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Abstract

Understanding and modeling the 3D scene from a single
image is a practical problem. A recent advance proposes a
panoptic 3D scene reconstruction task that performs both
3D reconstruction and 3D panoptic segmentation from a
single image. Although having made substantial progress,
recent works only focus on top-down approaches that fill
2D instances into 3D voxels according to estimated depth,
which hinders their performance by two ambiguities. (1)
instance-channel ambiguity: The variable ids of instances
in each scene lead to ambiguity during filling voxel chan-
nels with 2D information, confusing the following 3D re-
finement. (2) voxel-reconstruction ambiguity: 2D-to-3D
lifting with estimated single view depth only propagates 2D
information onto the surface of 3D regions, leading to ambi-
guity during the reconstruction of regions behind the frontal
view surface. In this paper, we propose BUOL, a Bottom-
Up framework with Occupancy-aware Lifting to address the
two issues for panoptic 3D scene reconstruction from a sin-
gle image. For instance-channel ambiguity, a bottom-up
framework lifts 2D information to 3D voxels based on de-
terministic semantic assignments rather than arbitrary in-
stance id assignments. The 3D voxels are then refined and
grouped into 3D instances according to the predicted 2D
instance centers. For voxel-reconstruction ambiguity, the
estimated multi-plane occupancy is leveraged together with
depth to fill the whole regions of things and stuff. Our
method shows a tremendous performance advantage over
state-of-the-art methods on synthetic dataset 3D-Front and
real-world dataset Matterport3D. Code and models will be
released.

1. Introduction
Joint learning of 3D reconstruction and perception is

a challenging and practical problem for various applica-
tions. Existing works focus on combining 3D reconstruc-
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Figure 1. Comparison of the feature lifting from 2D to 3D. (a)
General Top-down approaches: Feature lifting by depth with the
two randomized instance assignments in the top-down framework.
The predicted 2D instance masks {i1, i2, i3} are lifted to only the
surface of 3D instances at variable channels, such as {i1, i3, i6}
or {i3, i6, i1}, which results in instance-channel ambiguity and
voxel-reconstruction ambiguity. (b) Our BUOL: Occupancy-
aware lifting with the deterministic semantic assignment in the
bottom-up framework. The predicted 2D semantic category maps
{s1, s2, s6, s7} are lifted to the whole regions of things (s1, s2)
and stuff (s6, s7), and the voxels are finally grouped into 3D in-
stances {i1, i2, i3} by corresponding 2D instance centers.

tion with semantic segmentation [26, 27] or instance seg-
mentation [11, 23, 28]. Recently, a pioneer work [6] unifies
the tasks of 3D reconstruction, 3D semantic segmentation,
and 3D instance segmentation into panoptic 3D scene re-
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construction from a single RGB image, which assigns a cat-
egory label (i.e. a thing category with easily distinguishable
edges, such as tables, or a stuff category with indistinguish-
able edges, such as wall) [22] and an instance id (if the voxel
belongs to a thing category) to each voxel in the 3D volume
of the camera frustum.

Dahnert et al. [6] achieve this goal in a top-down pipeline
that lifts 2D instance masks to channels of 3D voxels and
predicts the panoptic 3D scene reconstruction in the follow-
ing 3D refinement stage. Their method first estimates 2D
instance masks and the depth map. The 2D instance masks
are then lifted to fill voxel channels on the front-view sur-
face of 3D objects using the depth map. Finally, a 3D model
is adopted to refine the lifted 3D surface masks and attain
panoptic 3D scene reconstruction results of all voxels.

After revisiting the top-down panoptic 3D scene recon-
struction framework, we find two crucial limitations which
hinder its performance, as shown in Figure 1(a). First,
instance-channel ambiguity: the number of instances
varies in different scenes. Thus lifting 2D instance masks
to fill voxel channels can not be achieved by a determinis-
tic instance-channel mapping function. Dahnert et al. [6]
propose to utilize a randomized assignment that randomly
assigns instance ids to the different channels of voxel fea-
tures. For example, two possible random assignments are
shown in Figure. 1(a), where solid and dashed arrow lines
with the same color indicate a 2D mask is assigned to differ-
ent voxel feature channels. This operator leads to instance-
channel ambiguity, where an instance id may be assigned to
an arbitrary channel, confusing the 3D refinement model. In
addition, we experimentally discuss the impact of different
instance assignments (e.g., random or sorted by category)
on performance in Section 4. Second, voxel reconstruc-
tion ambiguity: 2D-to-3D lifting with depth from a single
view can only propagate 2D information onto the frontal
surface in the camera frustum, causing ambiguity during
the reconstruction of regions behind the frontal surface. As
shown by dashed black lines in the right of Figure 1(a), the
2D information is only propagated to the frontal surface of
initialized 3D instance masks, which is challenging for 3D
refinement model to reconstruct the object regions behind
the frontal surface accurately.

In this paper, we propose BUOL, a Bottom-Up frame-
work with Occupancy-aware Lifting to address the above
two ambiguities for panoptic 3D scene reconstruction from
a single image. For instance-channel ambiguity, our
bottom-up framework lifts 2D semantics to 3D semantic
voxels, as shown in Figure. 1(b). Compared to the top-down
methods shown in Figure. 1(a), instance-channel ambigu-
ity is tackled by a simple deterministic assignment map-
ping from semantic category ids to voxel channels. The
voxels are then grouped into 3D instances according to the
predicted 2D instance centers. For voxel-reconstruction

ambiguity, as shown in Figure. 1(b), the estimated multi-
plane occupancy is leveraged together with depth by our
occupancy-aware lifting mechanism to fill regions inside
the things and stuff besides front-view surfaces for accurate
3D refinement.

Specifically, our framework comprises a 2D priors stage,
a 2D-to-3D lifting stage, and a 3D refinement stage. In
the 2D priors stage, the 2D model predicts 2D semantic
map, 2D instance centers, depth map, and multi-plane oc-
cupancy. The multi-plane occupancy presents whether the
plane at different depths is occupied by 3D things or stuff.
In the 2D-to-3D lifting stage, leveraging estimated multi-
plane occupancy and depth map, we lift 2D semantics into
deterministic channels of 3D voxel features inside the things
and stuff besides the front-view surfaces. In the 3D refine-
ment stage, we predict dense 3D occupancy in each voxel
for reconstruction. Meanwhile, the 3D semantic segmen-
tation is predicted for both the thing and stuff categories.
The 3D offsets towards the 2D instance centers are also
estimated to identify voxels belonging to 3D objects. The
ground truth annotations of 3D panoptic reconstruction, i.e.,
3D instance/semantic segmentation masks and dense 3D oc-
cupancy, can be readily converted to 2D instance center, 2D
semantic segmentation, depth map, multi-plane occupancy,
and 3D offsets for our 2D and 3D supervised learning. Dur-
ing inference, we assign instance ids to 3D voxels occu-
pied by thing objects based on 2D instance centers and 3D
offsets, attaining final panoptic 3D scene reconstruction re-
sults.

Extensive experiments show that the proposed bottom-
up framework with occupancy-aware lifting outperforms
prior competitive approaches. On the pre-processed 3D-
Front [10] and Matterport3D [2], our method achieves
+11.81% and +7.46% PRQ (panoptic reconstruction qual-
ity) over the state-of-the-art method [6], respectively.

2. Related Work
3D reconstruction. Single-view 3D reconstruction learns
3D geometry from a single-view image. Pixel2Mesh
attempts to progressively deform an initialized ellipsoid
mesh for a single object, while DISN predicts the un-
derlying signed distance fields to generate the single 3D
mesh. UCLID-Net [12] back-projects 2D features by the
regressed depth map to object-aligned 3D feature grids, and
CoReNet [30] is proposed to lift 2D features to 3D volume
by ray-traced skip connections.

To reconstruct the object or scene in more detail, some
works adopt multi-view images as input. Pix2Vox [33] is
proposed to select high-quality reconstructions for each part
in 3D volumes generated by different view images. Trans-
formerFusion [1] also selectively stores features extracted
from multi-view images.
3D segmentation. Some 3D segmentation methods directly
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use a basic geometry as input. For 3D semantic segmenta-
tion, 3DMV [7] combines the features extracted from 3D
geometry with lifted multi-view image features to predict
per-voxel semantics. ScanComplete [8] is proposed to pre-
dict complete 3D geometry with per-voxel semantics by de-
vising 3D geometry with filter kernels invariant to the over-
all scene size.

For 3D instance segmentation, there exist some top-
down and bottom-up methods as follows. Some meth-
ods [16, 17] based on box proposals predicted by 3D-
RPN pay more attention to the fusion of 3D geometry
features and lifted image features. SGPN [32] predicts
point grouping proposals for point cloud instance segmen-
tation. RfD-Net [29] focuses on predicting instance mesh of
the high objectness proposal predicted by point cloud pro-
posal network. Instead of directly regressing bounding box,
GSPN [34] generates proposals by reconstructing shapes
from noisy observations to provide location of instances.

Most bottom-up methods adopt center as the goal of in-
stance grouping. PointGroup [20] and TGNN [19] learn to
extract per-point features and predict offsets to shift each
point toward its object center. Lahoud et al. [25] propose
to generate instance labels by learning a metric that groups
parts of the same object instance and estimates the direction
toward the instance’s center of mass. There also exist other
bottom-up methods. OccuSeg [13] predicts the number of
occupied voxels for each instance to guide the clustering
stage of 3D instance segmentation. HAIS [4] introduces
point aggregation for preliminarily clustering points to sets
and set aggregation for generating complete instances.
3D segmentation with reconstruction. For 3D semantic
segmentation with reconstruction, Atlas [27] is proposed to
directly regress a truncated signed distance function (TSDF)
from a set of posed RGB images for jointly predicting the
3D semantic segmentation of the scene. AIC-Net [26] is
proposed to apply anisotropic convolution to the 3D fea-
tures lifted from 2D features by the corresponding depth to
adapt to the dimensional anisotropy property voxel-wisely.

As far as we know, the instance segmentation with re-
construction works follow the top-down pipeline. Mesh
R-CNN [11] augments Mask R-CNN [14] with a mesh
prediction branch to refine the meshes converted by pre-
dicted coarse voxel representations. Mask2CAD [23]
and Patch2CAD [24] leverage the CAD model to match
each detected object and its patches, respectively. To-
tal3DUnderstanding [28] is proposed to prune mesh edges
with a density-aware topology modifier to approximate the
target shape.

Panoptic 3D Scene Reconstruction from a single image
is first proposed by Dahnert et al. [6], and they deliver a
state-of-the-art top-down strategy with Mask R-CNN [14]
as 2D instance segmentation and random assignment for in-
stance lifting. Our BUOL is the first bottom-up method for

panoptic/instance segmentation with reconstruction from a
single image.

3. Methodology
In this section, we propose a bottom-up panoptic 3D

scene reconstruction method with occupancy-aware lifting.
Given a single 2D image, we aim to learn corresponding
3D occupancy and 3D panoptic segmentation. To achieve
this goal, as shown in Figure. 2, we first extract the 2D
priors, which includes 2D semantics, 2D instance centers,
scene depth, and multi-plane occupancy. Then, an efficient
occupancy-aware feature lifting block is designed to lift the
2D priors to 3D features, thus giving a good initialization
for the following learning. Finally, a bottom-up panoptic 3D
scene reconstruction model is utilized to learn the 3D occu-
pancy and 3D panoptic segmentation, where a 3D refine-
ment model maps the lifted 3D features to 3D occupancy,
3D semantics, and 3D offsets, and an instance grouping
block is designed for 3D panoptic segmentation. In addi-
tion, the ground truth of 2D priors and 3D offsets adopted
by our method can be easily obtained by ground truth an-
notations of 3D panoptic reconstruction (i.e. 3D semantic
map, instance masks, and occupancy).

3.1. 2D Priors Learning

Given a 2D image x ∈ RH×W×3, where H and W is
image height and width, panoptic 3D scene reconstruction
aims to map it to semantic labels ŝ3d and instance ids î3d.
It’s hard to directly learn 3D knowledge from a single 2D
image, so we apply a 2D model Fθ to learn rich 2D priors:

s2d, d, c2d, omp = Fθ(x), (1)

where s2d ∈ [0, 1]H×W×C is 2D semantics with C
categories. d ∈ RH×W is the depth map. c2d ∈
RN×3 is predicted locations of N instance centers (RN×2)
with corresponding category labels ({0, 1, ...C − 1}N×1).
omp ∈ [0, 1]H×W×M is the estimated multi-plane occu-
pancy which presents whether the M planes at different
depths are occupied by 3D things or stuff, and the default
M is set as 128.

3.2. Occupancy-aware Feature Lifting

After obtaining the learned 2D priors, we need to lift
them to 3D features for the following training. Here, an
occupancy-aware feature lifting block is designed for this
goal, as shown in Figure. 3. First, we lift the 2D semantics
s2d to coarse 3D semantics I3ds in the whole region of things
and stuff rather than only on the front-view surface adopted
by previous work [6],

I3ds (u, v, z) =

{
s2d(K−1

cam[u, v, 1]), if z ≥ d(u, v)

0, otherwise
(2)
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Figure 2. The illustration of our framework. Given a single image, we first predict 2D priors by 2D model, then lift 2D priors to 3D
voxels by our occupancy-aware lifting, and finally predict 3D results using the 3D model and obtain panoptic 3D scene reconstruction
results in a bottom-up manner.
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Figure 3. Occupancy-aware Lifting. We lift multi-plane occu-
pancy and 2D semantics predicted by the 2D model to 3D features.
∗ is Hadamard product.

where Kcam is the camera intrinsic matrix, d(u, v) is depth
at location (u, v). The region z < d(u, v) is free space,
where is set 0 to ignore.

Then, we resort to multi-plane occupancy omp learned
in the 2D stage to remove the meaningless region of the
coarse 3D semantics I3ds and obtain the lifted 3D features.
Formally, the lifted 3D features are calculated as the product
of I3ds and coarse 3D occupancy I3do ,

I3d =Conv(I3ds ) ∗ Conv(I3do ),where

I3do (u, v, z) =

{
omp(K−1

cam[u, v, z]), if z ≥ d(u, v)

0, otherwise
(3)

where Conv is a Conv-BN-ReLU block. ∗ is Hadamard
product.

As shown in Figure. 3, our multi-plane occupancy can
give supplementary shape cues for the occluded region, thus
the lifted features are capable to serve as a good 3D initial-
ization for the following 3D refinement, greatly reducing
the pressure of the 3D refinement model.
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Figure 4. Panoptic Reconstruction. The predicted 3D semantics
and 3D offsets are first refined by 3D occupancy, and then the re-
constructed 3D results are combined with 2D instance centers for
3D instance grouping, and finally, 3D instances and stuff are com-
bined to obtain panoptic 3D scene reconstruction. ∗ is Hadamard
product.

3.3. Bottom-up Panoptic Reconstruction

Usually, the lifted 3D features are coarse and cannot
be used for panoptic reconstruction directly. To refine the
coarse features, a powerful 3D encoder-decoder model Gϕ

is used to predict 3D occupancy, 3D semantic map, and 3D
offsets:

s3d
′
,△c3d

′
, o3d = Gϕ(I

3), (4)

where s3d
′
,△c3d

′
, o3d is refined 3D semantic map, 3D off-

sets and 3D occupancy, respectively.
The panoptic reconstruction utilizes the refined 3D re-

sults for 3D reconstruction and 3D panoptic segmentation,
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Figure 5. Instance Grouping. We convert both 2D instance cen-
ters and 3D offsets of each category at multi-plane to group 3D
instances.

as shown in Figure. 4. For 3D reconstruction, guided by
the 3D occupancy o3d, we can obtain reconstructed se-
mantics by s3d = s3d

′ ∗ o3d and reconstructed offsets by
△c3d = △c3d

′ ∗ o3d, where ∗ is Hadamard product. For
3D panoptic segmentation, we need to assign the instance
ids to the voxels of the things. To achieve this, we propose
grouping instances with the estimated 2D instance centers,
3D offsets, and 3D semantics.

The proposed instance grouping block is shown in Fig-
ure. 5. We first convert 3D offsets △c3d to multi-plane by
△cz = △c3d(Kcam[u, v, z]), where z ∈ {0, 1, ...,M −
1} corresponds to different depths. Then multi-plane se-
mantics of category k can also be calculated by szk =
s3dk (Kcam[u, v, z]). And the 3D offsets of category k can
be calculated by △czk = △cz ∗ szk.

Meanwhile, we can get 2D instance centers c2d from 2D
center map I2dc , and then the instance centers of category
k, c2dk , can be indexed from c2d. Finally, 2D instance cen-
ters and 3D offsets of category k are combined to group 3D
instance at multi-plane:
izk(u, v) = argminkj∥c

2d
kj
−(u+△czk(u, v)u, v+△czk(u, v)v)∥,

(5)
where c2dkj

∈ R2 is the jth 2D instance center of category k.
izk is the predicted instance id at depth z. The 3D instance
id of category k at location (u, v, z) can be calculated by
i3dk (u, v, z) = izk(u, v)(K

−1
cam[u, v, z]).

Combining the stuff from 3D semantics, and the 3D in-
stances grouped by our instance grouping block, we finally
predict the panoptic 3D scene reconstruction results from a
single image.

3.4. Loss for BUOL

The total loss for the proposed BUOL contains 2D loss
and 3D loss. The 2D priors training loss is defined as fol-
lows:

L2d = w2d
p L2d

p + w2d
d L2d

d + wmp
o Lmp

o (6)

where weights w2d
p ,w2d

d and wmp
o are used to balance the

objective. The panoptic segmentation loss is

L2d
p = w2d

s CE(s2d, ŝ2d) + w2d
c L1(I2dc , Î2dc ) (7)

which is composed of semantic map cross entropy loss
and instance center regression L1-norm loss. The ground
truth center map Î2dc are defined as 2D Gaussian-encoded
heatmaps centered in instance mass, and the ground truth
of 2D instances and 2D semantics are rendered by 3D in-
stances and 3D semantics, respectively. The depth estima-
tion loss L2d

d follows [18] to penalize the difference between
the estimated depth d and the ground truth depth d̂ which is
generated by the 3D geometry. The multi-plane occupancy
loss Lmp

o is defined as:

Lmp
o = BCE(omp, ômp), (8)

where the ômp is obtained by sampling the 3D ground
truth occupancy ô3d at multi-plane, i.e. ômp =
ô3d(Kcam[u, v, z]).

The 3D loss of BUOL is composed of 3D occupancy
loss, 3D semantic loss, and 3D offset loss, defined as fol-
lows:

L3d = w3d
o L3d

o (o3d, ô3d) + w3d
s CE(s3d

′
, ŝ3d)

+w3d
△cL1(△c3d

′
,△ĉ3d)

(9)

where w3d
o , w3d

s , w3d
△c are weighting coefficients. The 3D

occupancy loss L3d
o is composed of a binary classification

loss BCE and a regression loss L1, and the details can be
referred to supplemental materials. The ground truth △ĉ3d

for each voxel is offset between its 2D instance center and
location in its nearest depth plane, which can be generated
by 3D ground truth instances.

To stabilize the training, we first train 2D model Fθ with
L2d. After converging, the 3D loss L3d is applied to train
3D model Gϕ.

4. Experiments
In this section, we conduct experiments on the pre-

processed synthetic dataset 3D-Front [10] and real-world
dataset Matterport3D [2]. We compare our method with
state-of-the-art panoptic 3D scene reconstruction methods
and provide an ablation study to highlight the effectiveness
of each component.

4.1. Experiment Setup

Datasets. 3D-Front [10] is a synthetic indoor dataset with
18,797 room scenes and 11 categories (9 for things, and 2
for stuff) in 6,801 mid-size apartments. To generate data
for panoptic 3D scene reconstruction, we follow Dahnert et
al. [6], and first randomly sample rooms and camera loca-
tions, then use BlenderProc [9] to render RGB images along
with depth, semantic map, and instance mask and finally
use signed distance function (SDF) to get 3D ground truth.
It contains 96,252/11,204/26,933 train/val/test images cor-
responding to 4,389/489/1,206 scenes, respectively.
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Image BU-3D BU TD-PD BUOL GT

Figure 6. Qualitative comparisons against competing methods on 3D-Front. The BUOL and BU denote our Bottom-Up framework w/
and w/o our Occupancy-aware lifting, respectively, and BU-3D denotes the bottom-up framework with instance grouping by 3D centers,
and the TD-PD denotes Dahnert et al. [6]∗+PD. And GT is the ground truth.

Method PRQ RSQ RRQ PRQth RSQth RRQth PRQst RSQst RRQst

SSCNet [31]+IC 11.50 32.90 33.00 8.03 32.07 24.69 26.95 36.75 70.25
Mesh R-CNN [11] - - - 20.90 38.00 53.20 - - -
Total3D [28] 15.08 36.63 40.15 13.77 34.88 38.89 20.94 44.49 45.85
Dahnert et al. [6]∗ 42.20 55.59 73.19 36.51 51.47 69.21 67.78 74.15 91.09
Dahnert et al. [6]∗+PD 47.46 60.48 76.09 42.25 56.90 72.45 70.94 76.59 92.45
Our BUOL 54.01 63.81 82.99 49.73 60.57 80.67 73.30 78.37 93.42

Table 1. Comparison to the state-of-the-art on 3D-Front. “*” denotes the trained model with the official codebase released by the authors.

Matterport3D [2] is a real-world indoor dataset that
contains 90 building-scale scenes. For panoptic 3D
scene reconstruction, Matterport3D is pre-processed in the
same way as 3D-Front to generate the ground truth of
34,737/4,898/8,631 train/val/test images corresponding to
61/11/18 scenes. It contains the same 11 categories as 3D-
Front and another stuff category “ceiling”.

Metrics. We adopt panoptic reconstruction quality PRQ,
reconstructed segmentation quality RSQ, and recon-
structed recognition quality RRQ [6] as our metrics. In ad-
dition, PRQth and PRQst denote PRQ of things and stuff,
respectively. PRQ is calculated by the average measure
across C categories, with PRQk for category k defined as:

PRQk = RSQk ∗RRQk

=

∑
(i,̂i)∈TPk

IoU(i, î)

|TPk|
∗ 2|TPk|
2|TPk|+ |FPk|+ |FNk|

=

∑
(i,̂i)∈TPk

2IoU(i, î)

2|TPk|+ |FPk|+ |FNk|
(10)

where TPk, FPk, and FNk denote true positives, false pos-

itives, and false negatives for category k, respectively, and
intersection over union (IoU ) is the metric between pre-
dicted mask i and ground truth mask î. The predicted seg-
ments are matched with ground truth if the voxelized IoU
is no less than 25%. Following Dahnert et al. [6], we set the
evaluate resolution for panoptic 3D scene reconstruction to
3cm for synthetic data and 6cm for real-world data.

Implementation. We adopt ResNet-50 [15] as our shared
2D backbone of 2D Panoptic-Deeplab [5], and use three
branches to learn rich 2D priors. One decoder with the se-
mantic head is used for semantic segmentation, and one de-
coder followed by the center head is utilized for instance
center estimation. Another decoder with a depth head and
multi-plane occupancy head is designed for geometry pri-
ors. For the 3D model, we convert 2D ResNet-18 [15] and
ASPP-decoder [3] to 3D models as our 3D encoder-decoder,
and design 3D occupancy head, 3D semantic head, and 3D
offset head for panoptic 3D scene reconstruction. For the
two datasets, we apply Adam [21] solver with the initial
learning rate 1e-4 combined with polynomial learning rate
decay scheduler for 2D learning, and the initial learning rate
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Image TD-PD BUOL GT

Figure 7. Qualitative comparisons against competing methods on Matterport3D. The BUOL denotes our Bottom-Up framework with
Occupancy-aware lifting, and the “TD-PD” denotes Dahnert et al. [6]∗+PD. And GT is the ground truth.

Method PRQ RSQ RRQ PRQth RSQth RRQth PRQst RSQst RRQst

SSCNet [31]+IC 0.49 21.68 1.50 0.19 22.75 0.59 1.43 20.43 4.43
Mesh R-CNN [11] - - - 6.29 31.12 15.60 - - -
Dahnert et al. [6] 7.01 28.57 17.65 6.34 26.06 16.06 10.78 40.03 26.77
Dahnert et al. [6]∗+PD 10.08 36.04 22.53 7.33 33.23 16.68 18.33 44.47 40.07
Our BUOL 14.47 45.71 30.91 10.97 45.30 23.81 24.94 46.93 52.22

Table 2. Comparison to the state-of-the-art on Matterport3D. “*” denotes the trained model with the official codebase released by the
authors.

5e-4 decayed at 32,000th and 38,000th iteration. During
training, we first train the 2D model for 50,000 iterations
with batch size 32, then freeze the parameters and train the
3D model for 40,000 iterations with batch size 8. All the
experiments are conducted with 4 Tesla V100 GPUs. In ad-
dition, we initialize the model with the pre-trained ResNet-
50 for 3D-Front, and the pre-trained model on 3D-Front for
Matterport3D which is the same as Dahnert et al. [6].

4.2. Comparison with State-of-the-art Methods

3D-Front. For synthetic dataset, we compare BUOL
with the state-of-the-art method [6] and other main-
stream [11, 28, 31]. The results are shown in Table 1. Our
proposed BUOL and Dahnert et al. [6] both outperform
other methods a lot. However, with the proposed bottom-
up framework and occupancy-aware lifting, our BUOL out-
performs the state-of-the-art method by a large margin,
+11.81%. For a fair comparison, we replace the 2D segmen-
tation in Dahnert et al. [6] with the same 2D model as ours,
denoted as Dahnert et al. [6]+PD (also denoted as TD-PD).
Comparing to this method in Table 1, our BUOL also shows
an advantage of +6.55% PRQ. The qualitative comparison
results in Figure. 6 also show our improvement. In the sec-
ond row, our BUOL reconstructs the bed better than TD-PD

with occupancy-aware lifting. In the last row, our BUOL
can recognize all the chairs while TD-PD obtains the sticky
chair. In the first rows, both BU and OL in BUOL achieve
the better Panoptic 3D Scene Reconstruction results.

Matterport3D. We also compare BUOL with some
methods [6, 11, 31] on real-world dataset. The results are
shown in Table 2. Our BUOL outperforms the state-of-
the-art Dahnert et al. [6] by +7.46% PRQ with the pro-
posed bottom-up framework and occupancy-aware lifting.
For fairness, we also compare BUOL with Dahnert et al.
[6]+PD, and our method improves the PRQ by +4.39%.
Figure. 7 provides the qualitative results. In the first row,
our BUOL can segment all instances corresponding to
ground truth, which contains a chair, a table and two cabi-
nets, and TD-PD can only segment the chair. In the second
row, our BUOL reconstruct the wall and segment curtains
batter than TD-PD. In addition, although the highest per-
formance, the PRQ of the Matterport3D is still much lower
than that of the 3D-Front due to its noisy ground truth.

4.3. Ablation Study

In this section, we verify the effectiveness of our BUOL
for panoptic 3D scene reconstruction. As shown in Ta-
ble 3, for a fair comparison, TD-PD is the state-of-the-art
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Method PRQ RSQ RRQ PRQth PRQst

TD-PD 47.46 60.48 76.09 42.25 70.94
BU-3D 46.73 59.17 76.68 41.77 69.07
BU 50.76 60.66 81.94 46.80 68.55
BUOL 54.01 63.81 82.99 49.73 73.30

Table 3. Ablation study of the proposed method vs baselines.

top-down method [6] with the same 2D Panoptic-Deeplab
as ours, which is our baseline method. BU denotes our
proposed bottom-up framework. Different from BU, 2D
Panoptic-Deeplab in TD-PD is used to predict instance
masks instead of semantics and instance centers. BU-3D
denotes the bottom-up framework which groups 3D in-
stances by the predicted 3D centers instead of 2D centers.
Top-down vs. Bottom-up. TD-PD and BU adopt the same
2D model. The former lifts the instance masks to the 3D
features, while the latter lifts the semantic map and groups
3D instances with 2D instance centers. Comparing the two
settings in Table 3, BU significantly boosts the performance
of RRQ by +5.85% which proves our bottom-up frame-
work with proposed 3D instance grouping achieves more
accurate 3D instance mask than direct instance mask lifting.
The drop of PRQst for stuff may come from the lower ca-
pability of used 3D ResNet + ASPP, compared with other
methods equipped with stronger but memory-consuming
3D UNet. Overall, the proposed bottom-up framework
achieves +3.3% PRQ better than the top-down method. Fig-
ure. 6 provides qualitative comparison of BU and TD-PD.
The bottom-up framework performs better than the top-
down method. For example, in the last row of Figure. 6,
TD-PD fails to recognize the four chairs, while BU recon-
structs and segments better.
2D instance center vs. 3D instance center. We also com-
pare the 2D instance center with the 3D instance center for
3D instance grouping. To estimate the 3D instance cen-
ter, the center head is added to the 3D refinement model,
called BU-3D. Quantitative comparing BU-3D and BU in
Table 3, we can find the PRQst for stuff is similar, but when
grouping 3D instances with the 2D instance centers, the
PRQth for thing has improved by 5.03%, which proves 3D
instance grouping with 2D instance center performing bet-
ter than that with the 3D instance center. We conjecture that
the error introduced by the estimated depth dimension may
impact the position of the 3D instance center. Meanwhile,
grouping in multi-plane is easier for 3D offset learning via
reducing one dimension to be predicted. Qualitative com-
parison BU with BU-3D is shown in Figure. 6, due to inac-
curate 3D instance centers, the result of BU-3D in the last
row misclassifies a chair as a part of the table, and the result
in the first row does not recognize one chair.
Voxel-reconstruction ambiguity. We propose occupancy-
aware lifting to provide the 3D features in full 3D space to

Inst/Sem Assignment PRQ RSQ RRQ

Instance random 47.46 60.48 76.09
category 48.92 61.20 77.48

Semantics category 50.76 60.66 81.94

Table 4. Comparison of different assignments.

tackle voxel-reconstruction ambiguity. Quantitative com-
paring BUOL with BU in Table 3, our proposed occupancy-
aware lifting improves PRQth by 2.93% for thing and PRQst
by 4.75% for stuff, which verifies the effectiveness of multi-
plane occupancy predicted by the 2D model. It facilitates
the 3D model to predict more accurate occupancy of the
3D scene. In addition, with our occupancy-aware lifting,
PRQst for stuff of the 3D model with ResNet-18 + 3D ASPP
outperforms the model TD-PD with 3D U-Net by 2.36%
PRQ. As shown in Figure. 6, with occupancy-aware lifting,
BUOL reconstructs 3D instances better than others. For ex-
ample, in the second row of Figure. 6, BUOL can recon-
struct the occluded region of the bed, while other settings
fail to tackle this problem.
Instance-channel ambiguity. To analyze the instance-
channel ambiguity in the top-down method, we conduct ex-
periments based on TD-PD, as shown in Table 4. When
lifting instance masks with random assignment, the model
achieves 47.76% PRQ. However, fitting random instance-
channel assignment makes the model pay less attention to
scene understanding. To reduce the randomness, we try to
apply instance-channel with sorted categories, which im-
proves PRQ to 48.92%. Because an arbitrary number of
instances with different categories may exist in an image,
resulting in the randomness of instance number even for
the same category. To further reduce the randomness, our
proposed bottom-up method, also called BU, lifts seman-
tics with deterministic assignment, and gets 50.76% PRQ,
which proves that the pressure of the 3D model can be re-
duced with the reduction in the randomness of instance-
channel assignment and the bottom-up method can address
the instance-channel ambiguity.

5. Conclusion

In this paper, we propose a bottom-up framework with
occupancy-aware lifting (BUOL) for panoptic 3D scene re-
construction. Our bottom-up framework lifts 2D seman-
tics instead of 2D instances to 3D to avoid instance-channel
ambiguity, and the proposed occupancy-aware lifting lever-
ages multi-plane occupancy predicted by 2D model to avoid
voxel-reconstruction ambiguity. BUOL outperforms state-
of-art approaches with top-down framework for both 3D re-
construction and 3D perception in a series of experiments.
We believe that BUOL will drive the area of panoptic 3D
scene reconstruction from a single image forward.
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