads
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of a vision transformer-based encoder contribute to the
overall performance of a model. However, the relevance
score of each attention head does not reflect the propaga-
tion from prediction to model input, suggesting that rele-
vance scores are insufficiently reflected in a model’s ex-
plainability. Chefer et al. (2021) proposed several meth-
ods (e.g., relevance propagation rule, integration of prop-
agation information, relevance, and attention scores) and
solved some issues due to dependence on non-positive val-
ues and skip connections propagated in the learning pro-
cess caused by the structural characteristics of vision trans-
formers [3]. Subsequently, RobustViT was developed to
visualize explainability by assigning low relevance to the
background region in the image and optimizing the rele-
vance map to assign high relevance to the foreground re-
gion [4]. However, our quantitative and qualitative analyses
showed that RobustViT does not adequately highlight the
foreground region that determines the classes of images.

Although many methodologies have been proposed to ef-
fectively visualize explainability using information from the
prediction layer of a vision transformer to the input layer,
previous studies faced challenges because of the structural
characteristics of such vision transformers. In this paper, we
propose ICE, a novel method that visualizes the explainabil-
ity of a vision transformer by directly predicting classes of
foreground and background regions for each image patch.
Section 4 recounts our comparison of ICE’s quantitative
performance with that of other explainability visualization
methodologies and performs the qualitative analysis involv-
ing visualization examples.

3. Method
In this section, we propose the fine-tuning process of ICE

that separates background patches by comparing the back-
ground and class probability of each patch token, and a loss
function for adversarial normalization. Figure 2 illustrates
the overview of ICE, and Algorithm 1 presents pseudocode
implementation. We introduce a background label that is
less relevant to an image class. We intend to have all patch
tokens receive gradients of a background label continuously
during training. The model learned the background classifi-
cation from the foreground of ICE by performing adversar-
ial normalization which handles both background and clas-
sification losses.

3.1. Patch-wise Classification

To normalize the prediction probability distributions ob-
tained from each patch token that passed MLP, we con-
ducted instance normalization. By making the probability
of patches into one vector, we can get cross-entropy loss
that all patches were affected by gradients. We constructed
our model by adding a lightweight MLP to the structure of a
standard vision transformer [5] model without considering a

Algorithm 1 ICE PyTorch pseudocode

Input: Mini batch of images
# H: cross-entropy loss, # α: background scale
# B: ground truth for background phase Y: ground truth for class phase
for x in data loader:

logits = model(x)[:,1:]
logits = Instance Normalization(MLP(logits))
masks = argmax(logits, dim=2)
class = logits.maskedfill(masks==(c+ 1), dim=2)
Ŷ = sum(class, dim=1)/sum(masks!=(c+ 1), dim=1)
B̂ = logits.mean(dim=1) × α
Lclass = H(Y , Ŷ )
Lbg = H(B, B̂)
Ltotal = Lclass × λclass + Lbg × (1 - λclass)

[CLS] token. Vision transformers use linear projection and
patch embedding for input images to embed k × k image
grids into patch Z ∈ Rk2×d (k2 = N ).

Z = [z1; z2; ...; zN ] (1)

The number of classes is c, and a background class is
added, having a total of c + 1 classes. Then the d dimen-
sion patch is transformed to c+ 1 dimension through MLP,
making each of Z predict c + 1 classes. Since the sum of
the class probabilities predicted by each patch is different,
we used Instance Normalization [34] to normalize the prob-
abilities predicted by each patch token.

Z = InstanceNormalization(MLP (Z)) (2)

where Z ∈ RN×(c+1).

3.2. Adversarial Normalization

We introduce adversarial normalization which distin-
guishes between a class and a background by normaliz-
ing class prediction probability of each patch and reflecting
background probability adversarially. Adversarial normal-
ization normalizes prediction probability of each patch to-
ken, making all patches have prediction results, and at the
same time, reflects the probability of a background, leading
unnecessary patch tokens being trained as a background.
Adversarial normalization consists of two phases. All
patches were considered to be a background (background
phase) and some patches became class related patches by
comparing the probabilities between a class and a back-
ground (class phase).

Background phase. Using the average of Z, we can
get one vector that reflects all patch tokens. We multiplied
the average of Z by the scale α, which helps to maintain a
degree of loss, given that there are generally more patch to-
kens in a background region than those in the objects. Since
we experimentally found that background loss becomes sig-
nificantly small, we used α in order to continuously propa-
gate the probability that all patch tokens can be background
and sufficiently operate the background loss function. We
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Table 1. Segmentation performance on the ImageNet-Segmentation [14] dataset.

Model GradCAM [26] rollout [1] Partial LRP [11] Chefer et al. (2021) [3] RobustViT [4] ICE-f (Ours) ICE (Ours)
Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

DeiT-S 64.33 41.54 66.84 47.85 65.76 43.37 79.30 60.60 80.80 64.00 81.09 62.12 84.85 67.94
DeiT-Tiny 70.96 48.26 70.71 52.50 67.15 44.42 79.53 60.64 80.73 63.67 82.37 65.09 84.28 67.58
AR-S [31] 67.67 41.17 68.12 48.90 72.90 51.85 80.85 63.60 83.30 67.70 82.54 66.67 83.57 68.37
AR-Tiny [31] 72.98 47.12 73.45 55.56 75.18 53.31 78.31 59.24 79.35 61.83 78.02 61.28 82.35 65.91

experimentally found optimal α=0.5. A background label is
a one-hot encoded vector with only the last class as the true
value. Background loss continuously propagates gradients
to reflect a possibility that all patch tokens are background.
We can get background loss by calculating cross entropy
between B̂ ∈ R1×(c+1) and a background label B.

B̂ =
1

N

N∑
i=1

zi × α, zi ∈ R1×(c+1) (3)

Lbg = CrossEntropy(B, B̂) (4)

Class phase. We selected zi associated with the class
by constructing a binary decision mask D̂i ∈ {0, 1}. The
decision mask of the patch that predicted the background
the highest becomes 0; otherwise, 1. Since we randomly
initialized the parameters of the MLP layers, the initial bi-
nary decision mask was also determined randomly. Most
decision masks were 0 at the beginning of training, but the
number of class patch tokens gradually increased as training
continued.

D̂i =

{
0, if c+ 1 = argmax(zi), zi ∈ R1×(c+1)

1, otherwise
(5)

We assumed that non-background patch tokens are asso-
ciated with classes. We thus averaged these Z and make
one vector Ŷ . Since Ŷ has the c+1 dimension and one-hot
encoded class label Y has the c dimension, we changed Y
to have c+1 dimension by adding the background class 0 at
the end of Y in the one-hot form. Except for the less associ-
ated patch tokens, the average of the remaining patch tokens
was calculated as one vector, Ŷ ∈ R1×(c+1), and Lclass cal-
culated through cross entropy between Y ∈ R1×(c+1), and
Ŷ ∈ R1×(c+1).

Ŷ =

∑N
i=1 D̂izi∑N
i=1 D̂i

, D̂ ∈ RN×1, zi ∈ R1×(c+1) (6)

Lclass = CrossEntropy(Y, Ŷ ) (7)

We can get the final loss Ltotal by adding Lclass and Lbg

with the class weight, λclass.

Ltotal = Lclass × λclass + Lbg × (1− λclass) (8)

Table 2. Extensive segmentation performance evaluation using the
ImageNet-Segmentation dataset. RobustViT+GradCAM and Ro-
bustViT+ICE refer to the models where each visualization method
is applied with the fine-tuned model through RobustViT.

Model RobustViT RobustViT + GradCAM RobustViT + ICE (Ours)
Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

Pixel-wise
accuracy

Mean
IoU

DeiT-S 80.80 64.00 69.01 44.39 85.48 71.35
DeiT-Tiny 80.73 63.67 75.07 51.42 84.42 67.67
AR-S 83.30 67.70 74.35 52.60 82.14 66.80
AR-Tiny 77.57 59.42 73.55 47.92 82.56 66.16

4. Experiments

4.1. Experimental Setting

Datasets. To train ICE, we utilized the ImageNet [25]
(ILSVRC) 2012 training dataset. We did not use any addi-
tional data related to segmentation maps or object locations.
To evaluate the explainability visualization performance of
ICE, we used four datasets, ImageNet-Segmentation [14],
CUB-200-2011 [37], and PascalVOC07/12 [10, 11].

Implementation details. For training strategies and op-
timization methods of ICE, we employed the pre-trained
DeiT-S and set hyperparameters as follows: background
scale α=0.5, class weight λclass=0.975, learning rate=1e−5,
and batch size=256. We followed other hyperparameters
specified in the official DeiT repository 1. We set a class
weight λclass=0.99 in order to train ICE-f, a method that
freezes the parameters of DeiT-S and trains only two MLP
layers. Our intention in considering ICE-f was to verify that
output vectors for each input patch token in a vision trans-
former retain the image information of each patch location,
which can facilitate the prediction of an image class. The
other hyperparameters were the same as those applied to
ICE. To visualize the explainability of other methods, we
used the official repository of Chefer et al. (2021) [3] 2,
Chefer et al. (2022) [4] 3. We ran our experiments on the
machine equipped with two NVIDIA RTX3090 GPUs.

4.2. Explainability on ImageNet

To verify the effectiveness of the class-specific explain-
ability visualization of ICE, we measured quantitative per-
formance and analyzed visualization examples compared

1https://github.com/facebookresearch/DeiT
2https://github.com/hila-chefer/Transformer-Explainability
3https://github.com/hila-chefer/RobustViT
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with existing explainability visualization methodologies on
ImageNet-Segmentation.

Quantitative analysis. Table 1 shows that ICE outper-
formed all explainability visualization methods. To ver-
ify the scalability and robustness of ICE, we considered
ViT AugReg (AR) [31] that has been used in the previous
study [4]. We evaluated the segmentation performance for
the ImageNet-Segmentation dataset for four cases depend-
ing on the model size (i.e., Small and Tiny). The explain-
ability visualization of ICE-f showed comparable segmen-
tation performance to RobustViT.

We also evaluated the performance improvement of
explainability visualization using ICE on the models
fine-tuned by RobustViT, the state-of-the-art visualization
method. Table 2 demonstrates that ICE can improve ex-
plainability visualization even when applied to models
fine-tuned by RobustViT. We demonstrate that the out-
put embedding vectors for each patch token in a vision
transformer-based model sufficiently preserve the informa-
tion in the original image and can be effectively used to vi-
sualize the explainability of the model.

Qualitative analysis. Figure 3 shows samples visualiz-
ing the explainability of the top-1 prediction for the image.
The first row shows the results of the detection of a single
object, and the second row shows the results of multiple
objects with various sizes. We can see that other methods
tend to focus on only a small portion of the image or un-
matched areas in the examples of multiple object detection.
On the other hand, ICE adequately distinguishes foreground
and background regions. We found that ICE can highlight
object areas, regardless of object size.

Figure 4 illustrates a case where two different classes
of objects exist in one image. The first and second rows
show the explainability visualization results for top-1 pre-
dictions with each class. Rollout and Partial LRP methods
show class-agnostic characteristics that highlight the same
region regardless of the predicted class of the model, while
GradCAM, RobustViT, and ICE show class-specific charac-
teristics. Overall, ICE shows the result of highlighting the
area of the objects in the image. ICE-f also shows compa-
rable results with existing visualization methods. However,
when it was necessary to distinguish fine-grained character-
istics (e.g., tusker, african elephant, indian elephant), ICE
still showed a tendency to predict patches into one class,
which also occurred in other models.

4.3. Discovering Semantic Layouts

To verify the effectiveness of ICE on background patch
selection from images that contain new classes, we evalu-
ated the performance of background and foreground sepa-
ration on PascalVOC12, which contain classes that were not
learned in our DeiT-S model with ICE and ICE-f.

Quantitative analysis. Table 3 shows ICE achieved

Table 3. The Jaccard similarity between the ground truth and pre-
dicted foreground on the PascalVOC12 validation set [10]. Only
ImageNet labels are used for the training of ICE and ICE-f.

Method Threshold Output Jaccard similarity

DeiT-S 0.9 mean 23.17
+ Raw Attention [33] 0.8 mean 17.22

0.9 head-4 21.80
0.8 head-4 15.90

DeiT-S-SIN 0.9 mean 33.00
(DeiT-S + Shape Distillation) [23] 0.8 mean 34.30

0.9 head-3 29.30
0.8 head-3 25.10

DeiT-S 0.9 mean 29.60
+ DINO [7] 0.8 mean 35.20

0.9 head-1 37.40
0.8 head-1 40.30

DeiT-S + ICE-f (Ours) - - 34.85

DeiT-S + ICE (Ours) - - 41.32

an 18.15 and 7.02 higher result based on the Jaccard
similarity index than DeiT-S-Raw-Attention and DeiT-S-
SIN [23], respectively. DeiT-S-Raw-Attention is a base-
line model. DeiT-S-SIN uses a shape distillation token in
DeiT-S and employs Resnet50-SIN [12] learned with the
SIN dataset with strong shape characteristics. However, we
have achieved better distinguishing performance between
foreground and background by applying ICE methodology
to the same DeiT-S without additional datasets and models.

As shown in Table 3, ICE achieved superior perfor-
mance compared to DINO [7], the standard self-supervision
method employed in previous studies [19, 23]. Other meth-
ods except ICE showed experimental tendencies in which
performance varies according to the key hyperparameters
(i.e., threshold, output head type). ICE does not have such
constraints, implying a possibility of more flexible and eas-
ier adaptation of such a method to vision transformers.

Qualitative analysis. Figure 5 shows samples visual-
izing semantic layouts on the PascalVOC12 validation set.
Compared to the visualization by applying raw attention to
the original DeiT-S, ICE significantly improved the perfor-
mance of semantic map segmentation by separating back-
ground and foreground regions. Furthermore, we found a
tendency that our method distinguishes background rela-
tively well compared to self-supervised learning methods.

4.4. Single Object Discovery

We conducted weakly-supervised single-object localiza-
tion and unsupervised single-object discovery experiments
to evaluate the explainability visualization performance of
ICE and compare it to other state-of-the-art methods (Ta-
ble 4). We evaluated the weakly-supervised single-object
localization performance on the CUB-200-2011 using the
Top-1 accuracy, GT Loc, and Top-1 Loc metrics, and unsu-
pervised single-object discovery performance on the Pascal
VOC 07/12 using the CorLoc metric. On CUB-200-2011,
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Input ICE-f (Ours)partial LRP [11]rollout [1]GradCAM [26]
Chefer et al. 
(2021) [3] RobustViT [4] ICE (Ours)

Figure 3. Results of explainability visualization of the images with the same class. The first row illustrates the result of the images that
contain a single object. The second row illustrates those that contain multiple objects with various sizes.

Input ICE-f (Ours)partial LRP [11]rollout [1]GradCAM [26]
Chefer et al. 
(2021) [3] RobustViT [4] ICE (Ours)

Elephant →

Zebra →

Figure 4. Results of explainability visualization for the presence of two different class objects in the image.

DeiT-S [33] DINO [7]DeiT-S-SIN [23] ICE (Ours)ICE-f (Ours)Input

Figure 5. Sampled segmentation maps. The input image in the
first row is the one presented in the previous research [23], and the
input images in the second and third rows are from PascalVOC12.

ICE outperformed other methods on GT Loc and achieved
comparable performance on Top-1 Loc. We note the reason-
ably high performance of ICE on Top-1 Loc, even though its
Top-1 result was the lowest. This implies that, once an ob-
ject in an image is correctly detected, ICE localizes the ob-
ject well. On the Pascal VOC 07/12, ICE achieved compa-
rable (although lower) performance on CorLoc compared to
the state-of-the-art methods. Our intention here is to high-
light the potential of ICE for open foreground object discov-

Table 4. Results of comparison with other methods for weakly-
supervised and unsupervised single object discovery tasks.

Method Backbone CUB dataset [37] PascalVOC07 [11] PascalVOC12 [10]
Top-1 Cls GT Loc Top-1 Loc CorLoc CorLoc

TS-CAM [6] DeiT-S 80.3 87.7 71.3 - -
LOST [8] DINO 79.5 89.4 71.3 61.9 64.0
TokenCut [9] DINO 79.5 91.8 72.9 68.8 72.1
ICE DeiT-S 76.9 92.5 72.0 62.2 66.0

ery from classification-based backbones compared to others
that are based on self-supervised learning. Overall, we have
verified the explainability visualization performance of ICE
from various angles by showing the superiority of the class-
aware single object localization performance and the fore-
ground segmentation performance of ICE.

4.5. Efficiency Improvement

To examine another aspect of the effectiveness of back-
ground patch selection by ICE, we evaluated the accuracy
and efficiency of ImageNet by applying ICE’s background
patch selection inside the encoder of the original DeiT-S and
compared its results with DeiT (baseline) and EViT [20], a
state-of-the-art model. Background patch selection is one
of the key requirements in EViT, thus by comparing the
performance of accuracy and efficiency between ICE and
EViT, we can verify the role of ICE in visualizing the ex-
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Table 5. Comparisons on ICE and EViT [20]. For fair com-
parisons, all models are initialized with a pre-trained DeiT-S and
trained 30 epochs, and the throughput (img/s) is measured on the
same machine with the same setting using a maximum batch size.

Method Keep-rate Top-1 accuracy (%) # Params (M) Throughput

DeiT-S - 79.8 22.1 818

EViT 0.5 78.39 22.1 1701
ICE 0.5 78.49 22.4 1547

EViT 0.7 79.27 22.1 1291
ICE 0.7 79.34 22.4 1178

plainability of a vision transformer. We trained ICE in the
same environment as EViT by referring to the EViT’s of-
ficial repository code 4 and set ICE to maintain keep rates
after the 4th, 7th, and 10th layers in the pre-trained DeiT-S.

Table 5 shows our experimental results. By applying
ICE to DeiT-S, the throughput performance significantly
improved by 44.01% in the inference while maintaining
comparable accuracy (only a decrease by 0.46% compared
to the original DeiT-S). ICE showed 0.1% higher accuracy
than the EViT under the same keep rate condition. This re-
sult means that the patch selection of ICE may help improve
classification performance more than the patch selection of
EViT. However, the throughput performance of ICE is 8.7%
slower than EViT under the same keep rate condition, and
this may be because ICE trains additional layers.

4.6. Ablation study
We conduct an ablation study to test the influence of the

background scale (α) and class weight (λclass) on the result
of the pixel-wise accuracy, mean IoU, and Jaccard similar-
ity. As illustrated in Table 6, the significant drop in overall
performance without the background scale suggests that it
is essential for effective learning of ICE. By adjusting with
class weights, the optimal hyperparameter values found for
effective learning of ICE were α = 0.5 and λclass = 0.975.
These results indicate the effective role of these parameters
in continuously learning the characteristics of classes and a
background.

5. Discussion
ICE shows superior explainability visualization per-

formance compared to other explainability visualization
methodologies in the case that multiple objects of a sin-
gle class exist in different sizes within one image, as Fig-
ure 3 shows. ICE adequately predicts the learned image
classes or background classes for all patch locations in the
image. Furthermore, ICE separates the background region
and highlights the region that determines the class of the im-
age as much as possible, regardless of the size of the object
in the image.

4https://github.com/youweiliang/evit

Table 6. Ablation study of ICE (with DeiT-S) on the ImageNet-
Segmentation dataset and the PascalVOC12 validation set.

Method Pixel-wise Mean IoU Jaccard
accuracy similarity

ICE (α = 0.5, λclass = 0.975) 84.85 67.94 41.32

w/o background scale (α = 1.0) 63.45 45.36 22.98

w/o class weight (λclass = 0.5) 79.53 57.59 29.14

w/o background scale (α = 1.0) 66.26 47.70 23.87
w/o class weight (λclass = 0.5)

We expect our methodology to be useful for visualizing
the explainability of image classification models when there
are multiple objects with different classes and different sizes
exist in an image. For example, for tasks regarding medi-
cal image classification [27], defect classification [16], and
fashion style classification [18], key objects with various
sizes may exist in a target image. In these examples, it may
be necessary to visualize the regions that determine image
classes as much as possible when the end-user (e.g., domain
expert) of the classification model needs to check the visu-
alized explainability of the model. Since ICE visualizes the
explainability of all image patches that have features of an
image class, the ICE methodology may be useful and well-
applicable to many domains.

6. Conclusion
In this paper, we proposed ICE, a vision transformer-

based explainability visualization methodology, which ap-
plies patch-wise classification and adversarial normaliza-
tion for each patch token of a vision transformer. We
demonstrated the effectiveness and superiority of ICE in
class-specific explainability visualization and separation of
a background region from a foreground region through
quantitative and qualitative analyses. We incorporated ICE
into the encoder of DeiT-S, resulting in significant improve-
ments in efficiency while maintaining accuracy comparable
to the original DeiT-S and EViT. We demonstrated that the
output representations for each patch token retained suffi-
cient image information at each patch location and con-
firmed the robustness of ICE in the background patch se-
lection task. ICE does not use information from prediction
to input layers, thus, is rarely affected by penalties derived
from the structural characteristics of a vision transformer.
Based on these results, we expect that ICE can be employed
by vision transformers of various structures for explainabil-
ity visualization.
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