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Abstract

In this paper, we extend scene understanding to include
that of human sketch. The result is a complete trilogy of
scene representation from three diverse and complementary
modalities – sketch, photo, and text. Instead of learning a
rigid three-way embedding and be done with it, we focus on
learning a flexible joint embedding that fully supports the
“optionality” that this complementarity brings. Our em-
bedding supports optionality on two axes: (i) optionality
across modalities – use any combination of modalities as
query for downstream tasks like retrieval, (ii) optionality
across tasks – simultaneously utilising the embedding for ei-
ther discriminative (e.g., retrieval) or generative tasks (e.g.,
captioning). This provides flexibility to end-users by ex-
ploiting the best of each modality, therefore serving the very
purpose behind our proposal of a trilogy in the first place.
First, a combination of information-bottleneck and condi-
tional invertible neural networks disentangle the modality-
specific component from modality-agnostic in sketch, photo,
and text. Second, the modality-agnostic instances from
sketch, photo, and text are synergised using a modified
cross-attention. Once learned, we show our embedding can
accommodate a multi-facet of scene-related tasks, including
those enabled for the first time by the inclusion of sketch,
all without any task-specific modifications. Project Page:
https://pinakinathc.github.io/scenetrilogy

1. Introduction
Scene understanding sits at the very core of computer vi-

sion. As object-level research matures [24, 32], an encour-
aging shift can be observed in recent years on scene-level
tasks, e.g., scene recognition [113], scene captioning [55],
scene synthesis [34], and scene retrieval [13, 57].

Scene research has generally progressed from that of sin-
gle modality [113, 114] to the very recent focus on multi-
modality [3, 13, 19]. The latter setting not only triggered
a series of practical applications [34, 57, 101, 115] but im-

A bench is there in
front of a house.

SBIR

TBIR

STBIR

P
hoto G

allery

Our
Model

Sketch

Photo

Subjective Our
Model

C
aptioning

sketch specific text specific photo specific modality agnostic

(a)

(b)

(c)

(d)

Figure 1. Some scenes are easy to describe via sketch; for oth-
ers, text is better. We provide the option to sketch, write, or
both (sketch+text). For “optionality” across tasks, we disentangle
sketch, text, and photo into a discriminative (e.g., retrieval) part
fag shared across modalities, and a generative (e.g., captioning)
part specific to one modality (fsp

s , fsp
t fsp

p ). This supports a multi-
facet of scene-related tasks without task-specific modifications.

portantly helped to cast insights into scene understanding
on a conceptual level (i.e., what is really being perceived
by humans). To date, research on multi-modal scene under-
standing has mainly focused on two modalities – text and
photo [59, 61,62], via applications such as text-based scene
retrieval (TBIR) [35], and scene captioning [23, 61, 62].

This paper follows the said trend of multi-modal scene
understanding and extend it to also include human scene-
sketch. Sketch is identified because of its unique charac-
teristics of being both expressive and subjective, evident in
an abundance of object-level sketch research [11], and very
recently on scene-level [19]. To verify there is indeed use-
ful complementarity that sketch can bring to multi-modal
scene understanding, we first conducted two pilot studies
(i) on expressivity, we compare text and sketch in terms
of scene image retrieval, and (ii) on subjectivity, we test a
novel task of subjective captioning where sketch or parts-of-
speech [26] are used as guidance for image captioning. On
(i), results show there is significant disagreement in terms of
retrieval accuracy when one is used as query over the other,
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indicating there is complementary information between the
two modalities. On (ii), sketch is shown to offer more sub-
jectivity as a guiding signal than text, when quantified using
common metrics such as BELU-4 [67] and CIDEr [95].

To fully explore the complementarity of all three modal-
ities, we desire a flexible joint embedding that best sustains
“optionality” across modalities, and also across tasks. The
former enables end-users to use any combination of modal-
ities (e.g., only sketch, only text, or both sketch+text) as a
query for downstream tasks; and the latter provides option
of utilising the learned embedding for both discriminative
(e.g., retrieval) and generative problems (e.g., captioning).

This desired level of “optionality” is however not achiev-
able via naive three-way joint embeddings common in the
literature [3, 13, 19]. Instead, we advocate a three-way dis-
entanglement (Fig. 1(b)), where each of the three modal-
ities is disentangled into their modality-specific compo-
nent (fsp

s , fsp
p , fsp

t , for sketch, photo and text), and a
shared modality-agnostic component (fag). The idea is
that modality-specific will hold information specific to each
modality (e.g., drawing style for sketch, texture for photo,
and grammatical knowledge for text). It follows that fil-
tering away modality-specific parts from each of the three
modalities gives a shared modality-agnostic part that car-
ries shared abstract semantic across all three modalities, (as
shown in Fig. 1(b)). How optionality is supported in such a
disentangled space then becomes trivial (Fig. 1(c),(d)). To
achieve optionality across tasks, we simply use modality-
agnostic information as the joint embedding to perform
discriminative tasks (e.g., cross-modal retrieval), and for
cross-modal generative tasks (e.g., captioning), we just
combine modality-agnostic information (from source) with
modality-specific (from target) to generate the target modal-
ity. Optionality across modality is a little harder, where we
make use of a cross-attention [50] mechanism to capture the
synergy across the modality-agnostic components.

Benefiting from our optionality-enabled embedding, we
can perform a multi-facet of tasks without any task-specific
modifications: (i) Fig. 1 (c) show cross-modal discrimina-
tive tasks such as sketch-based image retrieval (SBIR) using
(fag

s ↔ fag
p ), text-based image retrieval (TBIR) using (fag

t

↔ fag
p ), or sketch+text based image retrieval (STBIR) using

(fag
s + fag

t ↔ fag
p ). (ii) Fig. 1 (d) show cross-modal gen-

erative tasks such as image captioning (photo branch) using
fag
p + fsp

t → ft to generate textual descriptions ft. Sim-
ilarly, for sketch captioning (sketch branch) we use fag

s +
fsp
t → ft. (iii) Last but not least, to demonstrate what the

expressiveness of human sketch can bring to scene under-
standing, we introduce a novel task of subjective captioning
where we guide image captioning using sketch as a signal
(subjective branch) as fag

p + fag
s → ft.

In summary, our contributions are: (i) We extend
multi-modal scene understanding to include human scene-

sketches, thereby completing a trilogy of scene representa-
tion from three diverse and complementary modalities. (ii)
We provide optionality to end-users by learning a flexible
joint embedding that supports: optionality across modali-
ties and optionality across tasks. (iii) Using computation-
ally efficient techniques like information bottleneck, con-
ditionally invertible neural networks, and modified cross-
attention mechanism, we model this flexible joint embed-
ding. (iv) Once learned, our embedding accommodates a
multi-facet of scene-related tasks like retrieval, captioning.

2. Related Works
Sketch for Visual Understanding: Hand-drawn
sketches enriched with human visual perception cues have
facilitated several downstream visual understanding tasks.
Apart from the widely explored SBIR [10, 22], sketch has
shown potential on object localisation [18], segmentation
[72], image/video synthesis [48], representation learning
[79], 3D shape retrieval/modelling [20], medical image
analysis [47, 97], etc. [102]. Sketches are also useful in the
creative industry like artistic image editing [105] and ani-
mation [100]. Unlike photos that are passively captured by
a camera, sketches are drawn by humans that actively stim-
ulate intelligence with pictionary-style drawing games [8].
While text has been widely used for human expression, in
this paper, we show freehand sketches can provide compli-
mentary or symbiotic information for visual understanding.

Sketch-Based Image Retrieval (SBIR): SBIR retrieves
a paired photo given a query sketch. Sketches offer vi-
sual description that commences the avenues of category-
level [27,78,106] or fine-grained instance-level (FG-SBIR)
[6, 9, 12] retrieval. SBIR typically employs deep triplet-
ranking based siamese networks to learn a joint embedding
space [107]. Contemporary research emerged towards zero-
shot SBIR [27, 80], cross-domain translation [66], on-the-
fly retrieval [12], semi-supervised [6], self-supervised [7],
meta-learning [11] etc. As research on object-level SBIR
matured, focus shifted towards the more practical scene-
level SBIR [76] with GCN [57], and optimal transport [17].
The onset of scene sketch datasets [19,34,115] revealed fur-
ther insights into implicit human-sketching strategies [19].

Text-Based Image Retrieval (TBIR): Learning image-
text joint embedding space with ranking loss [31,43,70] re-
ceived considerable attention. Further improvements used
mining hardest negative pairs for triplet loss [33], cross-
modal adaptive message passing [98], probabilistic one-to-
many representations [21] etc. Despite text lacking visual
cues, million-scale paired image-text datasets have made
TBIR competitive due to power scaling laws [63]. This in-
spired large-scale methods like Oscar [52], and CLIP [73].
In this paper, we augment TBIR with sketches to provide the
creativity and freedom of expression intrinsic to sketches.
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Multi-Modality in Computer Vision: Multi-modal
learning (MML) aims at developing models that can extract,
interpret, and reason on information from various modali-
ties characterised by different statistical properties such as
text, sketch, or text+sketch. Contemporary research stud-
ied MML in vision via image and text [40], image to scene
graph [36], etc. [103]. MML faces challenges like cross-
modal alignment [42], or efficiency over data [92] and com-
pute [44]. It is useful when data in one modality is inac-
cessible [3] for privacy or logistic reasons (e.g., hospital),
but abundantly available in other modalities (photos in MS-
COCO [55]). Often, some modalities are preferred over
others for human-machine communication, like some con-
cepts are easier to express in texts [60], while others pre-
fer sketches [54] or both [76] (Fig. 1). In this paper, we
learn cross-modal representation [104] that works using ei-
ther one modality (text/sketch) or both.

Disentangled Representation for Multi-modality: Dis-
entangling modality-agnostic from modality-specific resid-
ual factors is important for MML [41, 93]. Modality-
agnostic information is useful for cross-modal transfer like
semantics-based retrieval and pattern recognition [41] but
holds no meaning for tasks specific to one modality like
image-style or speaker information [91]. Disentanglement
was explored where factors of variation are either known
(e.g., facial poses [90]) and individually supervised [75],
partially known [82], or unknown (e.g., drawing style [82])
and learned unsupervised using isotropic Gaussian prior
[77] or information-theoric regularisation [16]. Our method
aligns with the unknown setup where factors particular to
sketch, text, and image are discovered unsupervised.

Image Captioning: This has emerged from predicting
syntactically correct descriptions [89, 112] to tackling data
scarcity [1, 49], and addressing user requirements [68, 69].
Predicted captions evolved from being factual in a neutral
tone to (i) controllable using textual verbs [15], part-of-
speech tag [26], or mouse trace [64, 71], and (ii) person-
alised captioning [84, 111] that learns user’s active vocabu-
lary, and writing style. Our method can (i) generate factual
captions from images/sketches and (ii) extend controllable
captioning paradigm by injecting saliency via sketch.

3. Pilot Study
3.1. Sketch vs. Text for Retrieval
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Figure 2. We compare SBIR [107] vs. TBIR [73] on FS-COCO
[19] where retrieval rank is plotted in log-scale (see Supplemental
for more details). While sketch is a better query for some instances
(lower retrieval rank), for others text is better.

Text can convey colour information, or object categories,
but is cumbersome to describe fine-grained details, mul-
tiple objects, or complex shapes [86]1. While sketch can
depict complex shapes, multiple objects, and spatial align-
ment [19], not all objects are easy to draw (‘donkey’ vs.
‘horse’). Fig. 2 shows this trade-off between sketch vs.
text for image retrieval. We find an optimal fusion between
sketch and text to derive best of both modalities along with
the ability to optionally use only sketch, only text, or both.

Table 1. Comparing alternative guiding signal like POS (part-of-
speech) [26], Mouse Trace [64], and Freehand Sketches [19].

Signal B-1 B-4 M R C S

POS [26] w/o 73.2 31.1 24.5 52.8 100.1 17.9
w/ 73.9 31.6 25.5 53.2 104.5 18.8

∆ 0.7 0.5 1.0 0.4 4.4 0.9

Trace [64] w/o 32.2 8.1 – 31.7 29.3 25.7
w/ 52.2 24.6 – 48.3 106.5 36.5

∆ 20 16.5 – 16.6 77.2 10.8

Sketch w/o 74.7 31.8 24.7 53.8 105.5 18.8
w/ 81.3 42.7 30.1 61.6 121.6 23.5

∆ 6.6 10.9 5.4 7.8 16.1 4.7

3.2. Subjectivity for Captioning
Unlike traditional image captioning [62, 96] that generates
factual captions in neutral tone, subjective captioning adapts
the predicted captions using a guiding signal that specifies
priorities on what should be described [89]. The signal is
injected via feature concatenation [26], or cross-attention
mechanism [64]. Applications of subjective captioning in-
clude medical report generation using disease tags to gener-
ate real style reports [56], art descriptions [5], and assistive
technologies for the visually impaired [37,99]. In this paper,
we advocate for sketch as a guiding signal to depict salient
objects and express artistic interpretations [38]. We com-
pare the performance (see supplementary for details) us-
ing guiding signals like POS (parts-of-speech) [26], mouse
trace [64], or freehand sketches [19]. Following [64], we
inject the guiding signal into the image captioning pipeline
via cross-attention mechanism. As evident from Table 1,
while sketch is competitive with mouse traces, it is a better
signal than POS. However, unlike mouse trace, sketch can
depict artistic interpretation [5] that makes it a more flexible
and robust guiding signal than POS or mouse trace.

4. Proposed Methodology
4.1. Preliminaries

Baseline for Fine-Grained Retrieval: Given a query-
photo pair (q,p), existing methods encode [7, 51, 54, 57,
107] the query q = {s, t} comprising sketch (s) / text (t)
and photo (p) as fq = Fq(q) ∈ RD, and fp = Fp(p) ∈
RD respectively. The network is trained via triplet loss with

1Example: Cross strap stud and buckle detail blonde leather upper
leather insole chunky wooden sole 9 cm heel.
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Figure 3. (Left): We disentangle modality-agnostic and modality-
specific components from sketch, text, and photo. The modality-
agnostic components are aligned using contrastive loss for cross-
modal transfer. (Right): Modality-agnostic sketch (fag

s ) is used
across modality to generate modality-specific text (fsp

t ) using text-
specific τt. Combining fag

s and fag
t , we generate text from sketch.

margin parameter µ > 0 such that the cosine distance δ(·)
of query anchor q from a negative photo (p−) should in-
crease while that from the positive photo (p+) should de-
crease as, Ltrip = max{0, µ+ δ(fq, fp+)− δ(fq, fp−)}.
Baseline for Image Captioning: Image captioning con-
sists of an image encoder [59, 101], fp = Fp(p) fol-
lowed by an autoregressive textual decoder (FC). Given
the textual description comprises a sequence of words t =
{w1, . . . , wK}, we maximise the likelihood of a predicted
word (ŵk) at each step (k), conditioned on fp as, LC =

−
∑K

k=1 log[FC(ŵk = wk|fp, w1, . . . , wk−1)]

4.2. Overview
We aim to disentangle the feature representations from
sketch, text, and photo modalities into a modality-agnostic
and modality-specific component. While the modality-
agnostic component holds semantic information to support
cross-modal transfer, the modality-specific one holds in-
formation necessary during self-reconstruction; however, it
lacks meaning in other modalities (e.g., grammatical knowl-
edge in text). Achieving feature disentanglement across
scene sketches, texts, and photos enables a multitude of
downstream tasks like (i) SBIR – modality-agnostic sketch
and photo features, (ii) TBIR – modality-agnostic text and
photo, (iii) Sketch+Text-Based Image Retrieval – modality-
agnostic sketch, text, and photo, (iv) Image Captioning –
using the modality-agnostic photo to compute modality-
specific text features, (v) Sketch Captioning – modality-
agnostic sketch to compute modality-specific text, and (vi)
Subjective Captioning – using modality-agnostic photo and
sketch, to compute modality-specific text.

4.3. Disentangling Modality Agnostic and Specific
While our disentangling method can be generalised to any
number of modalities, for simplicity, we first show for
M = 2 modalities and later extend to M ≥ 3. Consider
a simple bimodal setup of sketch (s ∈ RH×W×3) and text
(t ∈ RN×E). Our goal is to split the feature representa-
tion fs = Fs(s) ∈ R512 and ft = Ft(t) ∈ R512 into
a modality-agnostic and a modality-specific component as
fs = [fag

s , fsp
s ], and ft = [fag

t , fsp
t ] respectively, where

=

x +
s t

ActNorm

Conditional Aff. Coupling

Shuffling

NLLLoss 
(Eq. 3) 
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Figure 4. Unlike typical neural networks that are unidirectional,
data in conditional invertible neural networks (τk) can flow either
(i) from modality-specific fsp

k to a uniform distribution η by con-
ditioning on modality-agnostic fag

k during training, or (ii) from
a sampled η in uniform distribution to the modality-specific fsp

k

by conditioning on modality-agnostic fag
k during inference. The

conditioning vector fag
k is injected into the conditional affinity

coupling layers [28] of τk using any arbitrary network H.

fag ∈ R480 and fsp ∈ R32. Existing methods [82, 88]
disentangle feature representations via (i) self reconstruc-
tion as ŝ = Ds([f

ag
s , fsp

s ]) and t̂ = Dt([f
ag
t , fsp

t ]) cou-
pled with (ii) cross-modal translation ŝ = Ds([f

ag
t , fsp

s ])
and t̂ = Dt([f

ag
s , fsp

t ]). However, using cross-modal
translation with latent feature exchange across modalities
is a cumbersome process that explodes with PM

2 permuta-
tions for M modalities, e.g., M = 3 has P3

2 = 6 cross-
modal translations. Adding multiple cross-modal transla-
tion losses makes optimisation difficult and computation-
ally expensive. We break this compute barrier with lin-
ear (O(M)) complexity using an information bottleneck
reinterpretation of modality-agnostic and modality-specific
disentanglement. In particular, we maximise the mutual
information I(fag

s , fag
t ) amongst modality-agnostic com-

ponents, while minimising the same between modality-
agnostic and modality-specific components I(fag

s , fsp
s ),

and I(fag
t , fsp

t ), where I (·,·) denotes mutual information
between two entities. Hence, unlike the previous PM

2 per-
mutations, Eq. (1) has one agnostic I(fag

s , fag
t ), and M

specific I(fag
k , fsp

k ) losses. Formally, using a Langrange
multiplier hyperparameter β we have our loss objective as,

LI = −
agnostic︷ ︸︸ ︷

I(fag
s , fag

t )+β

specific︷ ︸︸ ︷∑
k∈{s,t}

I(fag
k , fsp

k ) (1)

Minimise I(fag
k , fsp

k ): We minimise the mutual infor-
mation between modality-agnostic and modality-specific
components using a conditional invertible [] neural net-
work τk. Unlike typical unidirectional neural networks
F : x → y, a conditional invertible neural network employs
a sequence of bijective mapping operations like activation
normalization (ActNorm) [45], Conditional Affine Cou-
pling [28], and shuffling [45] to obtain τk : x ↔ y. Dur-
ing the forward pass (inference), we sample η ∈ R32 from
a uniform prior distribution p(η) to predict the modality-
specific fsp

k ∈ R32 by conditioning on fag
k as, fsp

k =
τk(η | fag

k ). In other words, during inference, we predict the
modality-specific component of target from the modality-
agnostic one of input using τk. The target modality is
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Figure 5. (Left): The modality-agnostic from sketch, or text, or both are used to retrieve from a gallery of photos. This enables a multitude
of retrieval tasks like SBIR, TBIR, and STBIR. (Right): The modality-agnostic from photo, or sketch, or both are used to generate the text-
specific component. Combining the modality-agnostic and inferred text-specific (via τt) enables image, or sketch, or subjective captioning.

then generated by combining the input-agnostic and target-
specific components. The conditioning modality-agnostic
vector fag

k is injected into the intermediate conditional
affine coupling layers C : x ↔ y as: [x1, x2] = split(x),
and y = concat[x1, sθ([x1;h])⊙x2+tθ([x1;h])], where,
h = H(fag

k ). A simple feed-forward neural network im-
plements sθ, tθ, and H. We learn τk in the reverse pass
(training) via negative log-likelihood (NLL Loss in Fig. 4)
of τ−1

k (fsp
k | fag

k ) to predict a uniform distribution p(η),

p(η) = p(τ−1
k (fsp

k | fag
k )) |detJτ−1

k
(fsp

k | fag
k )| (2)

We show how learning τk in Eq. (2) minimises I(fag
k , fsp

k ).
I(fag

k , fsp
k ) =

∫
fsp
k

p(fsp
k |fag

k ) log p(fsp
k |fag

k )/p(fsp
k ).

Approximating modality-specific prior p(fsp
k ) with varia-

tional distribution q(fsp
k ) gives the upper-bound, minimis-

ing which reduces the KL-divergence between p(fsp
k |fag

k )
and q(fsp

k ) i.e., it encourages the disentanglement
p(fag

k , fsp
k ) ≈ p(fag

k ) · p(fsp
k ). The prior q(fsp

k ) is solved
using τk to enforce disentanglement between modality-
agnostic and modality-specific components, like that in
Eq. (2), as the sum of negative-loglikelihood (NLL-Loss in
Fig. 4) and log-determinant (see supplementary for proof),

Lτk =− Efsp
k
{logq(τ−1

k (fsp
k | fag

k ))

+ log |detJτ−1
k

(fsp
k | fag

k )|}
(3)

Maximise I(fag
s , fag

t ): Here we show how minimising a
constrastive based retrieval loss [94] between the modality-
agnostic components of sketch and text will maximise their
mutual information. We define contrastive loss matching
modality-agnostic components of sketch and text as,

Ls,t
cl = −Efsp

s

[
log

ω(fag
s , fag

t+ )

ω(fag
s , fag

t+ ) +
∑N−1

fag

t−
ω(fag

s , fag
t−)

]
(4)

where, ω = exp(xT W y). For each modality-agnostic fag
s

we sample a positive fag
t+ and (N − 1) negative fag

t− pairs.
The contrastive loss in Eq. (4) is expressed as mutual infor-
mation between fag

s and fag
t as, Ls,t

cl ≥ −I(fag
s , fag

t ) +
log(N). Hence, to maximise the mutual information be-
tween modality-agnostic fag

s and fag
t , we can maximise the

tractable lower bound log(N)− Ls,t
cl .

Total Loss for Bimodal Setup: The resulting loss (Ltot)
for bimodal (sketch and text) setup comprise three loss ob-
jectives (i) self reconstruction loss Lrec, (ii) contrastive
loss between two modality-agnostic terms Ls,t

cl , and (iii)
disentanglement between modality-agnostic and modality-
specific components in each modality (k) (Lτk ), as

Lrec = ||s−Ds(Fs(s))||2 + ||t−Dt(Ft(t))||2
Ltot = Lrec + Ls,t

cl + β[Lτs + Lτt ]
(5)

Extending to Three/More Modalities: Here we extend
our bimodal setup in Sec. 4.3 to three or more modali-
ties. (i) We compute the self-reconstruction loss for three
modalities as Lrec =

∑
k∈{s,t,p} ||k − Dk(Fk(k))||2. (ii)

we minimise the mutual information between modality-
agnostic and modality-specific components for sketch, text,
and photo as, Lτ = Lτs+Lτt+Lτp . (iii) However, our con-
trastive loss term Lcl that maximises the mutual informa-
tion among modality-agnostic components can only com-
pare two modalities. We can extend this naively to a three-
modality setup as Ltot

cl = Ls,t
cl + Ls,p

cl + Lt,p
cl .

Extending to three or more modalities, however, we no-
tice our contrastive loss in Eq. (4) is defined for only bi-
modal setup (Ls,t

cl , or Ls,p
cl , or Lt,p

cl ). For example, given
three modalities SM = {m1,m2,m3}, comparing only
(m1,m2) ignores m3. This highlights a key limitation: it
fails when we have a query in both (m1,m3) to retrieve
m2 (e.g., sketch+text for image retrieval). Now the re-
search question boils down to – how can we model a func-
tion G(·) such that it can model either m1, or m3, or both
(m1,m3) to retrieve m2. To design G, using naive addition
as G(m1,m3) = m1 +m3 does not handle overlapping or
conflicting information2 in m1 and m3 [58]. While, con-
catenation G(m1,m3) = concat[m1,m3] computes in-
teraction between (m1,m3), it forces to provide both m1

and m3 during inference; thereby failing to model either
m1, or m3, or both (m1,m3).

4.4. Modelling Optional Sketch or Text
We propose a simple approach to design G that optionally
models either m1, or m3, or both (m1,m3), and handles

2When signals (m1,m3) are similar or complementary G should
strengthen decision; when signals conflict G should filter unreliable ones.
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overlapping or conflicting information. Our proposed G
comprises a multihead cross-attention module MH(·) fol-
lowed by an attention-based pooling PMA(·) as, fM =
PMA(HM ); where HM = MH(SM ), and SM = {m1,m3}.

Our MH(·) is order-invariant and independent of the
number (M ) of input modalities defined as MH(X) =
σ(XXT )X; where σ is scaled-softmax, XT is transpose
of X , and X ∈ RM×480 is a list of modality-agnostic com-
ponents m1, or m3 with R1×480, or (m1,m3) ∈ R2×480 in
query. The cross-attention in MH(·) interacts across query
modalities to compute mutually agreeing information be-
tween (m1,m3) as, HM ∈ R2×480. Next, we use an order-
invariant attention-based pooling PMA : R2×480 → R1×480

with a learned seed vector P ∈ R1×480 to aggregate mutu-
ally agreeing HM as, fM = PMA(HM ) = σ(PHT

M )HM .
Hence, using our proposed fusion module G, we adapt our
contrastive loss defined for only a pair of modality-agnostic
components in Eq. (4) as Ltot

cl = Ls,t
cl +Ls,p

cl +Lt,p
cl to jointly

model sketch–text–photo (or more) modality-agnostic as:
Ltot
cls = Lcl(G(fag

s , fag
t ), fag

p ) + Lcl(G(fag
s , fag

p ), fag
t ) +

Lcl(G(fag
p , fag

t ), fag
s ). For a generalised solution involving

more than three modalities (M > 3), see supplementary.
Inference Data Flow: We describe the inference data
flow in Fig. 5. For retrieval tasks, we first compute
the modality-agnostic component of query sketch and text
(fag

s , fag
t ), and a gallery of photos {fag

p1
, fag

p2
, . . . , fag

pN
}.

Next, a combined representation for either only sketch
(fag

s ), or only text (fag
t ), or both (fag

s , fag
t ) is computed us-

ing multihead cross attention MH(·) followed by attention-
based pooling PMA(·) defined in Sec. 4.4 to get fag

st∗ . Fi-
nally, we find the minimum distance between the com-
bined fag

st∗ and modality-agnostic component of photo fag
pi

as ω(fag
st∗ , f

ag
pi

) defined in Eq. (4). For captioning, we ad-
ditionally use the text-specific conditional invertible neu-
ral network τt to generate the target modality-specific text
(e.g., grammatical structure etc.) from input modality-
agnostic comprising of only photo (fag

p ) for image caption-
ing, only sketch (fag

s ) for sketch captioning, or both photo
and sketch (fag

p , fag
s ) for subjective captioning (i.e., gener-

ate image captions by conditioning on the input sketch).

5. Experiments
Datasets: We use two scene sketch datasets with fine-
grained alignment among sketch, text, and photo: (i)
SketchyCOCO [34] contains 14, 081 scene sketch-photo
pairs. The photos are taken from MS-COCO [55] com-
prising 164K photos with paired texts. However, most
sketches in SketchyCOCO [34] contain less than one fore-
ground instance. Following [57], we filter SketchyCOCO
with one foreground instance to get 1015/210 train/test
scene sketches. (ii) Unlike SketchyCOCO [34], where the
scene sketches are synthetically generated, FS-COCO [19]
includes 7000/3000 train/test human-drawn scene sketches

with a paired textual description of sketches.

Implementation Details: Our model is implemented in
PyTorch using 11GB Nvidia RTX 2080-Super GPU. First,
we pre-train the image encoder and text decoder for im-
age captioning using 82, 783 photo-text pairs (excluding the
photos common in SketchyCOCO and FS-COCO) for 15
epochs. Next, we fine-tune on either SketchyCOCO [34], or
FS-COCO [19] for 200 epochs using Adam optimiser with
learning rate 1e − 4, and batch size 64. Our photo (Fp)
and sketch (Fs) encoders use ImageNet pretrained VGG-
16 [85]. For simplicity, we encode text using a bidirectional
GRU unit with 512 hidden units. Our text decoder [43] is
a single-layer autoregressive LSTM decoder that predicts
a probability distribution over a fixed vocabulary (10, 010
words) at every time step. For the image/sketch decoder,
we use two separate GAN [109] networks that synthesise
sketch/image of size 64 × 64, respectively. For brevity, we
avoid realistic sketch/image generation due to the challeng-
ing scene complexity [19]. Hence we do not use a discrimi-
nator module for high-quality, sharp reconstruction [110].
Finally, our conditionally invertible neural network com-
prises 16 alternating affine coupling [29], activation normal-
isation [45], and switch layers [29].

Evaluation Metric: In line with FG-SBIR research, we
use Acc.@q [81] defined as the percentage of sketches
having a true matched photo in the top-q list. For
sketch/image/subjective captioning, we use standard met-
rics BELU (B) 1-4 [67], CIDEr (C) [95], ROUGE (R) [53],
METEOR (M) [25], and SPICE [2]. Following [96], we
generate 100 candidate captions and employ consensus re-
ranking using CIDEr to select the best candidate caption.

Competitors: We compare against (i) existing state-of-
the-art methods that align two modalities (S2): For SBIR,
Triplet-SN [107] employs Sketch-A-Net [108] backbone
trained using triplet loss. HOLEF [87] adds spatial atten-
tion with a higher-order ranking loss. SketchyS [115] re-
places Sketch-A-Net in Triplet-SN with VGG-16 [85] and
an auxiliary category-level cross-entropy. SceneS [57] uses
GCN [46] to model scene sketch layout information. For
TBIR, CLIP [73] is trained with text using transformer
[83] and photo using vision transformer [30] on 400 mil-
lion text-photo pairs. CLIP-LN fine-tunes CLIP by train-
ing only layer normalisation parameters [4] with learning
rate 0.00001. For image/sketch captioning, SAT [101] is
one of the simplest but seminal works using a CNN-LSTM
encoder-decoder approach similar to ours. GMM-CVAE
[96] employs a conditional variational autoencoder with a
Gaussian mixture model. LNFMM [61] is similar to ours
that splits information into modality-agnostic and modality-
specific components using conditional invertible neural net-
work, ClipCap [65] employs CLIP [73] for image encod-
ing followed by GPT-2 [74] for text decoding. A learned
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Table 2. Quantitative results combining sketch and text for image
retrieval (FG-STBIR) on two scene sketch datasets [19, 34].

Method SketchyCOCO [34] FSCOCO [19]
Acc.@1 Acc.@10 Acc.@1 Acc.@10

S3 QST [86] 38.9 87.9 25.1 54.5
SCM [3] 38.5 87.3 24.3 54.1

B CrossAtt [83] 39.1 88.2 25.3 54.8
Proposed 39.5 88.7 25.7 55.2

Boys are playing with frisbee disc.

A boy is holding a baseball bat.

Figure 6. Qualitative results of combining sketch and text as query
for image retrieval on FSCOCO [19]. See supplementary for more.

mapping module translates CLIP embeddings to GPT-2. (ii)
We compare against methods that align 3 modalities (S3):
For STBIR, QST [86] extends triplet loss in Triplet-SN to
quadruplet loss that combines sketch and text for image re-
trieval. SCM uses element-wise addition to combine sketch
and text from ResNet-18 [39] with weight sharing across
sketch, text, and photo from ResBlock4 onwards [3]. (iii)
We design baselines (B): For STBIR, CrossAtt employs
cross-attention [83] to combine sketch and text. For subjec-
tive captioning, MulCap combines sketch (fag

s ) and photo
(fag

p ) via element-wise multiplication as in [14]. CrossCap
optionally fuse photo, sketch, or both using cross-attention.
CatCap use feature concatenation [71] of guiding sketch
(fag

s ) signal with photo (fag
p ) to generate captions.

5.1. Combining Sketch and Text for Image Retrieval
Fig. 2 shows that for some instances, sketch is a better
query, whereas text is better for others. Hence, to achieve
best of both modalities, we examine the complimentary na-
ture by combining sketch and text for image retrieval. Ta-
ble 2 shows (i) SCM gives the lowest performance due to
naive element-wise addition of potentially overlapping and
conflicting information [58] from sketch and text. (ii) QST
improves slightly upon SCM by replacing naive element-
wise addition with a weighted summation (0.8 for sketch
modality). (iii) CrossAtt outperforms all baselines by using
a cross-attention between sketch and text to resolve overlap-
ping/conflict information [58]. (iv) Our proposed method
gives the highest performance due to cross-attention that
model sketch-text interaction and disentanglement to drive
out modality-specific information for cross-modal retrieval.

5.2. Optionally using Sketch for Image Retrieval
Our method allows drawing only easy-to-sketch scenes in-
stead of using both sketch and text forcibly. Table 3 com-

Table 3. Quantitative results using only sketch for image retrieval
(FG-SBIR) on two scene sketch datasets [19, 34].

Method SketchyCOCO [34] FSCOCO [19]
Acc.@1 Acc.@10 Acc.@1 Acc.@10

S2

Triplet-SN [107] 6.2 32.9 4.7 21.0
HOLEF [87] 6.2 40.7 4.9 21.7
SketchyS [115] 36.5 78.6 23.0 52.3
SceneS [57] 31.9 86.2 – –

S3 QST [86] 37.4 87.1 23.6 52.9
SCM [3] 37.3 86.8 23.4 52.6

B CrossAtt 37.9 87.4 23.7 53.5
Proposed 38.2 87.6 24.1 53.9

Table 4. Quantitative results of fine-grained text-based image re-
trieval (FG-TBIR) on two scene sketch datasets [19, 34].

Method SketchyCOCO [34] FSCOCO [19]
Acc.@1 Acc.@10 Acc.@1 Acc.@10

S2 CLIP [73] 21.0 50.9 11.5 35.3
CLIP-LN [73] 22.1 52.3 14.8 36.6

S3 QST [86] 11.1 31.1 7.2 23.6
SCM [3] 10.7 31.0 6.9 23.1

B CrossAtt 20.1 51.0 12.5 35.8
Proposed 21.5 51.6 13.7 36.3

Sheep are grazing on a
green hill.

A herd of sheep on
grassland.

Sheep are grazing
beyond the fence

on a hill.

Black and white photo of
people holding umbrella.

Three people are walking
under umbrella on field.

Three people are
walking holding

umbrella.

Figure 7. Qualitative results for image captioning v/s subjective
captioning on FS-COCO [19]. See supplementary for more.

pares against methods that specialise on two-modalities
(S2), three-modalities (S3), and our proposed baselines (B).
We observe (i) training on three modalities (sketch, text, and
photo) in S3 generally outperforms those trained using only
sketch and photo (S2). This can be attributed to learning
generalisable features in multi-modal setup [3]. (ii) QST in
S3 outperforms SCM indicating quadruplet loss is a better
training objective than naive element-wise addition when
combining sketch, text, and photo. (iii) Performance dif-
ference between CrossAttn and QST is not as significant
as in FG-STBIR (Table 2) as during inference, we only
use sketch, omitting the cross-attention module. (iv) Our
method outperforms S2, S3, and B even for two-modality
setup thanks to disentanglement that eliminates confound-
ing [3] modality-specific information.

5.3. Optionally using Text for Image Retrieval
While some information is best expressed by drawing, oth-
ers, like colour, is best described via text. From Table 4,
we observe (i) Given the same train/test split, sketches out-
perform text as a query modality for fine-grained image re-
trieval. (ii) CLIP and CLIP-LN outperforms all competitors
due to superior pre-trained weights using 400 million text-
image pairs. (iii) The proposed method outperforms most
methods due to disentanglement that drives out modality-
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Table 5. Quantitative results of standard captioning metrics on MS-COCO [55] and FS-COCO [19] dataset.

Image Captioning Sketch Captioning Subjective Captioning
Method B-1 B-4 M R C S B-1 B-4 M R C S B-1 B-4 M R C S

S2

SAT [101] 71.8 25.0 23.0 – – – 46.2 13.7 17.1 44.9 69.4 14.5 – – – – – –
GMM-CVAE [96] 72.9 30.7 24.2 52.5 98.6 17.7 49.6 15.5 18.3 48.7 77.6 15.5 – – – – – –
AG-CVAE [96] 73.2 31.1 24.5 52.8 100.1 18.8 50.9 16.0 18.9 49.1 80.5 15.8 – – – – – –
LNFMM [61] 74.7 31.8 24.7 53.8 105.5 18.8 52.2 16.7 21.0 52.9 90.1 16.0 – – – – – –

B

MulCap 74.9 33.2 25.5 54.9 106.0 19.5 53.9 17.0 21.0 53.8 97.3 16.7 78.7 38.6 28.5 59.8 110.7 21.7
CatCap – – – – – – – – – – – – 77.6 38.0 28.3 57.7 108.0 21.2
CrossCap 75.5 34.3 26.1 55.4 106.7 20.1 54.3 17.9 21.4 54.3 100.3 17.5 79.2 39.3 28.4 59.5 117.3 22.1
Proposed 76.0 35.9 26.9 56.9 107.0 20.9 56.9 19.3 21.6 56.6 106.5 18.9 81.3 42.7 30.1 61.6 121.6 23.5

Table 6. Ablation study on FG-STBIR and Subjective Captioning
using FSCOCO [19]. CA denotes cross-attention in Sec. 4.4.

τk CA Lcl Acc.@1 Acc.@10 B-1 C
✗ ✗ ✗ 24.5 53.7 73.3 100.1
✓ ✗ ✗ 24.9 54.0 77.9 108.5
✓ ✓ ✗ 25.5 54.9 80.6 119.3
✓ ✓ ✓ 25.7 55.2 81.3 121.6

specific components. Although CLIP [73] outperforms the
proposed method, we deliberately use a simple and easy-
to-reproduce GRU/VGG-16 architectures for text/photo en-
coders, and train on a much smaller data [19,34] than CLIP.

5.4. Image or Sketch Captioning
In addition to disentanglement for cross-modal retrieval
tasks (e.g., FG-SBIR, FG-TBIR), our conditional invertible
neural network τt can also generate text-specific informa-
tion (Fig. 4) to support generative tasks like image/sketch
captioning. We generate 100 candidate captions using (i)
beam search for SAT, MulCap, CrossCap, CatCap, and
(ii) sampling from prior distribution for GMM-CVAE, AG-
CVAE, LNFMM, and our proposed method. From Table 5,
we observe (i) our baselines adopting recent techniques like
vision-transformer [30] outperforms (S2) – recent but com-
plex approaches like LNFMM, AG-CVAE, and the older yet
seminal work like SAT. (ii) Performance gap between Mul-
Cap and CrossCap is insignificant for two-modality setups
(photo to text, or sketch to text) since they primarily differ-
entiate by their multi-modal (photo and sketch) fusion strat-
egy. (iii) In spite of using a photo/sketch encoder and text
decoder similar to our simple competitor SAT, our proposed
method performs competitively with complex methods like
LNFMM, AG-CVAE, and latest approaches using vision-
transformers [30], like CrossCap. This shows the signifi-
cant contribution of (i) disentangling modality-specific and
modality-agnostic components from photo/sketch, and (ii)
modelling text-specific prior for generative tasks.

5.5. Sketch Based Subjective Captioning
As defined in Sec. 3.2, unlike traditional captioning frame-
works that factually describe an image or sketch in a neutral
tone, subjective captioning focus on drawing out a user’s
intentions, salient objects, and artistic interpretations [38].
Being the first method to use scene-level sketch as a guid-
ing signal for captioning, we follow controllable caption-

ing literature [89] to adopt three baselines (B) that inject
the sketch conditioning signal into the captioning pipeline.
From Table 5, we observe (i) MulCap outperforms CatCap,
thereby supporting previous observations [14] of element-
wise multiplication being more effective than concatena-
tion. (ii) CrossAtt outperforms all baselines (B) and two-
modality SOTAs (S2) by using a cross-attention mechanism
to fuse sketch and photo by modelling sketch-photo inter-
actions to resolve overlapping or conflicting information.
Our proposed method is similar to CrossAtt using cross-
attention (Sec. 4.4) but also enriches the modality-agnostic
sketch and photo features by removing the confounding
modality-specific information to offer the best performance.

5.6. Ablation
In Table 6, we evaluate the contribution of each key de-
sign choice on FG-STBIR and Subjective captioning using
FS-COCO [19]. (i) Replacing cross-attention in Sec. 4.4
with quadruplet loss [86] leads to a performance drop by
0.6/0.9/2.7/10.8 in Acc.@1/Acc.@10/B-1/C metrics re-
spectively to show the importance of modelling the inter-
action between sketch and text. (ii) Replacing contrastive
loss-based query-photo score in Eq. (4) with a simple triplet
loss leads to a performance drop by 0.2/0.3/0.7/2.3 due
to the inability of unimodal L2-based triplet loss to model
highly complex scene information [94]. (iii) Finally, remov-
ing the conditional invertible neural networks (τk) drops
retrieval and captioning by 0.4/0.3/4.6/8.4 due to perco-
lation of the confounding modality-specific information in
cross-modal tasks [3] and the inability to generate text-
specific information from photo and sketch respectively.

6. Conclusion
We have studied for the first time the trilogy relationship
among scene-level sketch, text, and photo by introducing
scene-sketch in the context of scene understanding. We
proposed a unified framework to jointly model sketch, text,
and photo that seamlessly support several downstream tasks
like fine-grained sketch-based image retrieval, fine-grained
sketch and text based image retrieval, sketch captioning,
and subjective captioning, among others. Future research
can explore challenging downstream tasks such as scene-
level sketch-based image generation, sketch and text based
image generation, and text-based sketch generation tasks.
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