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Abstract

In this paper, we present a new MTL framework that

searches for structures optimized for multiple tasks with di-

verse graph topologies and shares features among tasks.

We design a restricted DAG-based central network with

read-in/read-out layers to build topologically diverse task-

adaptive structures while limiting search space and time.

We search for a single optimized network that serves as

multiple task adaptive sub-networks using our three-stage

training process. To make the network compact and dis-

cretized, we propose a flow-based reduction algorithm and

a squeeze loss used in the training process. We evaluate

our optimized network on various public MTL datasets and

show ours achieves state-of-the-art performance. An exten-

sive ablation study experimentally validates the effective-

ness of the sub-module and schemes in our framework.

1. Introduction

Multi-task learning (MTL), which learns multiple tasks

simultaneously with a single model has gained increasing

attention [3, 13, 14]. MTL improves the generalization per-

formance of tasks while limiting the total number of net-

work parameters to a lower level by sharing representa-

tions across tasks. However, as the number of tasks in-

creases, it becomes more difficult for the model to learn the

shared representations, and improper sharing between less

related tasks causes negative transfers that sacrifice the per-

formance of multiple tasks [15,36]. To mitigate the negative

transfer in MTL, some works [6,25,32] separate the shared

and task-specific parameters on the network.

More recent works [21,29,38] have been proposed to dy-

namically control the ratio of shared parameters across tasks

using a Dynamic Neural Network (DNN) to construct a task

adaptive network. These works mainly apply the cell-based

architecture search [19, 27, 41] for fast search times, so that

the optimized sub-networks of each task consist of fixed

or simple structures whose layers are simply branched, as

shown in Fig. 1a. They primarily focus on finding branching
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patterns in specific aspects of the architecture, and feature-

sharing ratios across tasks. However, exploring optimized

structures in restricted network topologies has the potential

to cause performance degradation in heterogeneous MTL

scenarios due to unbalanced task complexity.

We present a new MTL framework searching for sub-

network structures, optimized for each task across diverse

network topologies in a single network. To search the graph

topologies from richer search space, we apply Directed

Acyclic Graph (DAG) for the homo/heterogeneous MTL

frameworks, inspired by the work in NAS [19, 27, 40]. The

MTL in the DAG search space causes a scalability issue,

where the number of parameters and search time increase

quadratically as the number of hidden states increases.

To solve this problem, we design a restricted DAG-based

central network with read-in/read-out layers that allow our

MTL framework to search across diverse graph topologies

while limiting the search space and search time. Our flow-

restriction eliminates the low-importance long skip connec-

tion among network structures for each task, and creates the

required number of parameters from O(N2) to O(N). The

read-in layer is the layer that directly connects all the hidden

states from the input state, and the read-out layer is the layer

that connects all the hidden states to the last feature layer.

These are key to having various network topological rep-

resentations, such as polytree structures, with early-exiting

and multi-embedding.

Then, we optimize the central network to have compact

task-adaptive sub-networks using a three-stage training pro-

cedure. To accomplish this, we propose a squeeze loss and a

flow-based reduction algorithm. The squeeze loss limits the

upper bound on the number of parameters. The reduction

algorithm prunes the network based on the weighted adja-

cency matrix measured by the amount of information flow

in each layer. In the end, our MTL framework constructs a

compact single network that serves as multiple task-specific

networks with unique structures, such as chain, polytree,

and parallel diverse topologies, as presented in Fig. 1b. It

also dynamically controls the amount of sharing represen-

tation among tasks.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3779



(a) Graph representation of existing DNN-based methods (i).-(ii). for MTL and ours (iii). (b) Topologies of DAG (i). and its sub-graph (ii).

Figure 1. Graph representation of various neural networks. (a) Graph representation of existing dynamic neural network for multitask

learning and ours. (b) Topologies of a completed Directed Acyclic Graph (DAG) and the output sub-graph of DAG structure.

The experiments demonstrate that our framework suc-

cessfully searches the task-adaptive network topologies of

each task and leverages the knowledge among tasks to make

a generalized feature. The proposed method outperforms

state-of-the-art methods on all common benchmark datasets

for MTL. Our contributions can be summarized as follows:

• We present for the first time an MTL framework that

searches both task-adaptive structures and sharing pat-

terns among tasks. It achieves state-of-the-art perfor-

mance on all public MTL datasets.

• We propose a new DAG-based central network com-

posed of a flow restriction scheme and read-in/out lay-

ers, that has diverse graph topologies in a reasonably

restricted search space.

• We introduce a new training procedure that optimizes

the MTL framework for compactly constructing vari-

ous task-specific sub-networks in a single network.

2. Related Works

Neural Architecture Search (NAS) Neural Architecture

Search is a method that automates neural architecture en-

gineering [8]. Early works [2, 40, 41] use reinforcement

learning based on rewarding the model accuracy of the gen-

erated architecture. Alternative approaches [24, 30, 37] em-

ploy evolutionary algorithms to optimize both the neural ar-

chitecture and its weights. These methods search for an ade-

quate neural architecture in a large discrete space. Gradient-

based NAS methods [4,19,39] of formulating operations in

a differentiable search space are proposed to alleviate the

scalability issues. They generally use the convex combina-

tion from a set of operations instead of determining a sin-

gle operation. Most NAS approaches [19, 27, 40] adopt the

complete DAG as a search space, to find the architecture

in the various network topologies. However, DAG-based

MTL frameworks have not been proposed, because of their

considerably high computational demands.

Multi-Task Learning (MTL) Multi-task learning in deep

neural networks can be categorized into hard and soft pa-

rameter sharing types [31]. Hard parameter sharing [3,

13, 14], also known as shared-bottom, is the most com-

monly used approach to MTL. This scheme improves gen-

eralization performance while reducing the computational

cost of the network, by using shared hidden layers between

all tasks. However, it typically struggles with the negative

transfer problem [15, 36] which degrades performance due

to improper sharing between less relevant tasks.
On the other hand, soft-parameter sharing [25, 32] alle-

viate the negative transfer problem by changing the shared

parameter ratio. These approaches mitigate the negative

transfer by flexibly modifying shared information, but they

cannot maintain the computational advantage on the classic

shared-bottom model. Recently, advanced approaches have

been proposed to adjust shared parameters using a dynamic

neural network [21, 22, 29, 38] and NAS [10].

NAS-style MTL MTL frameworks using a dynamic neural

network (DNN) can be divided into two categories. One

employs the Mixture-of-Experts (MoE) [33], which is de-

signed for conditional computation of per-sample, to MTL

by determining the experts of each task [9, 21, 22]. They

have a fixed depth finalized task-specific sub-network, be-

cause they choose experts from a fixed number of modular

layers. This causes a critical issue with task-balancing in

the heterogeneous MTL. The other adopts the skip-or-select

policy to select task-specific blocks from the set of resid-

ual blocks [38] or a shared block per layer [12, 29]. These

methods only create a simple serial path in the finalized sub-

network of each task, and a parallel link cannot be repro-

duced. Moreover, they heuristically address the unbalanced
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task-wise complexity issues in the heterogenous MTL (e.g.

manually changing the balancing parameters based on the

task complexity [29,38]). Thus, none of the aforementioned

works focus on finding the optimal task-specific structure in

the MTL scenario.

3. Method

We describe our MTL framework, which searches for

optimized network structures tailored to each task across di-

verse graph topologies, while limiting search time. Sec. 3.1

describes the composition of the searchable space of our

central network and our flow-restriction method for effi-

ciently balancing the topological diversity of task-specific

sub-networks and searching space. Sec. 3.2 introduces our

mechanism to determine the task-adaptive sub-network in

the central network and describes the overall training pro-

cess and loss function. The overall pipeline of our method

is illustrated in Fig. 2.

3.1. The Central Network with Diverse Topologies

Our central network composes a graph G = (V,E) with

layersE in which theN hidden states V = {v1, ..., vN} are

topologically sorted:

E = {eij}i,j∈{1,...,N}, where i < j, (1)

eij( · ; θij) : R
Nvi
→ R

Nvj

, (2)

where eij is the operation that transfer the state vi to vj with

the weight parameters θij ∈ Θ, and Nvk is the number of

the elements of hidden state vk, respectively. We adopt the

DAG structure [19, 27, 40] for the network. However, the

optimized structure from DAG is searched from 2N(N−1)/2

network topologies, which are too large to be optimized in

time. To address the issue while maintaining diversity, we

propose a flow-restriction and read-in/read-out layers.

Flow-restriction The flow-restriction eliminates the low-

importance long skip connection among network structures

for each task by restricting j − i ≤ M where M is the

flow constant. Regulating the searchable edges in the graph

reduces the required number of parameters and searching

time from O(N2) to O(N), but it sacrifices the diversity

and capacity of the network topologies.

To explain the topological diversity and task capacity of

sub-networks, we define the three components of network

topology, as follows:

1. D(G) = max({Distance(vi, vj)}vi,vj∈V ),

2. W(G) = max({Outvi}vi∈V ),

3. S(Gs, G) = |Es|/|E|,

where Outvi is the out-degree of the vertex vi and

Distance(·) is the operation that counts the number of lay-

ers (or edges) between two connected vertices. The network

depth D(G) is equal to the longest distance between two

vertices in the graph G. The network widthW(G) is equal

to the maximum value of the out-degrees of hidden states

in the graph G. The sparsity S(Gs, G) of the sub-graph Gs
is the ratio of finalized edges |Es| over entire edges |E|.
The first two components are measurements of the topo-

logical diversity of the finalized sub-network, while the last

one is for the sub-network capacity. While a complete DAG

has the full range of depth and width components, the flow-

restricted DAG has the properties of depth and width com-

ponents as follows:

Property 1. min({D(Gs)}Gs⊆G) = ⌈(|V |/M)⌉,

Property 2. max({W(Gs)}Gs⊆G) =M,

where {Gs} is the entire sub-graph of G. The min-depth

property (Prop. 1) can cause the over-parameterized prob-

lem when the capacity of the task is extremely low. The

max-width property (Prop. 2) directly sacrifices the diver-

sity of network topologies in the search space.

Read-in/Read-out layers We design read-in/read-out lay-

ers to mitigate these problems. The read-in layer em-

beds the input state v0 into all hidden states vi ∈ V
with task-specific weights αki ∈ A for all K tasks T =
{Tk}k∈{1,...,K} as follows:

vki = σ(αki ) · v0, (3)

where σ(·) is the sigmoid function. Then, the central net-

work sequentially updates the hidden state vk1 to vkN with

the task-specific weights γkij ∈ Γ that correspond to ekij :

vkj =
1

Invkj

∑

eij∈E

(σ(γkij) · eij(v
k
i ; θij)), (4)

where Invk
j

is the in-degree of vkj . Note that Γ is the ad-

jacency matrix of graph G. Finally, the read-out layer ag-

gregates all hidden state features {vki }i∈{1,...,N} with the

task-specific weights βki ∈ B and produces the last layer

feature vkL for each task k as follows:

vkL =
∑

i∈{1,...,N}

(σ(βki ) · v
k
i ). (5)

The final prediction ŷk for each task Tk is computed by

passing the aggregated features vkL through the task-specific

head Hk(·) as follows:

ŷk = Hk(vkL). (6)

All upper-level parameters A,B, and Γ are learnable pa-

rameters, and their learning process is described in Sec. 3.2.

The read-in/read-out layers enable the optimized network to

have a multi-input/output sub-network. The read-out layer
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Figure 2. Overall pipeline. Our central network follows a DAG-based structure with read-in/out layers, and task-specific heads. The

long skip connection is cut by our flow-restriction. Our framework with a 3-task MTL learning scenario consists of three stages including

warm-up, search, and fine-tuning stages. The warm-up stage only learns the parameters of the main network Θ and task-specific weights.

The search stage learns the upper-level parameters A,B,Γ, and task-specific weights. Then, flow-based reduction eliminates the low-

importance edges from the network. The fine-tuning stage re-trains the network with the remaining important parameters.

aggregates all hidden states of the central network during

the search stage, allowing a specific task to use the early

hidden states to output predictions while ignoring the last

few layers. These early-exit structures help alleviate the

over-parameterized problem in simple tasks.

3.2. Network Optimization and Training Procedure

We describe the entire training process for our MTL

framework, which consists of three stages, including warm-

up, search, and fine-tuning stages.

Warm-up stage As with other gradient-based NAS, our

framework has upper-level parameters that determine the

network structure and parameters. This bilevel optimization

with a complex objective function in an MTL setup makes

the training process unstable. For better convergence, we

initially train all network parameters across tasks for a few

iterations. We train the weight parameters of the central

network Θ that shares all operations E across tasks. We

fix all values of the upper-level parameters A,B, and Γ as

0, which becomes 0.5 after the sigmoid function σ(·), and

freeze them. We train the network parameters Θ in Eq. 4

with a task loss as follows:

Ltask =
K
∑

k=0

LTk
(ŷTk

,yTk
), (7)

where LTk
is the task-specific loss, which is the unique loss

function for each task.

Search stage After the warm-up stage, we unfreeze the

upper-level parameters A,B, and Γ and search the network

topologies appropriate to each task. We train all these pa-

rameters and network parameters Θ simultaneously by min-

imizing the task loss and the proposed squeeze loss Lsq as

follows:

Ltrain = Ltask + λsqLsq, (8)

Lsq =

K
∑

k=0

(max((
∑

γij∈Γ

(σ(γij))− κ), 0)), (9)

where λsq is the balancing hyperparameter, and κ is a con-

stant number called the budget, that directly reduces the

sparsity of the central network. This auxiliary loss is de-

signed to encourage the model to save computational re-

sources.

Fine-tuning stage Lastly, we perform a fine-tuning stage to

construct a compact and discretized network structure us-

ing the trained upper-level parameters A,B, and Γ. To do

so, we design a flow-based reduction algorithm that allows

the network to obtain high computational speed by omitting

low-importance operations, as described in Alg. 1. It mea-

sures the amount of information flow of each layer eij in

the central network by calculating the ratio of edge weight

with respect to other related edges weight. Then, it sequen-

tially removes the edge which has the lowest information

flow. Alg. 1 stops when the edge selected to be deleted is
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Algorithm 1: Flow-based Reduction

Input: Γ ∈ R
N×N , A ∈ R

N , B ∈ R
N

Output: Γ̂, Â, B̂ // Discretized params.

1 initialize zero matrix Ψ, Ψ̂ ∈ R
(N+2)×(N+2)

2 Nα = argmax(A)
3 Nβ = max(Nα + 1, argmax(B))
4 Γ[: Nα, :]← 0 // remove edges < Nα

5 Γ[:, Nβ :]← 0 // remove edges > Nβ

6 Ψ[1 : N, 1 : N ]← Γ // merge Γ,A,B into Ψ

7 Ψ[0, Nα + 1 : Nβ + 1]← A[Nα : Nβ ]
8 Ψ[Nα + 1 : Nβ + 1, N + 1]← B[Nα : Nβ ]
9 while True do

10 initialize zero matrix S ∈ R
(N+2)×(N+2)

11 for i← 0 to {N + 1} do

12 for j ← 0 to {N + 1} do

13 S[i, j]←

ψij
(

1
Invi

∑

ψki∈Ψ(ψki)/
∑

ψik∈Ψ(ψik)+
1

Outvj

∑

ψjk∈Ψ(ψjk)/
∑

ψkj∈Ψ(ψkj)
)

14 ψij ← 0, where S[i, j] is nonzero min value

15 if graph builded from Ψ is reachable then

16 Ψ̂← Ψ

17 else

18 Ψ̂[Ψ̂ > 0]← 1 // discretization

19 Γ̂← Ψ̂[1 : N, 1 : N ] // split into Γ,A,B

20 Â ← Ψ̂[0, 1 : N ]

21 B̂ ← Ψ̂[1 : N,N + 1]

22 return Γ̂, Â, B̂

the only edge that can reach the graph. We use the simple

Depth-first search algorithm to check the reachability of Γ̂
between hidden state vNα

to vNβ
. All the output Â, B̂, Γ̂ in

Alg. 1, which is the discretized binary adjacency matrix,

represent the truncated task-adaptive sub-network. After

the reduction, we fix the upper-level parameters and only

re-train the network parameters Θ, and we do not use the

sigmoid function in Eq. 3-5

4. Experiments

We first describe the experimental setup in Sec. 4.1. We

compare our method to state-of-the-art MTL frameworks

on various benchmark datasets for MTL in Sec. 4.2. We

also conduct extensive experiments and ablation studies to

validate our proposed method in Sec. 4.3-4.5.

4.1. Experimental Settings

Dataset We use four public datasets for multi-task scenarios

including Omniglot [17], NYU-v2 [34], Cityscapes [7], and

PASCAL-Context [26]. We use these datasets, configured

by previous MTL works [29, 38], not their original sources.

• Omniglot Omniglot is a classification dataset consist-

ing of 50 different alphabets, and each of them consists

of a number of characters with 20 handwritten images

per character.

• NYU-v2 NYU-v2 comprises images of indoor scenes,

fully labeled for joint semantic segmentation, depth es-

timation, and surface normal estimation.

• Cityscapes Cityscapes dataset collected from urban

driving scenes in European cities consists of two tasks:

joint semantic segmentation and depth estimation.

• PASCAL-Context PASCAL-Context datasets contain

PASCAL VOC 2010 [34] with semantic segmentation,

human parts segmentation, and saliency maps, as well

as additional annotations for surface normals and edge

maps.

Competitive methods We compare the proposed frame-

work with state-of-the-art methods [1, 11, 12, 18, 20, 22, 23,

25, 28, 29, 32, 38] and various baselines including a single

task and a shared-bottom. The single-task baseline trains

each task independently using a task-specific encoder and

task-specific head for each task. The shared-bottom base-

line trains multiple tasks simultaneously with a shared en-

coder and separated task-specific heads.

We compare our method with MoE-based approaches,

including Soft Ordering [23], Routing [28], and Gumbel-

Matrix [22], as well as a NAS approach [18] on Omniglot

datasets. CMTR [18] can modify parameter count, similar

to our method. We compare our method with other soft-

parameter sharing methods including Cross-Stitch [25],

Sluice network [32], and NDDR-CNN [11] and the dy-

namic neural network (DNN)-based methods including

MTAN [20], DEN [1], and Adashare [38] for the other

three datasets. We provide the evaluation results of two re-

cent works, LTB [12] and PHN [29] for PASCAL-Context

datasets because only the results are reported in their papers,

but no source codes are provided.

Multi-task scenarios We set up multi-task scenarios with

the combination of several tasks out of a total of seven

tasks, including classification Tcls, semantic segmentation

Tsem, depth estimation Tdep, surface normal prediction

Tnorm, human-part segmentation Tpart, saliency detection

Tsal, and edge detection Tedge. We follow the MTL setup

in [38] for three datasets including Omniglot, NYU-v2, and

cityscapes, and [29] for PASCAL-Context. We simulate a

homogeneous MTL scenario of a 20-way classification task

in a multi-task setup using Omniglot datasets by follow-

ing [23]. Each task predicts a class of characters in a single

alphabet set. We use the other three datasets for hetero-

geneous MTL. We set three tasks including segmentation,

depth estimation, and normal estimation for NYU-v2 and

two with segmentation, depth estimation for Cityscapes.
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Method Test Acc. (%) # of Param ↓

Soft Ordering [23] 66.59 0.27

CMTR [18] 87.19 -

MoE [28] 92.19 9.08

Gumbel-Matrix [22] 93.52 9.08

Single Task 93.48 20.00

Shared Bottom 93.25 1.00

Ours (M = 3) 94.99 0.91

Ours (M = 5) 95.71 1.37

Ours (M = 7) 95.68 1.46

Table 1. Evaluation on Omniglot datasets.

Method ∆Tsem
↑ ∆Tnorm

↑ ∆Tdep
↑ ∆T ↑ # of Param ↓

Single-Task 0.0 0.0 0.0 0.0 3.00

Shared Bottom -7.6 +7.5 +5.2 +1.7 1.00

Cross-Stitch [25] -4.9 +4.2 +4.7 +1.3 3.00

Sluice [32] -8.4 +2.9 +4.1 -0.5 3.00

NDDR-CNN [11] -15.0 +2.9 -3.5 -5.2 3.15

MTAN [20] -4.2 +8.7 +3.8 +2.7 3.11

DEN [1] -9.9 +1.7 -35.2 -14.5 1.12

AdaShare [38] +8.8 +7.9 +10.1 +8.9 1.00

Ours (M = 5) +11.9 +7.9 +8.8 +9.5 1.04

Ours (M = 7) +13.4 +9.2 +10.7 +11.1 1.31

Ours (M = 9) +13.2 +9.0 +10.9 +11.0 1.63

Table 2. Evaluation on NYU-v2 datasets.

We set five tasks Tsem, Tpart, Tnorm, Tsal, and Tedge as

used in [29] for PASCAL-Context datasets.

Evaluation metrics We follow the common evaluation

metrics utilized in the competitive methods. We use an

accuracy metric for the classification task. The semantic

segmentation task is measured by mean Intersection over

Union (mIoU) and pixel accuracy. We use the mean ab-

solute and mean relative errors, and relative difference as

the percentage of δ = max(d̂/d,d/d̂) within thresholds

1.25{1,2,3} for the depth estimation task. For the evaluation

of the PASCAL-Context datasets, we follow the same met-

rics used in [29] for all tasks. As reported in [38], we report

a single relative performance ∆Ti
in Tab. 1-4 for each task

Ti with respect to the single-task baseline, which defined as:

∆Ti
=

100

|M|

|M|
∑

j=0

(−1)lj
(MTi,j −M

single
Ti,j

)

Msingle
Ti,j

, (10)

whereMTi,j andMsingle
Ti,j

are the j-th metric of i-th task Ti
from each method and the single task baseline, respectively.

The constant lj is 1 if a lower value represents better for

the metric MTi,j and 0 otherwise. The averaged relative

performance for all tasks T is defined as:

∆T =
1

|T |

|T |
∑

i=1

∆Ti
. (11)

Method ∆Tsem
↑ ∆Tdep

↑ ∆T ↑ # of Param ↓

Single-Task 0.0 0.0 0.0 2.00

Shared Bottom -3.7 -0.5 -2.1 1.00

Cross-Stitch [25] -0.1 +5.8 +2.8 2.00

Sluice [32] -0.8 +4.0 +1.6 2.00

NDDR-CNN [11] +1.3 +3.3 +2.3 2.07

MTAN [20] +0.5 +4.8 +2.7 2.41

DEN [1] -3.1 -1.6 -2.4 1.12

AdaShare [38] +1.8 +3.8 +2.8 1.00

Ours (M = 5) +3.5 +3.9 +3.7 0.96

Ours (M = 7) +7.5 +3.1 +5.3 1.16

Ours (M = 9) +8.3 +4.8 +6.6 1.31

Table 3. Evaluation on Cityscapes datasets.

Method ∆Tsem
↑ ∆Tpart

↑ ∆Tsal
↑ ∆Tnorm

↓ ∆Tedge
↑ ∆T ↑ # of Param ↓

Single-Task 0.0 0.0 0.0 0.0 0.0 0.0 5.00

Shared Bottom -6.6 -0.7 -3.4 -14.3 0.0 -5.0 1.00

Cross-Stitch [25] -1.3 +3.6 -0.2 -1.4 0.0 +0.1 5.00

Sluice [32] -1.6 -1.2 -0.5 -2.9 -6.0 -2.4 5.00

NDDR-CNN [11] -1.1 -2.6 0.0 -5.0 0.0 -1.7 5.61

MTAN [20] -3.6 -0.7 -0.3 -5.0 -6.0 -3.1 5.21

AdaShare [38] -1.4 +4.0 -0.5 -0.7 0.0 +0.3 1.00

LTB [12] -6.9 -1.9 +0.2 -1.4 0.0 -2.0 3.19

PHN [29] -6.6 -1.6 -1.0 0.0 0.0 -1.8 2.51

Ours (M = 5) -0.3 +3.4 +0.9 0.0 0.0 +0.8 1.93

Ours (M = 7) 0.0 -0.2 +1.7 +1.4 0.0 +0.6 1.91

Ours (M = 9) 0.0 +3.6 +1.8 +1.4 0.0 +1.4 2.31

Table 4. Evaluation on PASCAL-Context datasets.

The absolute task performance for all metrics is reported in

the supplementary material.

Network and training details For our central network, we

set 8 hidden states, the same as the existing MoE-based

works [22,28] and use the same classification head for Om-

niglot datasets. We set 12 hidden states, the same as the

VGG-16 [35], except for the max-pooled state, and use the

Deeplab-v2 [5] decoder structure as all task heads for all

the other datasets, respectively. We use the Adam [16] op-

timizer to update both upper-level parameters and network

parameters. We use cross-entropy loss for semantic seg-

mentation and L2 loss for the other tasks. For a fair com-

parison, we train our central network from scratch without

pre-training for all experiments. We describe more details

on the network structure and hyperparameter settings in the

supplementary material.

4.2. Comparison to Stateoftheart Methods

We report the performance of the proposed method with

different flow constants M and compare it with state-of-

the-art methods in Tab. 1-4 with four different MTL sce-

narios. Tab. 1 shows that our framework with any flow

constant M outperforms all the competitive methods for

the homogeneous MTL scenario with Omniglot datasets.

Ours has a similar number of parameters to the shared-

bottom baseline. All the other experiments for heteroge-

neous MTL scenarios in Tab. 2-4 show that our frame-

works achieve the best performance among all state-of-

the-art works. Even with the flow constant M = 5, our
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Figure 3. Graph Representation of Task-adaptive Sub-network

The finalized sub-network topologies (M = 7) trained with NYU-

v2 datasets is illustrated as graph. (a-c) The task-adaptive sub-

network of semantic segmentation, depth estimation, and surface

normal, respectively. (d) The adjacency matrix where color repre-

sents the discretized value for the activated edge of each task.

Task D W S

Semantic Seg. 5 3 0.103

Depth 7 3 0.192

Surface normal 7 2 0.128

Table 5. Topologies analysis on NYU-v2 datasets.

model outperforms AdaShare [38] for both the NYU-v2 and

Cityscapes datasets, while keeping almost the same number

of parameters (NYU-v2: 1.00 vs. 1.04 and Cityscapes 1.00

vs. 0.96). With the flow constant M = 7, 9, our method

outperforms all the baselines by a large margin. The results

from the PASCAL-Context datasets in Tab. 4 show that all

baselines suffer from negative transfer in several tasks, as

the number of tasks increases. Only Adashare and Cross

Stitch slightly outperform the single-task baseline (see the

performance ∆T ). On the other hand, ours with M = 9
achieves the best performance without any negative trans-

fers for all tasks.

Interestingly, the required parameters of the search space

increase almost in proportion to the increase of the flow con-

stant, but there is no significant difference in the number of

parameters of the finalized networks. For example, the re-

quired number of parameters for the network with the flow

constant M = 3, 5, 7 is 2.77, 4.23, and 5.38, respectively.

This demonstrates that the proposed flow-based reduction

algorithm is effective in removing low-relative parameters

while maintaining performance. Specifically, we observe

that the total performance of our framework with M = 7
is slightly better than the M = 9 setup in Tab. 2 despite

its smaller architecture search space. To investigate this,

we further analyze the tendency in performance and com-

putational complexity with respect to the flow constant in

Sec. 4.4.

4.3. Analysis of Topologies and Task Correlation

To demonstrate the effectiveness of the proposed learn-

ing mechanism, we visualize our finalized sub-network

topologies in Fig. 3-(a-c) and the adjacency matrix for

NYU-v2 3-task learning in Fig. 3-(d). We also analyze the

diversity and capacity of task-adaptive network topologies

in Tab. 5 with network depth D, width W , and sparsity S
described in Sec. 3.1. These analyses provide three key ob-

servations on our task-adaptive network and the correlation

among tasks.

First, the tasks of segmentation and surface normal

hardly share network parameters. Various task-sharing pat-

terns are configured at the edge, but there is only one shar-

ing layer between the two tasks. This experiment shows a

low relationship between tasks, as it is widely known that

the proportion of shared parameters between tasks indicates

task correlation [22, 29, 38].

Second, long skip connections are mostly lost. The

length of the longest skip connection in the finalized net-

work is 5, and the number of these connections is 2 out

of 18 layers, even with the flow constant of 7. This phe-

nomenon is observed not only in NYU-v2 datasets but also

in the other MTL datasets. This can be evidence that the

proposed flow-restriction reduces search time while main-

taining high performance even by eliminating the long skip

connection in the DAG-based central network.

Lastly, Depth estimation task requires more network re-

sources than segmentation and surface normal estimation

tasks. We analyze the network topologies of the finalized

sub-network of each task in NYU-v2 datasets using three

components defined in Sec. 3. The depth D and width W
of the sub-network increase in the order of semantic seg-

mentation, surface normal prediction, and depth estimation

tasks. Likewise, the sparsity S of the depth network is the

highest. This experiment shows that the depth network is

the task that requires the most network resources.

4.4. Performance w.r.t. Flowresctriction

We analyze performance and computational complex-

ity with respect to the flow constant M for the NYU-v2

and Cityscapes datasets. We report the rate of performance

degradation with respect to the complete DAG search space

in Fig. 4. We observe that the reduction rate of the final

performance does not exceed 3% even with considerably

lower flow constants. The performance is saturated at a flow

constant of about 7 or more. This means that the proposed

method optimizes the task adaptive sub-network regardless

of the size of the network search space, if it satisfies the

minimum required size.
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Figure 4. Model performance with respect to the proposed

flow-restriction. We plot the degradation ratio of the performance

(left y-axis) and parameter (right y-axis) by changing the flow con-

stant M . We measure the final averaged task performance with

NYU-v2 and Cityscapes datasets marked by purple and pink circle

markers, respectively. We also measure the number of parameters

marked by gray square markers.

To demonstrate the effectiveness of our flow-based re-

duction (FBR) algorithm, we compare it to two other re-

duction algorithms (random and threshold) for Cityscapes

datasets in Fig. 5. The random reduction literally removes

the edges randomly, and the thresholding method sequen-

tially removes the edge which has the lowest value in the

adjacency matrix Γ. We measure the rate of performance

degradation of the pruned network of each reduction algo-

rithm with respect to the non-reduced network while chang-

ing the sparsity S . Note that our method automatically de-

termines the sparsity, so for this experiment only, we add a

termination condition that stops the network search when a

certain sparsity is met. The results show that the proposed

flow-reduction method retains performance even with a low

sparsity rate. This means that our method efficiently prunes

the low-related edge of the network compared to the other

methods.

4.5. Ablation Study on Proposed Modules

We conduct ablation studies on the four key components

of our framework; the flow-restriction, read-in/out layers,

flow-based reduction, and squeeze loss. We report the rela-

tive task performance and the number of parameters of the

finalized network with/without the components in Tab. 6.

The results show that our framework, including all com-

ponents, achieves the lowest number of parameters and the

second-best performance. Our method without flow-based

reduction achieves the best performance. However, the fi-

nalized network from this setup has about a five-times larger

number of parameters than ours because the network has

never been pruned in a training process. This demonstrates

that our restricted DAG-based central network is optimized

Figure 5. Model Performance with respect to the network spar-

sity. We plot the performance degradation rate by changing net-

work sparsity. We compare our flow-based reduction algorithm to

two other schemes; random selection and thresholding.

Method ∆Tsem
↑ ∆Tdep

↑ ∆Tnorm
↑ ∆T # of Param ↓

Ours (M=7) +13.4 +9.2 +10.7 +11.1 1.31

w/o flow-restriction +13.2 +9.2 +10.4 +11.0 1.80

w/o read-in/out +11.7 +8.3 +10.4 +10.1 1.43

w/o flow-based reduction +14.2 +9.2 +11.1 +11.5 6.50

w/o Lsq +13.2 +8.8 +10.7 +10.9 1.38

Table 6. Ablation study on the proposed modules (NYU-v2).

to build compact task-adaptive sub-networks with perfor-

mance close to the optimized sub-network from a complete

DAG-based network.

5. Conclusions

In this paper, we present a new MTL framework to

search for task-adaptive network structures across diverse

network topologies in a single network. We propose flow

restriction to solve the scalability issue in a complete DAG

search space while maintaining the diverse network topo-

logical representation of the DAG search space by adopt-

ing read-in/out layers. We also introduce a flow-based re-

duction algorithm that prunes the network efficiently while

maintaining overall task performance and squeeze loss, lim-

iting the upper bound on the number of network parame-

ters. The extensive experiments demonstrate that the sub-

module and schemes of our framework efficiently improve

both the performance and compactness of the network.

Our method compactly constructs various task-specific sub-

networks in a single network and achieves the best perfor-

mance among all the competitive methods on four MTL

benchmark datasets.
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