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Figure 1. We propose a practical solution to reconstruct large-scale scenes from a short egocentric video. (a) Our scalable capturing setup
observes the holistic environment by casually swiping a selfie stick with an omnidirectional camera attached. (b) Then we optimize our
balanced spherical feature grids which are tailored for the outward-looking setup. (c) EgoNeRF can quickly train and render high-quality
images at nearby positions. Project page: https://changwoon.info/publications/EgoNeRF

Abstract

We present EgoNeRF, a practical solution to reconstruct
large-scale real-world environments for VR assets. Given
a few seconds of casually captured 360 video, EgoNeRF
can efficiently build neural radiance fields. Motivated by
the recent acceleration of NeRF using feature grids, we
adopt spherical coordinate instead of conventional Carte-
sian coordinate. Cartesian feature grid is inefficient to rep-
resent large-scale unbounded scenes because it has a spa-
tially uniform resolution, regardless of distance from view-
ers. The spherical parameterization better aligns with the
rays of egocentric images, and yet enables factorization for
performance enhancement. However, the naı̈ve spherical
grid suffers from singularities at two poles, and also cannot
represent unbounded scenes. To avoid singularities near
poles, we combine two balanced grids, which results in a
quasi-uniform angular grid. We also partition the radial
grid exponentially and place an environment map at infin-
ity to represent unbounded scenes. Furthermore, with our
resampling technique for grid-based methods, we can in-
crease the number of valid samples to train NeRF volume.
We extensively evaluate our method in our newly introduced
synthetic and real-world egocentric 360 video datasets, and
it consistently achieves state-of-the-art performance.

1. Introduction
With the recent advance in VR technology, there ex-

ists an increasing need to create immersive virtual environ-
ments. While a synthetic environment can be created by ex-
pert designers, various applications also require transferring
a real-world environment. Spherical light fields [4–6,26,28]
can visualize photorealistic rendering of the real-world en-
vironment with the help of dedicated hardware with care-
fully calibrated multiple cameras. A few works [3, 16] also
attempt to synthesize novel view images by reconstructing
an explicit mesh from an egocentric omnidirectional video.
However, their methods consist of complicated multi-stage
pipelines and require pretraining for optical flow and depth
estimation networks.

In this paper, we build a system that can visualize a large-
scale scene without sophisticated hardware or neural net-
works trained with general scenes. We utilize panoramic
images, as suggested in spherical light fields. However,
we acquire input with a commodity omnidirectional camera
with two fish-eye lenses instead of dedicated hardware. As
shown in Fig. 1 (a), the environment can be captured with
the omnidirectional camera attached to a selfie stick within
less than five seconds. Then the collected images observe
a large-scale scene that surrounds the viewpoints. We in-
troduce new synthetic and real-world datasets of omnidirec-
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Figure 2. (a) When the camera trajectory is short relative to the
scene size, the proposed balanced spherical grid (left) exhibits uni-
form hitting rate for grid cells whereas the conventional Cartesian
grid (right) suffers from non-uniform ray-grid hits. The orange
shade indicates the relative density of hit count of the grid cells.
(b) Experiments show that spherical coordinates achieve nearly
uniform ray-grid hit distribution, while Cartesian coordinate is bi-
ased to the center especially when we use a fine-resolution grid.

tional videos acquired from both indoor and outdoor scenes.
Combined with Neural Radiance Fields (NeRF) [22], the
images can train a neural volume that can render fine de-
tails or view-dependent effects without explicit 3D models.

To this end, we present Egocentric Neural Radiance
Fields, or EgoNeRF, which is the neural volume represen-
tation tailored to egocentric omnidirectional visual input.
Although NeRF and its variants with MLP-based methods
show remarkable performance in view synthesis, they suffer
from lengthy training and rendering time. The recent Carte-
sian feature grids can lead to faster convergence [7, 31] for
rendering a bounded scene with an isolated object, but they
have several limitations for our datasets which mostly con-
tain inside-out views of large scenes: (1) The uniform grid
size, regardless of distance from the camera, is insufficient
to represent fine details of near objects and extravagant for
coarse integrated information from far objects. (2) Carte-
sian grid suffers from non-uniform ray-grid hits in the ego-
centric scenario as demonstrated in Fig. 2, thus, as pointed
in [31], prior arts need careful training strategies such as
progressive scaling [7,31] or view-count-adaptive per-voxel
learning rate [31]. EgoNeRF models the volume using
a spherical coordinate system to cope with the aforemen-
tioned limitations. Figure 3 shows that EgoNeRF converges
faster compared to MLP-based methods (NeRF [22] and
mip-NeRF 360 [2]) and has higher performance compared
to Cartesian grid methods (TensoRF [7] and DVGO [31]).

Our spherical grid is designed to be balanced in any di-
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Figure 3. Training curve comparison in OmniBlender scenes.

rection, which leads to a more efficient data structure for
the large-scale environment. The naı̈ve spherical grid con-
tains high valence vertices at two poles, and, when adapted
as a feature grid for neural volume rendering, the polar re-
gions suffer from undesirable artifacts. We exploit a quasi-
uniform angular grid by combining two spherical grids [18].
In the radial direction, the grid intervals increase exponen-
tially, which not only allows our representation to cover
large spaces but also makes the spherical frustum have a
similar length in the angular and radial directions. We add
an environment map at infinite depth, which is especially
useful for outdoor environments with distant backgrounds
such as skies. Last but not least, we propose an efficient hi-
erarchical sampling method exploiting our density feature
grid without maintaining an additional coarse density grid.

We demonstrate that our proposed approach can lead to
faster convergence and high-quality rendering with a small
memory footprint in various scenarios for large-scale envi-
ronments. EgoNeRF is expected to create a virtual render-
ing of large scenes from data captured by non-expert users,
which cannot be easily modeled with 3D assets or conven-
tional NeRF.

2. Related Works
Visualizing Omnidirectional View of Scenes Panoramic
images are widely used in many applications for remote ex-
periences. After captured by photo-stitching apps or dedi-
cated hardware, they allow users to rotate around the cap-
tured position. However, we need additional information to
allow the full 6 DoF movement in the scene. Prior works
propose sophisticated camera rigs to capture spherical light
fields [4–6, 26, 28]. Given multi-view images, they enable
synthesizing images at novel viewpoints by reconstructing
3D mesh or multi-sphere images instead of multi-plane im-
ages in ordinary images. With additional depth information,
recent works demonstrate novel view synthesis with a sin-
gle panoramic image [12,14]. The depth channel is acquired
from RGBD camera or approximated coarse planar facades.

In contrast, we assume more casual input, using com-
modity 360◦ camera with two fish-eye lenses to capture
a short video clip of the large-scale scene. A few works
also explored the same setup [3, 16] and represented the
scene with a deformed proxy mesh with texture maps us-
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ing pre-trained neural networks for optical flow and depth
estimation. Our pipeline is simpler as we train a neural net-
work with the captured sequence of images without any pre-
trained network. We combine the visualization pipeline for
large-scale scenes with NeRF formulation and can capture
complex view-dependent effects and fine structures, unlike
reconstructed textured mesh.

Practical Variants of NeRF NeRF [22] flourished in the
field of novel view synthesis, showing photorealistic qual-
ity with its simple formulation. However, the original NeRF
formulation exhibits clear drawbacks, such as lengthy train-
ing and rendering time, and the difficulty of deformation or
scene edits. Many follow-up works exploded, overcoming
the limitations in various aspects [1,2,8,21,25,27,30]. Here
we specifically focus on practical extension for fast render-
ing and training. NeRF represents a scene as a single MLP
that maps coordinates into color and volume density. It is
slow in rendering and optimization as the volume rendering
requires multiple forward passes of the MLP.

To accelerate the rendering speed, radiance is repre-
sented with an explicit voxel grid storing features [13, 20,
35]. However, they train the network by distilling informa-
tion from pre-trained NeRF, which even lengthens the train-
ing time. More recent works exploit various data structures
to directly optimize the feature grid [7, 10, 24, 31]. They
have shown that employing an explicit feature grid achieves
fast optimization without sacrificing quality. The feature
grids are defined on the Cartesian coordinate system, which
assumes a scene within a bounding box. These are not suit-
able for representing large-scale scenes whose viewpoints
observe outside of the captured locations.

The naı̈ve strategy to choose ray samples wastes most
samples and it leads to slow convergence since many re-
gions are either free spaces or occluded by other objects in
the real world. To increase the sample efficiency, the orig-
inal NeRF [22] employs a hierarchical sampling strategy
for the volume density and maintains two density MLPs for
coarse and fine resolution, respectively. In the same con-
text, Müller et al. [24] maintain additional multi-scale oc-
cupancy grids to skip ray marching steps. Hu et al. [15] al-
locate dense momentum voxels for valid sampling, and Sun
et al. [31] also use an extra coarse density voxel grid. Main-
taining separate coarse feature grids or neural networks re-
quires additional memory and increases computational bur-
dens. We propose an efficient sampling strategy and quickly
train a volume that represents a large-scale environment.

3. Feature Grid Representation for EgoNeRF
EgoNeRF utilizes feature grids to accelerate the neural

volume rendering of NeRF. Feature grids in previous works
employ a Cartesian coordinate system, which regularly par-
tition the volume in xyz axis [13, 20, 35]. To better express

the egocentric views captured from omnidirectional videos,
we use a spherical coordinate system. We modify the spher-
ical coordinate in both angular and radial partitions to effi-
ciently express outward views of the surrounding environ-
ment, as described in Sec. 3.1. For rendering and training,
the values are interpolated from the feature grid, which can
be further factorized to reduce the memory and accelerate
the learning [7] (Sec. 3.2). With our balanced feature grid,
individual cells produce a uniform hitting rate of rays.

3.1. Balanced Spherical Grid

Our balanced spherical grid is composed of the angular
partition and the radial partition.

Angular Partitions The desirable angular partition
should result in regular shapes and be easily parameterized.
When we regularly partition on the angle parameters, the
naı̈ve spherical coordinate system results in irregular grid
partitions, which severely distort the two polar regions. Ex-
isting regular partitions do not maintain orthogonal axis pa-
rameterization [11], which hinders further factorization.

As a simple resolution, we only use the quasi-uniform
half of the ordinary spherical coordinate system and com-
bine two of them [18]. The two grids are referred to as the
Yin grid and Yang grid, respectively, which have identical
shapes and sizes as shown in Fig. 1 (b) and Fig. 4 (a). To-
gether they can cover the entire sphere with minimal over-
lap, similar to the two regions of a tennis ball.

The Yin grid is defined as:

(π/4 ≤ θ ≤ 3π/4) ∩ (−3π/4 ≤ ϕ ≤ 3π/4), (1)

where θ is colatitude and ϕ is longitude. The axis of an-
other component grid, namely the Yang grid, is located at
the equator of the Yin grid:xYin

yYin

zYin

 = M

xYang

yYang

zYang

 ,M =

−1 0 0
0 0 1
0 1 0

 . (2)

We discretize the angular grid of Yin and Yang grid by Ny
θ

and Ny
ϕ partitions for θy, ϕy axis respectively, where y ∈

{Yin,Yang}. The partition is uniform in angles leading to
the grid size of

∆θy =
π

2

1

Ny
θ

, ∆ϕy =
3π

2

1

Ny
ϕ

. (3)

Radial Partitions By adopting the spherical coordinate
system, the grid cells cover larger regions as r increases.
This is desired in the egocentric setup, as the panoramic im-
age capture more detailed close-by views of central objects
while distant objects occupy a small area on the projected
images. We further make the grid along the r axis increase
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Figure 4. Overview of our method. (a) We represent radiance fields as features stored in balanced feature grids Gσ , Ga, (b) which are
further decomposed into vector and matrix components. (c) The hierarchical sampling is conducted by obtaining a coarse density grid from
the density feature grid on the fly during optimization. (d) The balanced feature grids are optimized with photometric loss.

exponentially for far regions such that the resulting cell ex-
hibit similar lengths in the angular and radial direction.

Specifically, if we denote the radial scales of both the Yin
and Yang grids as ry ,

ryi = r0k
i−1, Rmax = r0k

Ny
r −1, (4)

where Rmax is the radius of the scene bounding sphere and
constant value r0 is the radius of the first spherical shell. We
set the grid interval to r0 for the grid interval less than r0.

We can optionally use the environment map for outdoor
or large indoor environments. Our spherical grid is still
bounded by Rmax, limiting the size of the environment. The
environment map denoted as E ∈ RH×W×3, is a simple
equirectangular image and represents what is visible at an
almost infinite distance.

3.2. Feature Grid as Radiance Field

Now we describe our radiance field representation with
the balanced spherical feature grid. Given a set of ego-
centric images with corresponding camera parameters,
EgoNeRF aims to reconstruct 3D scene representation and
synthesize novel view images. Instead of regressing for the
volume density σ and color c from MLP [22], we build
explicit feature grids of the density Gσ and the appear-
ance Ga which serve as the mapping function. Both grids
are composed of our balanced spherical grids of resolu-
tion 2Ny

r × Ny
θ × Ny

ϕ , as defined in Sec. 3.1. The density

grid Gσ ∈ R2Ny
r ×Ny

θ ×Ny
ϕ has a single channel which stores

the explicit volume density value, and the appearance grid
Ga ∈ R2Ny

r ×Ny
θ ×Ny

ϕ×C stores C-dimensional neural ap-
pearance features. The volume density and color at position
x and viewing direction d are obtained by

σ(x) = T (Gσ,x), c(x,d) = fMLP(T (Ga,x),d), (5)

where T denotes a trilinear interpolation, and fMLP is a tiny
MLP that decodes the neural feature to color.

Inspired by [7], we further decompose the feature tensor
into vectors and matrices as shown in Fig. 4 (b):

Gy
σ =

Nσ∑
n=1

vy,R
σ,n ⊗My,ΘΦ

σ,n +vy,Θ
σ,n ⊗My,ΦR

σ,n +vy,Φ
σ,n ⊗My,RΘ

σ,n

=

Nσ∑
n=1

∑
m∈RΘΦ

Ay,m
σ,n , (6)

Gy
a =

Na∑
n=1

Ay,R
a,n ⊗by

3n−2 +Ay,Θ
a,n ⊗by

3n−1 +Ay,Φ
a,n ⊗by

3n, (7)

Gσ =
⋃
y∈Y

Gy
σ,Ga =

⋃
y∈Y

Gy
a , Y = {Yin, Yang}, (8)

where ⊗ represents the outer product and v,b,M repre-
sents vector and matrix factors. This low-rank tensor fac-
torization significantly reduces the space complexity from
O(n3) to O(n2). With the minimal overhead of storing two
grids, we can maintain regular angular components and yet
factorize the grid using spherical parameterization. The full
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decomposed formulation is described in the supplementary
material.

4. Training EgoNeRF
We utilize the balanced spherical grids to represent the

volume density σ and color c, which are stored in Gσ and
Ga, respectively. In this chapter, we describe the technical
details of the optimization process of our proposed method.

4.1. Hierarchical Density Adaptation

As the scenes typically contain sparse occupied regions,
we adapt the hierarchical sampling strategy of the original
NeRF [22] for feature grids. While other recent variants us-
ing feature grid [15,24,31] maintain a dedicated data struc-
ture for the coarse grid, we exploit our dense geometry fea-
ture grid Gσ for the first coarse sampling stage without allo-
cating additional memory for the coarse grid.

The hierarchical sampling strategy first samples coarse
Nc points along the ray to obtain a density estimate σ from
which we can sample fine Nf points with importance sam-
pling. However, evaluating σ with dense Gσ at the coarsely
sampled points might skip the important surface regions.
Therefore, we obtain σ value from a coarser density feature
grid which can be obtained on the fly by applying a non-
learnable convolution kernel K:

σ(xcoarse) = T (Gc
σ,xcoarse) = T (K ∗ Gσ,xcoarse). (9)

We use the average pooling kernel as K. It is reasonable to
define a coarse grid by convolving the dense grid because
our density grid Gσ stores the volume density itself, which
has a physical meaning, not neural features.

From the volume density values of coarsely sampled
points, we calculate weights for importance sampling by

wi = τi(1− e−σiδi), i ∈ [1, Nc], (10)

where δi is the distance between coarse samples, τi =

e−
∑i−1

j=1 σjδj is the accumulated transmittance. Then the
fine Nf locations are sampled from the filtered probabil-
ity distribution. Finally, the volume density σ and color c at
Nc +Nf samples are used to render pixels.

4.2. Optimization

The images of EgoNeRF are synthesized by applying the
volume rendering equation along the camera ray [22] and
the optional environment map. Specifically, the points xi =
o + tid along the camera ray from camera position o and
ray direction d are accumulated to find the pixel value by

Ĉ =

N∑
i=1

τi(1− e−σ(xi)δi)c(xi,d) + τN+1cenv(d). (11)

N = Nc + Nf is the number of samples as described
in Sec. 4.1. σ(x) and c(x,d) are obtained from our bal-
anced feature grids in Eq. (5). Since the size of our feature
grid is exponentially increasing along the r direction, we
distribute Nc coarse samples exponentially rather than uni-
formly. The second term in Eq. (11) is fetched from the
environment map

cenv(d) = E(u, v;d), (12)

where the sampling position (u, v) is only dependent on the
viewing direction d. The effect of the environment map is
further discussed in Sec. 5.3.

Finally, we optimize the photometric loss between ren-
dered images and training images

L =
1

|R|
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2
, (13)

where R is a randomly sampled ray batch, Ĉ(r), C(r) are
rendered and the ground-truth color of the pixel correspond-
ing to ray r. With the simple photometric loss, our feature
grids Gσ,Ga, decoding MLP fMLP, and environment map
E are jointly optimized. For real-world datasets, in which
camera poses are not perfect, we additionally optimize a TV
loss [29] at our feature grid to reduce noise. Furthermore,
since our balanced feature grid guarantees a nearly uniform
ray-grid hitting rate, EgoNeRF does not need a coarse-to-
fine reconstruction approach for robust optimization used
in other feature grid-based methods [7, 31].

5. Experiments
We demonstrate that EgoNeRF can quickly capture and

synthesize novel views of large-scale scenes. We describe
full implementation details including hyperparameter setup
in the supplementary material.

Datasets Since many of the existing datasets for NeRF
are dedicated to a setup where a bounded object is cap-
tured from outside-in viewpoints, we propose new synthetic
and real datasets of large-scale environments captured with
omnidirectional videos. OmniBlender is a realistic syn-
thetic dataset of 11 large-scale scenes with detailed textures
and sophisticated geometries in both indoor and outdoor
environments, 25 images for both train and test, respec-
tively. It consists of omnidirectional images along a rela-
tively small circular camera path. The spherical images are
rendered using Blender’s Cycles path tracing renderer [9]
with 2000×1000 resolution. Ricoh360 is a real-world 360◦

video dataset captured with a Ricoh Theta V camera with
1920×960 resolution. We record video on the circular path
by rotating an omnidirectional camera fixed with a selfie
stick as shown in Fig. 1 (a). The dataset consists of 11 di-
verse indoor and outdoor scenes, 50 images for train and
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Step Method
OmniBlender Ricoh360

Indoor Outdoor
PSNR PSNRWS LPIPS SSIM SSIMWS PSNR PSNRWS LPIPS SSIM SSIMWS PSNR PSNRWS LPIPS SSIM SSIMWS

5k

NeRF [22] 26.25 27.27 0.500 0.726 0.710 22.36 23.62 0.524 0.651 0.611 22.09 23.82 0.576 0.649 0.623
mip-NeRF 360 [2] 23.51 24.41 0.628 0.649 0.613 21.76 23.03 0.545 0.614 0.568 22.30 24.12 0.555 0.632 0.604
TensoRF [7] 25.91 26.93 0.553 0.722 0.708 23.21 24.74 0.500 0.672 0.645 23.20 25.16 0.542 0.676 0.658
DVGO [31] 24.26 25.29 0.633 0.689 0.666 21.70 23.15 0.570 0.642 0.605 22.45 24.59 0.573 0.664 0.646
EgoNeRF 28.87 30.06 0.310 0.803 0.803 27.90 29.31 0.167 0.844 0.832 24.52 26.74 0.331 0.737 0.729

10k

NeRF [22] 27.66 28.80 0.425 0.756 0.749 23.63 24.90 0.458 0.686 0.650 22.78 24.49 0.538 0.663 0.638
mip-NeRF 360 [2] 27.41 28.47 0.412 0.763 0.755 25.57 26.80 0.306 0.769 0.741 24.28 26.28 0.384 0.725 0.710
TensoRF [7] 26.96 26.98 0.469 0.751 0.743 24.09 25.71 0.436 0.696 0.676 23.82 25.75 0.481 0.694 0.678
DVGO [31] 25.44 26.53 0.556 0.715 0.699 22.54 24.06 0.518 0.659 0.628 23.08 25.28 0.529 0.678 0.664
EgoNeRF 30.23 31.47 0.248 0.840 0.841 28.81 30.21 0.136 0.868 0.859 24.71 26.98 0.314 0.746 0.740

100k

NeRF [22] 31.67 33.08 0.240 0.852 0.853 27.12 28.54 0.269 0.789 0.772 24.91 26.65 0.384 0.721 0.702
mip-NeRF 360 [2] 31.12 32.41 0.225 0.859 0.859 29.34 30.63 0.135 0.879 0.867 25.57 27.62 0.268 0.778 0.770
TensoRF [7] 29.25 30.57 0.376 0.791 0.793 25.68 27.47 0.344 0.734 0.726 25.16 27.13 0.376 0.732 0.724
DVGO [31] 28.84 30.23 0.348 0.798 0.803 24.87 26.73 0.363 0.720 0.711 24.90 27.28 0.376 0.732 0.729
EgoNeRF 33.11 34.53 0.142 0.902 0.904 30.56 32.04 0.087 0.904 0.901 25.25 27.50 0.286 0.763 0.758

Table 1. Quantitative results in outward-looking OmniBlender and Ricoh360 dataset. Top results are colored as top1 , top2 , and top3 .

test, respectively. With the benefit of the simple procedure,
the whole data acquisition is finished in less than 5 seconds,
which enables capturing the surrounding scene while it re-
mains nearly static. We obtain camera poses using SfM li-
brary OpenMVG [23]. A detailed description of our dataset
can be found in the supplementary material.

Baselines EgoNeRF is a variant of NeRF [22], which
synthesizes novel views of the scene using the neural vol-
ume trained with multi-view images. However, the origi-
nal NeRF utilizes an MLP to represent the scene volume.
There also exists a recent variant called mip-NeRF 360 [2],
which combines many techniques to increase the quality of
the results, including the adaptation to unbounded scenes
by warping space farther than a certain radius. EgoNeRF
employs feature grids and vector-matrix factorization in the
balanced spherical grid. DVGO [31] exploits feature grids
in a Cartesian coordinate with great acceleration, whereas
TensoRF [7] deploys factorization, also in Cartesian coordi-
nate. For all the methods, we train with the same ray batch
size and the same number of feature grids (for DVGO and
TensoRF) with one RTX-3090 GPU for a fair comparison.

5.1. Quantitative Results

The quantitative results are reported in mean PSNR,
SSIM [33], and LPIPS [36] across test images in Om-
niBlender and Ricoh360 dataset in Tab. 1. Since equirect-
angular images in our datasets have distortion near poles,
we additionally measure weighted-to-spherically uniform
PSNR and SSIM [32] (PSNRWS and SSIMWS), which place
smaller weights near the poles when evaluating the metrics.

Table 1 shows that EgoNeRF outperforms all com-
pared methods across all error metrics in the OmniBlender
dataset. With the efficient grid structure of EgoNeRF, the
difference is more significant in earlier iterations. Consid-
ering the time for each iteration, the efficiency gap is even

more significant, which is also visualized in Fig. 3. Our ap-
proach shows high performance even at the early 5k steps,
which takes 10 minutes of wall-clock time. In contrast, mip-
NeRF 360 needs approximately 8 hours to outperform our
results at 5k steps. In Ricoh360, EgoNeRF surpasses other
methods in 5k and 10k training steps, and shows compara-
ble results in 100k steps. However, our approach sometimes
produces spotty artifacts in real-world datasets because the
camera pose estimates can be erroneous. On the other hand,
MLP-based methods show blurry rendering, which sporad-
ically achieves better scores in error metrics. Such a phe-
nomenon is prominent when the error in the camera pose
makes the rays hit neighboring cells in the feature grid,
which is further discussed in the supplementary material.

More importantly, the feature grid using the Cartesian
coordinate system (TensoRF and DVGO) results in infe-
rior performance, especially in outdoor scenes. This sup-
ports our main claim that the Cartesian grid is inadequate to
represent large-scale scenes captured from egocentric view-
points. In contrast, MLP-based methods (NeRF and mip-
NeRF 360) achieve moderate results.

5.2. Qualitative Results

The qualitative results in OmniBlender and Ricoh360
datasets are demonstrated in Fig. 5. Our method recon-
structs fine details in both close-by objects and far-away
regions. However, for Cartesian grid-based methods (Ten-
soRF and DVGO), many cells are wasted without being
trained in far objects, while center cells might not have a
sufficient resolution as depicted in Fig. 2. It results in visi-
ble artifacts in the picture in BarberShop, bike in BistroBike,
bricks in bricks, and posters in poster. This phenomenon is
predominant in large scenes, while EgoNeRF gives consis-
tently faithful results regardless of the size of the scenes.

MLP-based approaches show better visual results than
Cartesian feature grid-based methods with much longer
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Figure 5. Comparative results of novel view synthesis on the outward-looking (a) synthetic OmniBlender dataset and (b) real-world
Ricoh360 dataset. Best viewed on screen.
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Method Indoor Outdoor
PSNR LPIPS SSIM PSNR LPIPS SSIM

w/o exp R grid 31.32 0.188 0.871 26.66 0.187 0.792
w/o Yin-Yang grid 30.53 0.191 0.860 26.74 0.160 0.806
Spherical Grid 30.78 0.209 0.858 26.25 0.213 0.773
w/o Resampling 32.40 0.167 0.886 30.12 0.105 0.891
w/o Environment map - 30.04 0.107 0.891

EgoNeRF (full) 33.11 0.142 0.902 30.56 0.087 0.904

Table 2. An ablation study in OmniBlender dataset. We replace
and remove important components in EgoNeRF.

w/o Environment map

OursSpherical grid

Ours

Figure 6. Qualitative results of ablation study.

training and rendering time. However, mip-NeRF 360 of-
ten misses fine structures: e.g., stick of broom, thin handle
and support fixture in tray, headrest attachment in chair in
Barbershop, street lamp, side mirror of bike, small color-
ful lightbulbs and thin wire in BistroBike. Some of them
are also indicated with white dotted circles in Fig. 5. This
may be due to mip-NeRF 360 resample ray samples from
the proposal MLP and do not apply rendering loss for the
proposal MLP to relieve lengthy training time to optimize
large MLPs, thus the weight distribution is strongly deter-
mined by the initial guess of the proposal MLP. In con-
trast, since our approach shares the same density grid Gσ to
query volume density at coarse samples and fine samples,
EgoNeRF shows superior rendering results on fine details.
Also, MLP-based approaches show smoothed rendering re-
sults across all the scenes (e.g., windows are blurred, cannot
see the sky through the gap between bricks, the boundaries
between stepping blocks are blurred in Bricks, two reflected
lights are merged in poster. Some of them are also high-
lighted with white dotted circles in Fig. 5.), while EgoNeRF
shows high-quality images similar to ground-truth images.

5.3. Ablation study

We analyze the effects of important components of
EgoNeRF with ablated versions. Table 2 shows that remov-
ing any of the components in our model degrades the per-
formance across all metrics. The first three rows are related
to the balanced spherical grid. Using the uniform radial par-
tition deteriorates the performance, especially in outdoor
scenes. Without Yin-Yang grids, the angular partition ex-

hibits high valence grid points on two poles and degrades
the error metrics consequently. Removing both radial and
angular balanced grids, which is identical to uniform spher-
ical grids, causes the biggest drop in performance except
PSNR in indoor scenes. As shown in the first row of Fig. 6,
the spherical feature grid has radial direction artifacts (red
box) and shows blurrier rendered results for nearby objects
compared to our full model. Also, not employing resam-
pling techniques and using a double number of ray samples
reduces performance. Lastly, removing the environment
map in outdoor scenes shows blurry artifacts in infinitely
far regions as shown in the second row of Fig. 6 and reduces
the performance consequently.

We provide additional analysis on the impact of hyper-
parameters, scene depths, and out-of-distribution testing in
the supplementary material.

6. Conclusion

We present EgoNeRF, an efficient adaptation of the
NeRF into large-scale scenes with casual input. We uti-
lize a balanced spherical feature grid and maintain uniform
ray hit rates for individual cells for scenes captured with a
short video of omnidirectional cameras. Together with fac-
torization and resampling techniques, we can achieve fast
and high-quality rendering of various indoor and outdoor
environments.

Although EgoNeRF significantly outperforms the prior
works in terms of visual quality and our approach converges
much faster than MLP-based methods, we have some limi-
tations. In this paper, we do not consider all the challenges
that come from real-world scenarios such as photomet-
ric variation from automatic camera exposure. EgoNeRF
sometimes shows noisy artifacts when the camera poses are
not correct in the real-world Ricoh360 dataset, while MLP-
based algorithms output blurred images. Further analysis
of the impact of camera parameter error is provided in the
supplementary material. One can resolve this by jointly
optimizing the camera parameters as in [17, 19, 34]. Fur-
thermore, like other NeRF-based models, we assume that
scenes are static.

Acknowledgements This work was supported by the Na-
tional Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2023-00208197)
and Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) [NO.2021-0-01343, Artificial Intelli-
gence Graduate School Program (Seoul National Univer-
sity)]. Young Min Kim is the corresponding author.

16597



References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5855–
5864, October 2021. 3

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470–5479, June 2022. 2, 3, 6,
7

[3] Tobias Bertel, Mingze Yuan, Reuben Lindroos, and Christian
Richardt. Omniphotos: casual 360 vr photography. ACM
Transactions on Graphics (TOG), 39(6):1–12, 2020. 1, 2

[4] Michael Broxton, Jay Busch, Jason Dourgarian, Matthew
DuVall, Daniel Erickson, Dan Evangelakos, John Flynn, Pe-
ter Hedman, Ryan Overbeck, Matt Whalen, et al. Deepview
immersive light field video. In ACM SIGGRAPH 2020 Im-
mersive Pavilion, pages 1–2. 2020. 1, 2

[5] Michael Broxton, Jay Busch, Jason Dourgarian, Matthew
DuVall, Daniel Erickson, Dan Evangelakos, John Flynn,
Ryan Overbeck, Matt Whalen, and Paul Debevec. A low
cost multi-camera array for panoramic light field video cap-
ture. In SIGGRAPH Asia 2019 Posters, pages 1–2. 2019. 1,
2

[6] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics (TOG), 39(4):86–1, 2020. 1, 2

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 2, 3, 4, 5, 6,
7

[8] Changwoon Choi, Juhyeon Kim, and Young Min Kim. Ibl-
nerf: Image-based lighting formulation of neural radiance
fields. arXiv preprint arXiv:2210.08202, 2022. 3

[9] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 5

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5501–5510, June 2022. 3

[11] Gene Greger, Peter Shirley, Philip M Hubbard, and Donald P
Greenberg. The irradiance volume. IEEE Computer Graph-
ics and Applications, 18(2):32–43, 1998. 3

[12] Takayuki Hara and Tatsuya Harada. Enhancement of novel
view synthesis using omnidirectional image completion.
arXiv preprint arXiv:2203.09957, 2022. 2

[13] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-
sion, pages 5875–5884, 2021. 3

[14] Ching-Yu Hsu, Cheng Sun, and Hwann-Tzong Chen. Mov-
ing in a 360 world: Synthesizing panoramic parallaxes from
a single panorama. arXiv preprint arXiv:2106.10859, 2021.
2

[15] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia.
Efficientnerf efficient neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12902–12911, June 2022.
3, 5

[16] Hyeonjoong Jang, Andreas Meuleman, Dahyun Kang,
Donggun Kim, Christian Richardt, and Min H Kim. Ego-
centric scene reconstruction from an omnidirectional video.
ACM Transactions on Graphics (TOG), 41(4):1–12, 2022. 1,
2

[17] Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima
Anandkumar, Minsu Cho, and Jaesik Park. Self-calibrating
neural radiance fields. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
5846–5854, October 2021. 8

[18] Akira Kageyama and Tetsuya Sato. “yin-yang grid”: An
overset grid in spherical geometry. Geochemistry, Geo-
physics, Geosystems, 5(9), 2004. 2, 3

[19] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5741–5751, October 2021.
8

[20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651–15663,
2020. 3

[21] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7210–7219, June 2021. 3

[22] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
3, 4, 5, 6, 7

[23] Pierre Moulon, Pascal Monasse, Romuald Perrot, and Re-
naud Marlet. OpenMVG: Open multiple view geometry. In
International Workshop on Reproducible Research in Pattern
Recognition, pages 60–74. Springer, 2016. 6

[24] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 3, 5

[25] Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11453–
11464, June 2021. 3

16598



[26] Ryan S Overbeck, Daniel Erickson, Daniel Evangelakos,
Matt Pharr, and Paul Debevec. A system for acquiring, pro-
cessing, and rendering panoramic light field stills for virtual
reality. ACM Transactions on Graphics (TOG), 37(6):1–15,
2018. 1, 2

[27] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5865–5874, October
2021. 3

[28] Albert Parra Pozo, Michael Toksvig, Terry Filiba Schrager,
Joyce Hsu, Uday Mathur, Alexander Sorkine-Hornung, Rick
Szeliski, and Brian Cabral. An integrated 6dof video camera
and system design. ACM Transactions on Graphics (TOG),
38(6):1–16, 2019. 1, 2

[29] Leonid I Rudin and Stanley Osher. Total variation based im-
age restoration with free local constraints. In Proceedings of
1st international conference on image processing, volume 1,
pages 31–35. IEEE, 1994. 5

[30] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 7495–7504, June 2021. 3

[31] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5459–5469, June 2022. 2, 3, 5, 6, 7

[32] Yule Sun, Ang Lu, and Lu Yu. Weighted-to-spherically-
uniform quality evaluation for omnidirectional video. IEEE
signal processing letters, 24(9):1408–1412, 2017. 6

[33] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[34] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf–: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 8

[35] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 3

[36] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 6

16599


