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Figure 1. We introduce a framework to learn human-to-robot handover policies from point cloud input. Our policies take input from a wrist
mounted camera and directly generate action output for the robot’s end effector. We train our policies in a simulated handover environment,
and evaluate on unseen handover motion and poses. We further transfer the model across physics simulators and to a real robotic platform.

Abstract

We propose the first framework to learn control policies
for vision-based human-to-robot handovers, a critical task
for human-robot interaction. While research in Embodied
Al has made significant progress in training robot agents in
simulated environments, interacting with humans remains
challenging due to the difficulties of simulating humans.
Fortunately, recent research has developed realistic simu-
lated environments for human-to-robot handovers. Lever-
aging this result, we introduce a method that is trained with
a human-in-the-loop via a two-stage teacher-student frame-
work that uses motion and grasp planning, reinforcement
learning, and self-supervision. We show significant per-
formance gains over baselines on a simulation benchmark,
sim-to-sim transfer and sim-to-real transfer. Video and code
are available at https://handover-sim2real .github. io.

1. Introduction

Handing over objects between humans and robots is an
important tasks for human-robot interaction (HRI) [35]. It

“This work was done during an internship at NVIDIA.

allows robots to assist humans in daily collaborative activi-
ties, such as helping to prepare a meal, or to exchange tools
and parts with human collaborators in manufacturing set-
tings. To complete these tasks successfully and safely, in-
tricate coordination between human and robot is required.
This is challenging, because the robot has to react to human
behavior, while only having access to sparse sensory inputs
such as a single camera with limited field of view. There-
fore, a need for methods that solve interactive tasks such as
handovers purely from vision input arises.

Bootstrapping robot training in the real world can be un-
safe and time-consuming. Therefore, recent trends in Em-
bodied Al have focused on training agents to act and interact
in simulated (sim) environments [11,12,19,43,45,46,51].
With advances in rendering and physics simulation, models
have been trained to map raw sensory input to action out-
put, and can even be directly transferred from simulation to
the real world [2,42]. Many successes have been achieved
particularly around the suite of tasks of robot navigation,
manipulation, or a combination of both. In contrast to these
areas, little progress has been made around tasks pertained
to HRI. This is largely hindered by the challenges in em-
bedding realistic human agents in these environments, since
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modeling and simulating realistic humans is challenging.

Despite the challenges, an increasing number of works
have attempted to embed realistic human agents in simu-
lated environments [0, 9, 16,36-38,48]. Notably, a recent
work has introduced a simulation environment (“Handover-
Sim”) for human-to-robot handover (H2R) [6]. To ensure
a realistic human handover motion, they use a large motion
capture dataset [7] to drive the movements of a virtual hu-
man in simulation. However, despite the great potential for
training robots, the work of [6] only evaluates off-the-shelf
models from prior work, and has not explored any policy
training with humans in the loop in their environment.

We aim to close this gap by introducing a vision-based
learning framework for H2R handovers that is trained with
a human-in-the-loop (see Fig. 1). In particular, we propose
a novel mixed imitation learning (IL) and reinforcement
learning (RL) based approach, trained by interacting with
the humans in HandoverSim. Our approach draws inspira-
tion from a recent method for learning polices for grasping
static objects from point clouds [50], but proposes several
key changes to address the challenges in H2R handovers.
In contrast to static object grasping, where the policy only
requires object information, we additionally encode human
hand information in the policy’s input. Also, compared to
static grasping without a human, we explicitly take human
collisions into account in the supervision of training. Fi-
nally, the key distinction between static object grasping and
handovers is the dynamic nature of the hand and object dur-
ing handover. To excel on the task, the robot needs to react
to dynamic human behavior. Prior work typically relies on
open-loop motion planners [49] to generate expert demon-
strations, which may result in suboptimal supervision for
dynamic cases. To this end, we propose a two-stage training
framework. In the first stage, we fix the humans to be sta-
tionary and train an RL policy that is partially guided by ex-
pert demonstrations obtained from a motion and grasp plan-
ner. In the second stage, we finetune the RL policy in the
original dynamic setting where the human and robot move
simultaneously. Instead of relying on a planner, we propose
a self-supervision scheme, where the pre-trained RL policy
serves as a teacher to the downstream policy.

We evaluate our method in three “worlds” (see Fig. 1).
First, we evaluate on the “native” test scenes in Handover-
Sim [6], which use the same backend physics simulator
(Bullet [10]) as training but unseen handover motions from
the simulated humans. Next, we perform sim-to-sim evalua-
tion on the test scenes implemented with a different physics
simulator (Isaac Gym [29]). Lastly, we investigate sim-to-
real transfer by evaluating polices on a real robotic system
and demonstrate the benefits of our method.

We contribute: i) the first framework to train human-to-
robot handover tasks from vision input with a human-in-
the-loop, ii) a novel teacher-student method to train in the

setting of a jointly moving human and robot, iii) an em-
pirical evaluation showing that our approach outperforms
baselines on the HandoverSim benchmark, iv) transfer ex-
periments indicating that our method leads to more robust
sim-to-sim and sim-to-real transfer compared to baselines.

2. Related Work

Human-to-Robot Handovers Encouraging progress in
hand and object pose estimation [22, 26, 27] has been
achieved, aided by the introduction of large hand-object in-
teraction datasets [5,7,17,20,21,28,32,47,54,55]. These
developments enable applying model-based grasp plan-
ning [3,4,3 1], a well-studied approach in which full pose es-
timation and tracking are needed, to H2R handovers [7,41].
However, these methods require the 3D shape models of
the object and cannot handle unseen objects. Alternatively,
some recent works [13, 30, 40, 52, 53] achieve H2R han-
dover by employing learning-based grasp planners to gen-
erate grasps for novel objects from raw vision inputs such
as images or point clouds [33, 34]. While promising results
have been shown, these methods work only on an open-loop
sequential setting in which the human hand has to stay still
once the robot starts to move [40], or need complex hand-
designed cost functions for grasp selection [52] and robot
motion planning [30, 53] for reactive handovers, which re-
quires expertise in robot motion and control. Hence, these
methods are difficult to reproduce and deploy to new en-
vironments. Progress towards dynamic simultaneous mo-
tion has been shown by a learning-based method [4 8], using
state inputs, leaving an open challenge for training policies
that receive visual input directly. In contrast, we propose
to learn control policies together with grasp prediction for
handovers in an end-to-end manner from segmented point
clouds with a deep neural net. To facilitate easy and fair
comparisons among different handover methods, [6] pro-
pose a physics-simulated environment with diverse objects
and realistic human handover behavior collected by a mo-
cap system [7]. They provide benchmark results of sev-
eral previous handover systems, including a learning-based
grasping policy trained with static objects [50]. However,
learning a safe and efficient handover policy is not trivial
with a human-in-the-loop, which we address in this work.

Policy Learning for Grasping Object grasping is an es-
sential skill for many robot tasks, including handovers.
Prior works usually generate grasp poses given a known
3D object geometry such as object shape or pose [3,4,31],
which is nontrivial to obtain from real-world sensory input
such as images or point clouds. To overcome this, recent
works train deep neural networks to predict grasps from
sensor data [25] and compute trajectories to reach the pre-
dicted grasp pose. Though 3D object geometry is no longer
needed, the feasibility is not guaranteed since the grasp
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prediction and trajectory planning are computed separately.
Some recent works directly learn grasping policies given
raw sensor data. [24] propose a self-supervised RL frame-
work based on RGB images to learn a deep Q-function
from real-world grasps. To improve data efficiency, [44]
use a low-cost handheld device to collect grasping demon-
strations with a wrist-mounted camera. They train an RL-
based 6-DoF closed-loop grasping policy with these demon-
strations. [50] combines imitation learning from expert data
with RL to learn a control policy for object grasping from
point clouds. Although this method performs well in Han-
doverSim [6] when the human hand is not moving, it has
difficulty coordinating with a dynamic human hand since
the policy is learned with static objects. Instead, our pol-
icy is directly learned from large-scale dynamic hand-object
trajectories obtained from the real world. To facilitate
the training for the dynamic case, we propose a two-stage
teacher-student framework, that is conceptually inspired by
[8], which has been proven critical through experiments.

3. Background
3.1. Reinforcement Learning

MDP  We formalize RL as a Markov Decision Process
(MDP), that consists of a 5-tuple M = (S, A, R, T,7),
where S is the state space, A the action space, R a scalar
reward function, 7 a transition function that maps state-
action pairs to distributions over states, and v a discount
factor. The goal is to find a policy that maximizes the
long-term reward: 7* = arg max, E Y /=) v"R(s;), with
St ~ T(St—la at_l) and ag_1 ~ 7T(St_1).

Learning Algorithm In this work, we use TD3 [18], a
common algorithm for continuous control. It is an actor-
critic method, which consists of a policy 74(s) (actor) and a
Q-function approximator (4 (s, a) (critic) that predicts the
expected return from a state-action pair. Both are repre-
sented by neural networks with parameters 6 and ¢. TD3 is
off-policy, and hence there is a replay buffer in which train-
ing transitions are stored. During training, both the actor
and critic are updated using samples from the buffer. To
update the critic, we minimize the Bellman error:

2
Lge(¢)=Enm {(Q(ll(staat)_r(stvat)""yQ(ﬁ(stJrl7at+1)) ]
1
For the actor network, the policy parameters are trained
to maximize the Q-values:

Loppg(0) = Ex [Qo(se, ar)[se,ar = wo(sy)]  (2)

For more details, we refer the reader to [18].

3.2. HandoverSim Benchmark

HandoverSim [6] is a benchmark for evaluating H2R
handover policies in simulation. The task setting consists of
a tabletop with different objects, a Panda 7DoF robotic arm
with a gripper and a wrist-mounted RGB-D camera, and
a simulated human hand. The task starts with the human
grasping an object and moving it to a handover pose. The
robot should move to the object and grasp it. The task is suc-
cessful if the object has been grasped from the human with-
out collision and brought to a designated position without
dropping. To accurately model the human, trajectories from
the DexYCB dataset [7], which comprises a large amount
of human-object interaction sequences, are replayed in sim-
ulation. Several baselines [49,50,52] are provided for com-
parison. The setup in HandoverSim has only been used for
handover performance evaluation purposes, whereas in this
work we utilize it as a learning environment.

4. Method

The overall pipeline is depicted in Fig. 2 and consists
of three different modules: perception, vision-based con-
trol, and the handover environment. The perception module
receives egocentric visual information from the handover
environment and processes it into segmented point clouds.
The vision-based control module receives the point clouds
and predicts the next action for the robot and whether to ap-
proach or to grasp the object. This information is passed
to the handover environment, which updates the robot state
and sends the new visual information to the perception mod-
ule. Note that the input to our method comes from the wrist-
mounted camera, i.e., there is no explicit information, such
as object or hand pose, provided to the agent. We will now
explain each of the modules of our method in more detail.

4.1. Handover Environment

We split the handover task into two distinct phases (see
Fig. 2). First, during the approaching phase, the robot
moves to a pre-grasp pose that is close to the object by run-
ning the learned control policy 7. A learned grasp predictor
o continuously computes a grasp probability to determine
when the system can proceed to the second phase. Once
the pre-grasp pose is reached and the grasp prediction is
confident to take over the object from the human, the task
will switch to the grasping phase, in which the end-effector
moves forward to the final grasp pose in open-loop fashion
and closes the gripper to grasp the object. Finally, after ob-
ject grasping, the robot follows a predetermined trajectory
to retract to a base position and complete the episode. This
task logic is used in both our simulation environment and
the real robot deployment. Sequencing based on a pre-grasp
pose is widely used in literature for dynamic grasping [!].

We follow the HandoverSim task setup [6], where the hu-
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Figure 2. Method Overview. The Perception module takes egocentric RGB-D and segmentation images from the environment and
outputs a hand/object segmented point cloud. Next, the segmented point cloud is passed to the the Vision-based Control module and
processed by PointNet++ [39] to obtain a lower-dimensional representation. This embedding is used as input to both the control policy
and the grasp predictor. Each task episode in the Handover Environment follows two phases: during the approaching phase, the robot
moves towards a pre-grasp pose, driven by the control policy 7r that outputs end-effector actions a. A learned grasp predictor monitors the
motion and determines when the robot should switch into the grasping phase, which follows the steps: 1. moving the gripper forward from
a pre-grasp to a grasping pose 2. closing the gripper 3. retracting the object to a designated location, after which the episode ends.

man hand and objects are simulated by replaying data from
the DexYCB dataset [7] (see Sec. 3.2). First, actions a in
the form of the next 6DoF end-effector pose (translation and
rotation) are received from the policy 7r(als). We then con-
vert the end-effector pose into a target robot configuration
using inverse kinematics. Thereafter, we use PD-controllers
to compute torques, which are applied to the robot. Finally,
the visual information is rendered from the robot’s wrist-
mounted RGB-D camera and sent to the perception module.

4.2. Perception

Our policy network takes a segmented hand and object
point cloud as input. In the handover environment, we first
render an egocentric RGB-D image from the wrist camera.
Then we obtain the object point cloud p, and hand point
cloud py, by overlaying the ground-truth segmentation mask
with the RGB-D image. Since the hand and object may not
always be visible from the current egocentric view, we keep
track of the last available point clouds. The latest available
point clouds are then sent to the control module.

4.3. Vision-Based Control

Input Representation Depending on the amount of
points contained in the hand point cloud p;, and object point
cloud p,, we down- or upsample them into constant size.
Next, we concatenate the two point clouds into a single
point cloud p and add two one-hot-encoded vectors to in-
dicate the locations of object and hand points within p. We
then encode the point cloud into a lower dimensional repre-
sentation ¢ (p) by passing it through PointNet++ [39]. Fi-
nally, the lower dimensional encoding 1 (p) is passed on to
the control policy 7 and the grasp prediction network o.

Control Policy The policy network 7(ali(p)) is a small,
two-layered MLP that takes the PointNet++ embedding as
input state (s = 1 (p)) and predicts actions a that corre-
spond to the change in 6DoF end-effector pose. These are
passed on to the handover environment.

Grasp Prediction We introduce a grasp prediction net-
work o (1(p)) that predicts when the robot should switch
from approaching to executing the grasping motion (cf.
Fig. 2). We model grasp prediction as a binary classification
task. The input corresponds to the PointNet++ embedding
1 (p), which is fed through a 3-layered MLP. The output
is a probability that indicates the likelihood of a successful
grasp given the current point cloud feature. If the probabil-
ity is above a tunable threshold, we execute an open-loop
grasping motion. The model is trained offline with pre-
grasp poses attained from [15]. We augment the dataset
by adding random noise to pre-grasp poses. To determine
the labels, we initialize the robot with the pre-grasp poses
in the physics simulation and execute the forward grasping
motion. The label is one if the grasp is successful, and zero
otherwise. We use a binary cross-entropy loss for training.

4.4. Two-Stage Teacher-Student Training

We aim at training a handover policy capable of mov-
ing simultaneously with the human. Training this policy
directly in the setting of dynamic motion is challenging
because expert demonstrations with open-loop planners to
guide training can only be obtained when the human is sta-
tionary. A key contribution of our work is a two-stage train-
ing scheme for handovers that incrementally trains the pol-
icy to alleviate this challenge. In the first stage, we pretrain
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Figure 3. Training Procedure. In the pretraining stage (top left box), the human hand is stationary. We alternate between collecting
expert demonstrations via motion planning and exploration data with the RL policy 7rpe. Transitions d are stored in a replay buffer D.
During training (green box, right), a batch of randomly sampled transitions from the replay buffer is passed through PointNet++ and the
actor and critic networks. In the finetuning stage (bottom left box), the human and robot move concurrently. The expert motion planner is
replaced by the expert policy 7rexp, Which shares the weights of the pretrained policy 7. This policy network will be kept frozen for the
rest of training and serves as a regularizer for the RL agent. The RL agent’s actor network 7r, and critic network Q. are also initialized
with the weights of pretrained agent’s networks, but the model will be updated during finetuning. In this stage, transitions are stored in a
new replay buffer D.. Data is sampled solely from this buffer during finetuning.

in a setting where the robot only starts moving once the hu-
man has stopped (sequential). This pretrained policy is fur-
ther finetuned in the second stage in which the human and
robot move simultaneously (simultaneous).

Pretraining in Sequential Setting In the sequential set-
ting, the robot starts moving once the human has come
to a stop (see Fig. 3, top left). To grasp the object from
the stationary human hand, we leverage motion planning
to provide expert demonstrations. During data collection,
we alternate between motion planning and RL-based ex-
ploration. In both cases, we store the transitions d
{p¢,at, 8¢, re, Pet1, €} in a replay buffer D, from which
we sample during network training. The term p; and p;11
indicate the point cloud and the next point cloud, a; the ac-
tion, g; the pre-grasp goal pose, r; the reward, and e; an
indicator of whether the transition is from the expert.
Inspired by [50], we collect expert trajectories with the
OMG planner [49] that leverages ground-truth states. Note
that some expert trajectories generated by the planner result
in collision with the hand, which is why we introduce an
offline pre-filtering scheme. We first parse the ACRONYM
dataset [14] for potential grasps. We then run collision
checking to filter out grasps where the robot and human
hand collide. For the set of remaining collision-free grasps,
we plan trajectories to grasp the object and execute them in
open-loop fashion. On the other hand, the RL policy 7y
explores the environment and receives a sparse reward, i.e.,
the reward is one if the task is completed successfully, oth-

erwise zero. Hence, collisions with the human will get im-
plicitly penalized by not receiving any positive reward.

Finetuning in Simultaneous Setting In this setting, the
human and robot move at the same time. Hence, we can-
not rely on motion and grasp planning to guide the policy.
On the other hand, simply taking the pre-trained policy 7rpre
from the sequential setting and continue training it with-
out an expert leads to an immediate drop in performance.
Hence, we introduce a self-supervision scheme for stabil-
ity reasons, i.e., we want to keep the finetuning policy close
to the pre-trained policy. To this end, we replace the ex-
pert planner from the sequential setting by an expert policy
Trexp» Which is initialized with the weights of the pre-trained
policy 7y that already provides a reasonable prior policy
(see Fig. 3 bottom left). Therefore, we have two policies:
i) the expert policy 7re, as proxy for the motion and grasp-
ing planner. We freeze the network weights of this policy,
ii) the finetuning policy 7, and critic @, which are ini-
tialized with the weights of the pre-trained policy rp. and
critic Qpre, respectively. We proceed to train these two net-
works using the loss functions which we describe next.

Network Training During training, we sample a batch of
random transitions from the replay buffer D. The policy
network is trained using a combination of behavior cloning,
RL-based losses and an auxiliary objective. In particular,
the policy is updated using the following loss function:

L(0) = ALgc + (1 — X) Lpppc + Laux, 3)
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mean accum time (s) failure (%)
success (%) .

exec plan total | contact drop timeout total
_ | OMG Planner [49] { 62.50 8309 1414 9722 | 27.78 8.33 1.39  37.50
-g Yang et al. [52] T 64.58 4.864 0.036 4900 | 17.36  11.81 6.25 3542
8 | GA-DDPG [50] 50.00 7.139  0.142  7.281 4.86 19.44  25.69  50.00
§ GA-DDPG [50] finetuned 57.18 6.324 0.080 6.411 6.48  27.08 9.26 42.82
Ours 75.23 7.743 0177  7.922 9.26 13.43 2.08 24.77
= | GA-DDPG [50] 36.81 4.664 0.132 4.796 9.03 2500 29.17 63.19
g GA-DDPG [50] finetuned 54.86 4.832 0.082 40914 6.71  26.39 12.04 4514
% | Ours 68.75 6.232 0.178 6.411 8.80  17.82 4.63 31.25

Table 1. HandoverSim Benchmark Evaluation. Comparison of our method against various baselines from the HandoverSim benchmark
[6]. In the sequential setting, we find that our baseline achieves better overall success rates than the baselines. In the simultaneous
setting, we outperform the applicable baselines by large margins. The results for our method are averaged across 3 random seeds. {: both

methods [49,

where Lgc is a behavior cloning loss that keeps the policy
close to the expert policy, Lpppg is the standard actor-critic
loss described in Eq. 2, and Layx is an auxiliary objective
that predicts the grasping goal pose of the end-effector. The
coefficient A balances the behavior cloning and the RL ob-
jective. The critic loss is defined as:

L(¢) = Lgg + Laux, 4)
where Lgg indicates the Bellman error from Eq. 1 and Layx
is the same auxiliary loss used in Eq. 3. We refer the reader
to supplementary material or [50] for more details.

5. Experiments

We first evaluate our approach in simulation using the
HandoverSim benchmark (Sec. 5.1). Next, we investigate
the performance of sim-to-sim transfer by evaluating the
trained models on the test environments powered by a dif-
ferent physics engine (Sec. 5.2). Finally, we apply the
trained model to a real-world robotic system and analyze
the performance of sim-to-real transfer (Sec. 5.3).

5.1. Simulation Evaluation

Setup HandoverSim [6] contains 1,000 unique H2R han-
dover scenes divided into train, val, and test splits. Each
scene contains a unique human handover motion. We eval-
uate on the “s0” setup which contains 720 training and 144
testing scenes. See the supp. material for evaluations on un-
seen objects, subjects, and handedness. Following the eval-
uation of GA-DDPG [50] in [6], we consider two settings:
(1) the “sequential” setting where the robot is allowed to
move only after the human hand reaches the handover loca-
tion and remains static there (i.e., “hold” in [6]), and (2) the
“simulataneous” setting where the robot is allowed to move
from the beginning of the episode (i.e., “w/o hold” in [0]).

Metrics We follow the evaluation protocol in Handover-
Sim [6]. A handover is considered successful if the robot
grasps the object from the human hand and moves it to a
designated location. A failure is claimed and the episode

] are evaluated with ground-truth states in [6] and thus are not directly comparable with ours.

is terminated if any of the following three conditions oc-
cur: (1) the robot collides with the hand (contact), (2) the
robot drops the object (drop), or (3) a maximum time limit
is reached (timeout). Besides efficacy, the benchmark also
reports efficiency in time. The time metric is further bro-
ken down into (1) the execution time (exec), i.e., the time to
physically move the robot, and (2) the planning time (plan),
i.e., the time spent on running the policy. All reported met-
rics are averaged over the rollouts on the test scenes.

Baselines  Our primary baseline is GA-DDPG [50]. Be-
sides comparing with the original model (i.e., trained in [50]
for table-top grasping and evaluated in [6]), we additionally
compare with a variant finetuned on HandoverSim (“GA-
DDPG [50] finetuned”). For completeness, we also include
two other baselines from [0]: “OMG Planner [49]” and
“Yang et al. [52]". However, both of them are evaluated
with ground-truth state input in [6] and thus are not directly
comparable with our method.

Results  Tab. 1 reports the evaluation results on the test
scenes. In the sequential setting, our method significantly
outperforms all the baselines in terms of success rate, even
compared to methods that use state-based input. Our
method is slightly slower on average than GA-DDPG in
terms of total time needed for handovers. In the simulta-
neous setting, our method clearly outperforms GA-DDPG,
which has low success rates. Qualitatively, we observe that
GA-DDPG directly tries to grasp the object from the user
while it is still moving, while our method follows the hand
and finds a feasible grasp once the hand has come to a stop,
resulting in a trade-off on the overall execution time. We
provide a qualitative example of this behavior in Fig. 4
(a) and in the supplementary video. We also refer to the
supp. material for a discussion of limitations and a robust-
ness analysis of our pipeline under noisy observations.

Ablations We evaluate our design choices in an ablation
study and report the results in Tab. 2. We analyze the vision
backbone by replacing PointNet++ with a ResNetl18 [23]
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Figure 4. Qualitative results. We provide a comparison to show our methods’ advantages over GA-DDPG [50]. (a) Our method reacts to
the moving human, while the baseline tries to go for a grasp directly, which leads to collision. (b) In the sim-to-sim transfer, we often find
that the baseline does not find a grasp on the object. (c¢) In the sim-to-real experiment, GA-DDPG usually tries to get to a grasp directly,
while our method adjusts the gripper into a stable grasping pose first. See the video in supp. material for more qualitative examples.

Ablation Study
failure (%)

success (%) contact drop  timeout
w/ RGBDM + ResNet18 34.10 620 4580  13.90
w/ third person view 60.42 9,95  25.69 3.94
w/o hand point cloud 59.03 24.07 11.58 5.32
w/o aux prediction 70.60 10.65 16.20 2.54
wi/o standoff 52.55 7.87  36.80 2.78
w/o finetuning 73.38 9.03 13.89 3.70
Ours 75.23 926 1343 2.08
w/o finetuning simult. 62.27 11.81 2037 5.56
Ours simult. 68.75 8.8 17.82 4.63

Table 2. Ablation. We ablate the vision backbone, hand percep-
tion, and egocentric view. We also study the effect of finetuning,
the auxiliary prediction, and splitting the task into two phases. All
design choices are crucial aspects of our method with regards to
overall performance. Results are averaged over 3 random seeds.

that processes the RGB and depth/segmentation (DM) im-
ages. Similar to the findings in GA-DDPG, the PointNet++
backbone performs better. Next, we train our method from
third person view instead of egocentric view and without ac-
tive hand segmentation (w/o hand point cloud), i.e., the pol-
icy only perceives the object point cloud but not the hand
point cloud. We also ablate the auxiliary prediction (w/o
aux prediction) and evaluate a variant that directly learns to
approach and grasp the object instead of using the two task
phases of approaching and grasping (w/o standoff). Lastly,
we compare against our pretrained model, which was only
trained in the sequential setting without finetuning (w/o fine-
tuning). We find that the ablated components comprise im-
portant elements of our method. The results indicate an in-
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Sim-to-Sim

success (%) failure (%) .
contact drop  timeout

= | GA-DDPG [50] 19.44 486 4722 2847
% GA-DDPG [50] finetuned 11.81 6.25 68.75 13.19
2| Ours 44.21 949 4051 5.79
& | Ours w/o grasp 54.40 7.87 33.34 4.40
| GA-DDPG [50] 11.11 15.97 48.61 24.31
= | GA-DDPG [50] finetuned 16.67 9.72  63.89 9.72
£ | Ours 39.58 9.03 4375  7.64
Ours w/o grasp pred. 47.92 10.65  35.88 5.56

Table 3. Sim-to-Sim Experiment. We evaluate sim-to-sim trans-
fer of the learning-based method to Isaac Gym [29], Our method
shows better transfer capabilities than GA-DDPG [50].

creased amount of hand collision or object drop in all abla-
tions. A closer analysis in the simultaneous setting shows
that our finetuned model outperforms the pretrained model.

5.2. Sim-to-Sim Transfer

Instead of directly transferring to the real world, we first
evaluate the robustness of the models by transferring them
to a different physics simulator. We re-implement the Han-
doverSim environment following the mechanism presented
in [6] except for replacing the backend physics engine from
Bullet [10] to Isaac Gym [29]. We then evaluate the models
trained on the original Bullet-based environment on the test
scenes powered by Isaac Gym. The results are presented in
Tab. 3. We observe a significant drop for GA-DDPG on the
success rates (i.e., to below 20%) in both settings. Qualita-
tively, we see that grasps are often either missed completely
or only partially grasped (see Fig. 4 (b)). On the other hand,
our method is able to retain higher success rates. Expect-
edly, it also suffers from a loss in performance. We analyze
the influence of our grasp predictor on transfer performance
and compare against a variant where we execute the grasp-
ing motion after a fixed amount of time (Ours w/o grasp
pred.), which will leave the robot enough time to find a pre-
grasp pose. Part of the performance drop is caused by the
grasp predictor initiating the grasping phase at the wrong
time, which can be improved upon in future work.

5.3. Sim-to-Real Transfer

Finally, we deploy the models trained in Handover-
Sim on a real robotic platform. We follow the perception
pipeline used in [50,52] to generate segmented hand and ob-
ject point clouds for the policy, and use the output to update
the end effector’s target position. We compare our method
against GA-DDPG [50] with two sets of experiments: (1)
a pilot study with controlled handover poses and (2) a user
evaluation with free-form handovers. For experimental de-
tails and the full results, please see the supp. material.

Pilot Study We first conduct a pilot study with two sub-
jects. The subjects are instructed to handover 10 objects
from HandoverSim by grasping and presenting the objects
in controlled poses. For each object, we test with 6 poses

Subject 1 Subject 2
GA-DDPG GA-DDPG

[50] Ours [50] Ours
011_banana 3/ 6 6/ 6 6/ 6 5/ 6
037_scissors 2/ 6 5/ 6 3/ 6 5/ 6
006_mustard_bottle 17 6 3/ 6 2/ 6 4/ 6
024_bowl 3/ 6 4/ 6 3/ 6 3/ 6
040_large_marker 0/ 6 4/ 6 4/ 6 5/ 6
003_cracker_box 3/ 6 2/ 6 0/ 6 2/ 6
052_extra_large_clamp 1/ 6 4/ 6 5/ 6 5/ 6
008_pudding_box 3/ 6 6/ 6 4/ 6 4/ 6
010_potted_meat_can 2/ 6 2/ 6 3/ 6 4/ 6
021_bleach_cleanser 3/ 6 5/ 6 3/ 6 4/ 6
total 21/60 41/60 33/60 41/60

Table 4. Sim-to-Real Experiment. Success rates of the pilot
study. Our method outperforms GA-DDPG [50] for both subjects.

(3 poses for each hand) with varying object orientation and
varying amount of hand occlusion, resulting in 60 poses per
subject. The same set of poses are used in testing both our
model and GA-DDPG [50]. The success rates are shown
Tab. 4. Results indicate that our method outperforms GA-
DDPG [50] for both subjects on the overall success rate
(i.e., 41/60 versus 21/60 for Subject 1). Qualitatively, we
observe that GA-DDPG [50] tends to fail more from unsta-
ble grasping as well as hand collision. Fig. 4 (c) shows two
examples of the real world handover trials.

User Evaluation We further recruited 6 users to compare
the two methods and collected feedback from a question-
naire with Likert-scale and open-ended questions. In con-
trast to the pilot study, we asked the users to handover the 10
objects in ways that are most comfortable to them. We re-
peated the same experimental process for both methods, and
counterbalanced the order to avoid bias. From participants’
feedback, the majority agreed that the timing of our method
is more appropriate and our method can adjust between dif-
ferent object poses better. The interpretability of the robot’s
motion was also acknowledged by their comments. Please
see the supp. material for more details.

6. Conclusion

In this work, we have presented a learning-based frame-
work for human-to-robot handovers from vision input with
a simulated human-in-the-loop. We have introduced a two-
stage teacher-student training procedure. In our experi-
ments we have shown that our method outperforms base-
lines by a significant margin on the HandoverSim bench-
mark [6]. Furthermore, we have demonstrated that our
approach is more robust when transferring to a different
physics simulator and a real robotic system.

Acknowledgements We thank Tao Chen and Adithyavaira-
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