
Restoration of Hand-Drawn Architectural Drawings using Latent Space
Mapping with Degradation Generator

Nakkwan Choi1, Seungjae Lee2, Yongsik Lee2, Seungjoon Yang1∗

1Dept. of Electrical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
2Electronics and Telecommunications Research Institute, Daejeon, Korea

{cvvc1997, syang}@unist.ac.kr, {seungjlee, ys.lee}@etri.re.kr

Abstract

This work presents the restoration of drawings of
wooden built heritage. Hand-drawn drawings contain the
most important original information but are often severely
degraded over time. A novel restoration method based on
the vector quantized variational autoencoders is presented.
Latent space representations of drawings and noise are
learned, which are used to map noisy drawings to clean
drawings for restoration and to generate authentic noisy
drawings for data augmentation. The proposed method is
applied to the drawings archived in the Cultural Heritage
Administration. Restored drawings show significant quality
improvement and allow more accurate interpretations of in-
formation.

1. Introduction

Cultural heritage is a valuable asset of humanity that
requires our efforts to preserve archaeological, historical,
cultural, and technological values. In particular, traditional
wooden buildings are vulnerable to deformation, earth-
quakes, and fires. We continuously collect and manage ar-
chitectural drawings, photos, and 3D scan data of individual
buildings for preservation and restoration. Among them, ar-
chitectural drawings in the past contain initial information
on traditional wooden builds, and their value is the most
significant. However, many archived drawings in the form
of scanned images are already degraded over time, making
it difficult to interpret information due to noise and damage.
There is a need to restore aged drawings to facilitate infor-
mation interpretation. This work reports an effort to restore
aged drawings of wooden built heritage archived by the Cul-
tural Heritage Administration.

Aged drawings in the archive often show compound
degradation with faded and deteriorated lines, smeared and
blurred complex parts, and the background in faded color
with smudged leakages from adjacent drawings. Restora-

tion requires removing noise in the background, linking bro-
ken lines, and clearing up complex parts. A learning-based
restoration method would be a good match since it can
model such complicated degradation. However, while clean
and noisy drawings are abundant, clean and noisy pairs
of the same drawings are scarce. Modeling and restora-
tion by supervised learning would be problematic. Syn-
thetically generated clean and degraded image pairs can be
used. [10, 16, 21–23] But the domain gap between the syn-
thetically degraded drawings and the actual aged drawings
may cause inferior restoration performance.

In this work, we proposed a vector quantized variational
autoencoder [13] (VQ-VAE) based restoration method to
restore aged hand-drawn architectural drawings. The pro-
posed method consists of two stages. In the first stage, a
VQ-VAE is trained to learn accurate latent space represen-
tations of clean drawings using a large set of clean draw-
ings. In the second stage, a mapping of latent space vari-
ables of noisy drawings to those of clean drawings as well
as the generator that produces realistic degraded drawings
is learned. Degradation generator is trained to generate a
noisy drawing with the residual mapping error as an input.
The latent space mapping is learned using a set of draw-
ing pairs, for which we use the outputs of the degradation
generator as data augmentation. Noisy drawings generated
by the degradation generator provide authentic variations of
degradations clean drawings can suffer. Hence, the latent
space mapping from noisy to clean drawings is more accu-
rately learned, and the detrimental effect on the restoration
performance caused by the domain gap can be mitigated.

The proposed method is applied to restore archived
aged architectural drawings of traditional wooden build-
ings. Restoration performance was compared to other meth-
ods developed for heavy degradations of drawings and pho-
tographs. The proposed methods reported significant im-
provement in both quantitative measures and qualitative
evaluations. The performance gain is the most apparent
with actual aged drawings from the archives. The proposed
degradation generator produced more authentic degraded
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drawings than other generative methods. The data augmen-
tation with the degradation generator during the training al-
lowed accurate latent space mapping could be learned for
the restoration.

The following can summarize the novelty of the pro-
posed method. i) an effective VQ-VAE based restoration
method for aged architectural drawings was proposed. ii)
significant improvement in restoration performance was
achieved in both quantitative measures and subjective eval-
uations compared to existing learning based restoration
methods, and iii) a degradation generator, which generates
more realistic degradation, was developed for data augmen-
tation to generalize the model.

2. Related Work
Studies on the digitization of technical drawings address

how to restore the degraded line structures in the draw-
ings [2,6,8]. However, most digitization techniques perform
poorly with noisy drawings that suffer severe degradation.
Recently, studies have been on learning the representations
of images that suffer domain-specific degradations. In [1,4],
Unet-based denoising was utilized to improve vectorization
of technical drawings. In [12, 15, 17, 18], representations of
hand-line drawings were learned to detect, clean up, and
complete line structures in sketches. In [16], the restoration
of aged drawings archived in poor conditions was presented
to restore deteriorated old sketches by Leonardo da Vinci.
Two sub-networks, one for extracting the line segments and
the other for completing the line drawing, were used to re-
store degraded sketches.

Domain-specific representation of data can be learned
with deep networks. In [19], two VAEs were prepared, one
for the representation of degraded images and the other for
the representation of clean images. Then, a deep network
that maps the latent space of degraded images to that of
clean images is learned for restoration. In [20], two gen-
erators, one from clean to degraded and the other from de-
graded to clean images, are learned in an adverserial prob-
lem. In [22], multi-stage architecture is used to learn pro-
gressively how an image is degraded for restoration. Lean-
ing latent space representation via VAE allows the gener-
ation of realistic images. In [13, 14], vector quantization
is applied to discretize the latent variable, which results in
high quality images and videos. These works are mainly fo-
cused on the restoration of heavily degraded photographic
images. However, their approaches can be adopted for the
restoration of aged architectural drawings.

This work addresses the similar problem in [16] of
restoring aged drawings that suffer heavy degradation. The
overall architecture is based on VQ-VAEs. We use one VQ-
VAE to learn the representation of clean drawings. We use
VQVAE-based model to learn a mapping of the latent vari-
ables of a noisy drawing to those of a clean drawing for

restoration and also to generate realistic aged drawings for
data augmentation in training.

3. Method
The proposed method consists of two parts. First, latent

space representations of clean drawings are learned using
a VQ-VAE. Second, a mapping of latent space variables
from noisy drawings to clean drawings is learned. A degra-
dation generator produces noisy versions of clean drawings
for augmentation. The latent space mapping is learned us-
ing synthetically degraded drawings and the degradation
generator to augment training data. After the training, a
noisy drawing is restored by mapping the latent variables
from noisy to clean space, which the VQ-VAE decodes. The
schematic of the proposed method is shown in Fig. 1.

3.1. Latent Space Representation with VQ-VAE

In the first stage, the encoder Ec, generator Gc, and the
codebook C of the vector quantizer are trained with a set of
clean drawings. The encoder Ec takes a clean input xc and
produces a latent variable zc

zc = Ec(xc), (1)

which is quantized and embedded by

kc = Q(zc; C), (2)
ẑc = ec(kc; C), (3)

where Q is the quantizer, C is a codebook, kc is the quan-
tizataion index, and ec is the codeword embedding, respec-
tively. The generator Gc takes the embedded latent variable
ẑc and produces the clean input back in the autoregressive
setting,

x̂c = Gc(ẑc). (4)

VQ-VAE for the clean drawings is trained using a set of
clean drawings as a training set. Reconstruction loss

Lrecon = ∥xc − x̂c∥22 (5)

and the adversarial loss [5]

Ladv = min
Gc

max
Dc

E[Dc(xc)
2]+E[(1−Dc(Gc(zc)))

2] (6)

are used to train the encoder Ec and the generator Gc with
discriminator Dc. For training tokenization drawings as the
codebook C, the vector-quantization loss is used:

LVQ = ∥sg(ec(kc; C))−zc∥22+∥ec(kc; C)−sg(zc)∥22, (7)

where sg is the stop gradient operation. The overall loss is
given by

L = Lrecon + λadvLadv + λVQLVQ (8)
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Figure 1. Architecture of proposed model. Black line: learning latent space representation with VQ-VAE. Red line: learning latent space
mapping for restoration of noisy drawings. Blue line: degradation generator for data augmentation. Inference is through the path in dashed
lines.

where λadv and λVQ weight the importance of the individ-
ual loss functions.

A large amount of clean architectural drawings are avail-
able for the training of the VQ-VAE. Hence, an accurate
VQ-VAE for clean drawings can be obtained from the first
stage of the training.

3.2. Latent Space Mapping for Restoration

In the second stage, the encoder En is trained so that it
maps a noisy drawing input to the latent variables, which are
quantized and decoded to be a clean drawing. The encoder
En takes a noisy drawing xn and produces a latent variable
zn, which are quantized using the codebook C.

zn = En(xn), (9)
kn = Q(zn; C), (10)
ẑn = ec(kn; C). (11)

The generator Gc restores a clean drawing x̂c

x̂c = Gc(ẑn). (12)

The encoder En is trained with a set of clean and noisy
drawing pairs so that the latent space of noisy drawings cor-
responding to the clean drawings are mapped to the latent
space of clean drawings. The VQ-VAE, i.e., the encoder Ec,
generator Gc, and the codebook C, trained in the first stage
is frozen in the second stage. The encoders Ec and En map
clean and noisy drawings xc and xn to the latent variables
zc and zn, respectively. The training of the encoder En is

with the mapping loss

Lmap = ∥zc − zn∥22, (13)

and the refinement loss

Lref = ∥ẑc − ẑn∥. (14)

The overall loss for mapping process is given by

L = Lmap + λrefLref (15)

where λref weighs the two looses.
Training of the latent space mapping by the encoder En

requires a set of clean and noisy drawing pairs. In real-
ity, there is no clean drawing corresponding to the noisy
drawing. Therefore, we use the synthesis drawing by adding
noise to the clean drawing. But complex patterns of actual
aged drawings are not easy to synthesize, which degrades
the restoration performance. The method for reducing the
domain gap between the synthesized drawing and the ac-
tual aged drawing is described in the following sections.

3.3. Degradation Generator for Data Augmentation

The generator Gn produces noisy drawings from the
residual mapping errors in the latent space. The input to the
generator Gn is given by

zg = λeze + λnN (0, I) (16)

where ze is the residual error between the coded and em-
bedded latent variables of the clean and noisy drawings of a
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Figure 2. Degradation generator modifications. Intermediate acti-
vations of generator Gc is fed to generator Gn, which is follewed
by deformable convolutions. N stands for noise input for stochas-
tic variation of degradation.

pair
ze = zn − ẑc, (17)

and N (0, I) is the normal distribution. The parameters λe

and λn weight the mix of the residual error and the Gaussian
noises.

The generators Gn and the generator Gc are based on
the same architectures. There are two modifications for the
generator Gn for the accurate modeling of the degradation.
First, the intermediate activation of the generator Gc are fed
to the generator Gn, which are concatenated to the interme-
diate activation of the generator Gn at the same levels. The
output of the generator is

x̂g = Gn(zg;Gc, ẑc). (18)

Second, the convolution operations are replaced by the de-
formable convolutions [3]. The deformable convolution al-
lows informative line features of a drawing to be involved in
the convolution operations and prevents cases where there
are only blank spaces in receptive fields. By the two modi-
fications, the information of a clean drawing is provided to
the generator Gn, so that it can produce a noisy drawing by
degrading the clean drawing. The modification of the gen-
erator Gn is shown in Fig. 2.

Generator Gn for the noisy drawings is trained using a
set of clean and noisy drawing pairs. The reconstruction loss

Lrecon = ∥xn − x̂g∥22 (19)

is used for the training with the adversarial loss for the dis-
criminator Dn:

Ladv = min
Gn

max
Dn

E[Dn(xr)
2] + E[(1−Dn(Gn(ẑn)))

2]

(20)
where xr is the actual aged drawing. The discriminator Dn

is trained to distinguish noisy drawings generated by the
degradation generator from actual aged drawings. The over-
all loss is given by

L = Lrecon + λadvLadv. (21)

Figure 3. Examples of aged hand-drawn architectural drawings in
the archive.

The degradation generator is learned in the second stage, at
the same time while the encoder En is trained, but is de-
tached in the latent space so that the backpropagation of Gn

does not flow into En.
The generator Gn is utilized to produce an augmented

version of a noisy drawing from a clean drawing even while
the training is in progress. Because the intermediate activa-
tion of the generator Gc is fed to the generator, the generator
starts to generate an authentic noisy drawing corresponding
to the clean input drawing xc after only a few steps in the
training. We use clean drawing and either the correspond-
ing synthesized or generated noisy drawings alternatingly
to augment the training set used for the train of the latent
space mapping by the encoder En.

3.4. Restoration of Noisy Drawings

Once the model is trained through the first and second
stages, the restoration of noisy drawings is performed by
encoding a noisy drawing with the encoder En and the vec-
tor quantization. These operations map the latent variables
of the noisy drawing to those of a clean drawing and quan-
tized using the codebook C. Then the quantized latent vari-
ables are decoded with the generator Gc to restore a clean
drawing.

4. Experiments
4.1. Drawings of Korean National Treasures

The archive of traditional wooden buildings drawings
is available on the Cultural Heritage Administration web-
site1. The dataset contains frontal elevations, side eleva-
tions, and floor plans of 55 wooden-built temples and Con-
fucius academies (12 national heritages and 43 heritages)
drawn by ten studios between the 1970s and 2000s. The

1http://english.cha.go.kr/cha/idx/SubIndex.do?mn=EN
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resolutions of the drawings are between 3000×4000 and
8000×10000 pixels. Some drawings were digitized after
they had aged in an inadequate environment and showed se-
rious degradation. We collected 330 clean drawings and 350
aged drawings. These drawings are not paired, as archived
drawings are either clean or aged. Examples of the aged
drawings are shown in Fig. 3.

4.2. Network Architectures and Training

In the first stage, the VQ-VAE, i.e. the encoder Ec,
generator Gc, and the codebook C, is trained in an auto-
regressive setting using a set of clean drawings. We used
43000 patches of the size 256×256 cropped from 330 clean
drawings for training. The codebooks were initialized ran-
domly.

In the second stage, the latent space mapping by the en-
coder En is trained while the VQ-VAE, i.e., Ec, Gc, and C,
were frozen. The training requires a set of clean and noisy
drawing pairs. For the clean drawings, the same 43000 clean
patches from the 330 clean drawings were used. We used
two types of noisy drawings: i) synthetic noisy drawings
obtained by degrading clean patches using the method in
[16, 19] with a background randomly chosen from 8000
noisy background patches, and ii) the outputs of the degra-
dation generator. The training of the degradation genera-
tor requires a set of unpaired noisy drawings for the dis-
criminator inputs. We used 47000 patches of the size 256 ×
256 cropped from 350 aged drawings. The second stage of
training starts with only the synthetic noisy drawings. After
the degradation generator starts to generate authentic noisy
drawings, the synthetic noisy drawings and the outputs of
the degradation generator are alternately input. In our ex-
periments, the outputs of the degradation generator were
used after 20000 steps. Examples of synthetically degraded
drawings are shown in Fig. 4. In the following section, ex-
amples of the degradation generator outputs are given with
comparisons to other generative methods.

We considered two VQ-VAE configurations. The first
configuration utilizes the hierarchical VQ [14] with one
codebook for 64 × 64 latent variables and the other for
16× 16 latent variables. The number of codewords is 4096
and 1024 for the two codebooks, respectively. The second
configuration utilizes the residual VQ [11] with a codebook
for 32 × 32 latent variables. The number of codewords is
8192. The number of latent variables are 256 for both con-
figurations. The first and second configurations of the VQ-
VAE consist of 70 and 74 million parameters. Both VQ-
VAEs were trained using adam. The learning rate was set to
1e−3. The training of the first and second stages were con-
ducted with 120 and 60 epochs, respectively. All the meth-
ods in comparison were retrained with our dataset using the
hyperparameters listed in the original papers but the epoch
was set heuristically.

(a) (b) (c)

Figure 4. Example of synthetically degraded drawings. (a) clean
drawings, (b) background images, and (c) degraded drawings.

Table 1. Quantitative comparison with existing methods for gener-
ating realistically degraded drawings.

KID↓ FID↓
CycleGAN [25] 0.035±0.001 59.979±0.08
MMA-CycleGAN [9] 0.033±0.001 54.862±0.15
Proposed (HVQ-DG) 0.015±0.001 29.663±0.05
Proposed (RVQ-DG) 0.023±0.001 41.159±0.06

In the following sections, the VQ configurations are de-
noted by HVQ and RVQ for the hierarchical and residual
VQ, respectively, and the use of the degradation genera-
tor for producing drawing pairs in the training of the latent
space mapping is denoted by DG.

4.3. Degradation Generator Performance

Table 1 shows the performance of the degradation gener-
ator. The performance of CycleGAN-based image-to-image
translation methods [9, 25] is shown for comparison. All
the methods were trained using clean drawing patches and
aged drawing patches. FID and the kernel inception distance
(KID) are used for the evaluation.

Figure 5 shows examples of synthetically degraded
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(a) (b) (c) (d) (e)

Figure 5. Examples of drawings produced by various generation
methods. (a) clean drawings, (b) synthetic degradation, (c) Cycle-
GAN, (d) MMA-CycleGAN, and (e) proposed degradation gener-
ator.

drawings, drawings generated by the CycleGAN-based
methods, and those by the degradation generator using clean
drawings. The smeared, broken, and disposition lines were
more authentically reproduced by the degradation genera-
tors.

4.4. Restoration Performance

The restoration performance of the proposed method is
reported in Tab. 2. The VQ configurations are denoted by
HVQ and RVQ for the hierarchical and residual VQ, re-
spectively, and the use of the degradation generator in the
training is denoted by DG. For comparison, we reported the
performance of other learning-based restoration methods:
restoration network with line detection sub-network [16],
old photo restoration network with deep latent space trans-
lation [19], dual adversarial networks [20], and pixel-wise
dilation filtering [21]. For supervised learning, synthetic
noisy drawings [16, 21] were used to pair corresponding
clean drawings. The peak signal-to-noise ratio (PSNR), the
structural similarity measure (SSIM), the learned perceptual
image patch similarity (LPIPS) [24], and the Frechet incep-
tion distance (FID) [7] are used for the evaluation. The up
and down arrows indicate higher or low the better for the
measures. The proposed methods provided significant im-
provement in all the measures.

Examples of restored synthesis drawings are shown in
Fig. 7. The synthetically degraded drawings and the clean
drawings are also shown. There are some details lost and
noise left in the results by the compared methods. In com-
parison, the proposed methods showed improvement. How-
ever, all the methods showed relatively good performance
with the synthetically degraded drawings, because they are
trained to restore such synthetic degradations.

When the restoration methods were applied to restore
archived aged drawings, there were significant differences

Figure 6. Ablation study with/without augmentation by degrada-
tion generator on restoration performance. From top to bottom:
aged archived drawings, without DG, and with DG.

Table 2. Quantitative comparison of restoration performance with
existing methods.

SSIM↑ PSNR↑ LPIPS↓ FID↓

SASAKI et al. [16] 0.8870 21.32 0.1977 98.677
WAN et al. [19] 0.9548 22.73 0.0632 36.090
YUE et al. [20] 0.9534 23.83 0.0713 42.121
Guo et al. [21] 0.9616 24.78 0.0585 37.025
Proposed (HVQ) 0.9683 25.89 0.0559 36.812
Proposed (RVQ) 0.9613 24.96 0.0531 36.468
Proposed (HVQ-DG) 0.9673 25.82 0.0564 36.590
Proposed (RVQ-DG) 0.9576 24.51 0.0542 33.500

in the restoration performance. Figure 8 shows examples of
restored aged drawings. The smeared ink, fading fine and
packed lines, or even the ink smudged from the adjacent
drawings causes difficulties for the other methods. They fail
to clean up the smearing, reconnect the broken lines, or sup-
press the noise in the background. The drawing restored by
the proposed methods showed exceptional quality.

The significant performance gain by the proposed
method is mainly due to the augmentation using the degen-
eration generator. Figure 6 shows the ablation study on the
restoration performance when the latent space mapping is
trained with and without the degradation generator. Without
the degradation generator, the proposed method misses fad-
ing and packed lines and fails to restore them. With the data
augmentation by the degradation generator, the latent space
mapping is properly trained for more accurate restoration in
subjective evaluations.

Figure 9 shows examples of the entire restored drawings
with zooming on two positions for full inspection. Results
by the methods in [19, 20] and the proposed methods are
shown.

5. Conclusion

Aged hand-drawn drawings of architectural heritage are
restored using a novel latent space mapping methods. The
accurate representation of clean drawings was learned with
a set of clean drawings. A generator that generates authentic
noisy drawings from the residual latent space is trained us-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7. Restoration results of synthetically degraded drawings. (a) synthetically degraded images, (b) ground truth, (c) Sasaki et al., (d)
Yue et al., (e) Guo et al., (f) Wan et al., (g) Proposed (HVQ), (h) Proposed (RVQ), (i) Proposed (HVQ-DG), and (j) Proposed (RVQ-DG).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8. Restoration results of aged drawings. (a) aged archived drawings, (b) no ground truth available, (c) Sasaki et al., (d) Yue et al.,
(e) Guo et al., (f) Wan et al., (g) Proposed (HVQ), (h) Proposed (RVQ), (i) Proposed (HVQ-DG), and (j) Proposed (RVQ-DG). For aged
archived drawings, the proposed method with DG showed better restoration performance than the other methods in comparison.

ing a set of noisy drawings. An accurate latent space map-
ping from noisy to clean drawings was learned using the
degradation generator for data augmentation. The proposed
method performed exceptional restoration, generating clean
drawings from the codebook, and reported a significant gain
in quantitative measures and qualitative inspections over
other existing learning based methods.
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Figure 9. Restoration results of archived aged drawings with zooming two positions. From top to bottom: archived drawings, Yue et al.,
Wan et al., proposed (HVQ-DG), and proposed (RVQ-DG).
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