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Abstract

We present Cart, a new approach towards articulated-
object manipulations by human commands. Beyond the
existing work that focuses on inferring articulation struc-
tures, we further support manipulating articulated shapes
to align them subject to simple command templates. The
key of Cart is to utilize the prediction of object structures
to connect visual observations with user commands for
effective manipulations. It is achieved by encoding com-
mand messages for motion prediction and a test-time adap-
tation to adjust the amount of movement from only com-
mand supervision. For a rich variety of object categories,
Cart can accurately manipulate object shapes and outper-
form the state-of-the-art approaches in understanding the
inherent articulation structures. Also, it can well general-
ize to unseen object categories and real-world objects. We
hope Cart could open new directions for instructing ma-
chines to operate articulated objects. Code is available at
https://github.com/dvlab-research/Cart.

1. Introduction

Articulated objects such as doors, cabinets, and laptops
are ubiquitous in our daily life. Enabling machines to manip-
ulate them under human instructions will pave the way for
many applications, such as robotic work, human-computer
interaction, and augmented reality. Recent research majorly
focuses on understanding the structural properties of articu-
lated objects, e.g., discovering the movable parts [51,61] and
estimating the articulations between connected parts [19,28].
Despite their success, the way from understanding objects to
user-controllable manipulation remains challenging.

First, the model should be able to interpret the user in-
struction and determine the corresponding object part for
performing the manipulation action. To do so requires un-
derstanding not only the object’s articulated structure but
also the operational properties (see Fig. 1). If a part is
movable, the action type and current state should be rec-
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Figure 1. Given a single point cloud of an articulated object and
a user command, Cart accordingly manipulates the object shape,
based on understanding object structure and connecting the com-
mand to predict the motion parameters. The command gives the
desired state and we use it to check if the manipulation succeeds.

ognized ahead. Second, to achieve successful manipulation,
the model should know the target configuration or state of
the object so as to determine the associated manipulation
parameters, such as the rotation orientation and angle, for
achieving the user instruction (see Fig. 1).

In this work, we study the above challenges by formu-
lating a new task called command-driven articulated object
manipulation. Given a visual observation of an articulated
object and a simple user command that specifies how to
manipulate the object, our objective is to manipulate the
associated object part to reach the target articulation state
given by the command. Specifically, this task combines the
needs of understanding the object structure (which part to
move), recognizing the associated articulation property (how
it moves), and predicting the amount of motion subject to the
user command (how much to move). To this end, we propose
a novel learning-based framework called Command-driven
articulation modeling, or Cart for short; see Fig. 1.

In particular, Cart is powerful in both structure under-
standing and shape manipulation for articulated objects. The
former acts as a critical building block, where we jointly
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segment individual object parts, predict their motion joints,
and model the current articulation state, given only a single
visual observation. Based on the structural prediction, we
further connect the user commands with the inherent object
geometry for effective object manipulation.

In our approach, we choose structured templates to create
user-friendly commands. This design allows users to select
a single point on object’s point cloud to identify the part
to operate and specify its desired target state. To associate
the user-selected point to an intact object part, we lever-
age model segmentation prediction to locate the matched
one. Subsequently, we transform the target states to a learn-
able embedding and fuse it with the visual features in a
part-aware manner. Since the fused features encapsulate
twofold information, it can be further applied to estimate the
command-related motion parameters.

After the manipulation, to ensure the target object state
satisfies the user command, we formulate the novel Test-
time State Adaptation (TTSA) algorithm for state regular-
ization. It automatically generates the state label from the
command input and uses it to optimize the movement param-
eters, thereby adjusting the final object status. Essentially,
it is self-supervised and works without requiring ground-
truth supervision. With little additional computation cost,
TTSA is able to robustly improve the quality of the object
manipulation, especially for unseen object categories.

We extensively evaluate Cart on two widely-used
datasets [51, 57] of articulated objects. Compared to the
recent work [19, 28, 61], Cart yields superior predictive per-
formance on both static object structure and dynamic motion
parameters used for manipulation. We specifically show that
each previous method can only partially achieve our task,
and their simple augmentations to fit our setting underper-
form as well. Then, we apply our method to real-world
scenarios. We provide examples of manipulating real articu-
lated objects’ shape subject to the user command. Further,
we spawn our predictions in a virtual environment to sim-
ulate robotic manipulations. Our overall contributions are
listed as follows.

• We propose a command-driven shape manipulation task
for articulated objects. It enables a simple interaction
way for users to control the manipulation procedure.

• We present an integrated framework Cart towards this
systematic task. It succeeds by understanding the ar-
ticulated object structure and further connecting user
commands to predict movement to the desired state.

• Cart works on both articulation understanding and ob-
ject manipulation on synthetic and real-world data.

2. Related Work
Analyzing articulated objects. Articulated man-made ob-
jects have diverse attributes to explore. Facilitated by the

many publicly available datasets [1, 30, 33, 37, 51, 57, 61, 62]
and physical simulators [8, 27, 43, 45, 57], research has made
great progresses in estimating their 6D poses [28, 50], dis-
covering part-level structures [19, 28, 51, 61, 62], recogniz-
ing the articulation relation and joint parameters between
parts [13, 15, 16, 19, 22, 31, 38, 41, 47, 51, 58, 61, 64], and pre-
dicting manipulation in a robotic system [9,10,34,52,54,59].

For vision-based research, a long-standing goal is to allow
the machine to interact with articulated objects. Ditto [19]
facilitates the virtual interaction by creating an operational
twin of physical object in the virtual world. It takes a pair of
point clouds as input for estimating the articulated structure
of CAD models. Unlike Ditto, we take only a single visual
observation plus a simple user command as our input. Also,
our target is to control the manipulation of articulated objects
by user command, which has great potential for supporting
human-instructed robotic object manipulation. There also
exists other research [36, 53] on object manipulation. They
are based on implicit models, while we explicitly model the
articulation and thus support physical operations.

Sensory observation for articulation modeling. To per-
ceive articulated objects, previous work tries different visual
inputs, including generating 3D models from multi-view
RGB(-D) images [10, 11, 14–16, 49, 53, 64, 66] and process-
ing 3D point clouds [1,13,19,28,31,34,38,46,47,51,61,62].

Since point clouds provide rich geometry informa-
tion, [16, 22, 51, 61, 64] take a single point cloud as input to
support part articulation prediction. Another line of work
tends to utilize sequential observations [2, 15, 19, 32, 41, 44,
48,60,62], as changing the articulation states reveals explicit
motion patterns. Yet, collecting sequential data for percep-
tion needs active interactions either from human-hand-tuned
actions [19] or policy-based robotic manipulation [12,21,38].
In this work, we take only a single point cloud as input, yet
achieving decent accuracy on articulation modeling. We
even show comparable performance with Ditto [19], which
takes a point cloud pair as input. Such a result manifests that
our approach can mitigate the need for tedious paired data
collection and point pair registration.

Parts segmentation of articulated objects. Parts segmen-
tation [6, 7, 20, 24, 35, 63, 65] is crucial for understanding the
structures of articulated objects, particularly for supporting
part-level manipulation. This task is distinct from classic
3D semantic segmentation [17, 25, 26, 55, 56, 67] or 3D ob-
ject detection [3, 4, 29] and requires separating different part
entities of the same object category at the mask level. The
work of [13, 58] directly applies segmentation ground truths
to predict articulation attributes.

Recent methods [19, 28, 51, 61] turn to jointly separate
the articulated parts and infer the mobility attributes. Several
solutions [19, 28] simplify the segmentation issue by assum-
ing a fixed number of object parts. To allow unknown parts
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k=0 k=1 k=K-1…
Figure 2. Object shapes under diverse state nodes {T k}K−1

k=0 . A
larger k denotes a higher opening extent of articulation joints. We
show examples of the prismatic (top) and revolute (bottom) joints.

structure, RPM-Net [61] and Shape2Motion [51] apply point-
wise motion prediction to separate object parts. Compared
with these methods [51, 61], we formulate a segment-then-
predict paradigm that first segments the individual object
parts and then leverages this prior for producing more accu-
rate predictions on the articulated structure.

3. Task Definition

We make a system to manipulate articulated objects given
(i) a single 3D point cloud of unknown articulated struc-
ture and (ii) a manipulation command patternized as “Move
<part> to <target state>”, where <> is user-given. Users
can pick one or more points in the point cloud to indicate
the <part> to be manipulated, as well as the desired <target
state> of this part after manipulation; see, e.g., Fig. 1.

While user commands can naturally be given in natural
human languages, doing so may complicate this task. For
articulated objects, see, e.g., the small cabinet shown in
Fig. 2, the motion space of its movable parts should range
from “fully-closed” to “fully-open”. Hence, we indicate
the <target state> by a state node T k, where k is an inte-
ger ranged from 0 to K-1 for various opening extents of
the part’s articulated joint. As Fig. 2 shows, T 0 denotes
the fully-closed state, TK−1 denotes the fully-open state,
whereas others are uniformly-sampled intermediate states.
By then, language instructions can be translated into these
states through a natural language processing—which is not
the focus of this paper.

Our task is formulated as follows. From a point cloud
observation P = {pi ∈ R3}Ni=1 of an unknown articulated
object composed of an arbitrary number of movable parts
L = {lj}Mj=1, we first predict the articulation parameters
[{τj , ψj}]Mj=1 for all the object parts, where N is the point
number and M is the movable part number. Given a user
command that provides a 3D point (suppose it belongs to
the jth part) and the corresponding state node (e.g., T k

j ), we
infer the motion parameter φj to make the jth part move
from its current articulation state to the target. Here, τj
is the binary joint type (1D prismatic or 1D revolute joint
following [19, 28]) and ψj is the joint parameter.

For prismatic joints, the joint parameter ψ includes the
translation direction up ∈ R3 and the motion parameter φ
is a signed (±) translation distance along up. For revolute
joints, ψ consists of the rotational axis ur ∈ R3 and a pivot
point vr ∈ R3 on the axis, and φ is a signed (±) rotation
angle, clockwise or counterclockwise about rotation axis ur.

4. Our Method
We present Cart to achieve articulated object understand-

ing and command-controllable manipulation. It consists
of two neural networks, namely Seg-Net and Art-Net. As
shown in Fig. 3, Seg-Net is pre-trained first for part segmen-
tation and articulation state modeling. Then, Art-Net makes
use of these predictions for predicting articulated models.

Given a user command, Art-Net applies the segmentation
results to localize the object part for conducting manipu-
lation and merge the command message into a visual em-
bedding. As the fused part feature includes both geometry
characteristics and command meaning, we use it to reason ar-
ticulation patterns and command-related motion parameters,
which together support physical shape manipulations. Then,
we propose a Test-time State Adaptation algorithm to reg-
ularize the changed articulation states. It employs the state
prediction model of Seg-Net to optimize the motion parame-
ters from command supervision. By iterative optimization,
TTSA robustly achieves high manipulation performance.

4.1. Seg-Net

Seg-Net segments objects into multiple rigid parts and
predicts per-part articulation states, as shown in Fig. 3a.
Given a point cloud P = {pi}Ni=1 of an articulated object
with unknown articulation states, we extract point-wise fea-
ture by a Sparse 3D U-Net [5] then process the feature with
three MLP-based branches.

The first branch is to predict per-point class ĉi ∈ {0, 1}
of either movable parts or static one. The second branch pre-
dicts per-point state value ŝi ∈ R only for points of movable
parts. To mitigate object scale, ŝi is defined as the normal-
ized pose (with angle or translation distance) compared to a
pre-defined rest state. For example, the fully-closed state is 0
and the fully-open one is 1. The third branch produces a col-
lection of per-point offset vectors ôi ∈ R3. We employ them
to shift points of an object part close to the part centroid, so
as to separate points from different parts via a clustering.

During pre-training, Seg-Net predictions are jointly opti-
mized with a combination of the loss function of

Lseg =
1

N

N∑
i

(Lc(ĉi, ci) + Ls(ŝi, si) + Lo(ôi, oi)). (1)

where ci, si and oi are ground-truth values, and oi is an
offset vector from the point coordinate pi to the associated
part’s centroid coordinate. Lc is the standard cross-entropy
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Figure 3. Overview of Cart framework. It is formed by Seg-Net and Art-Net. (a) First, we pre-train Seg-Net to segment each movable object
part and predict its articulation state. (b) Taking as input a point cloud shape and a command, Art-Net employs a part-aware encoding module
(see Fig. 4a) to localize which part(s) to manipulate and obtain the corresponding part(s) feature. Then, we further predict joint parameter ψ
and motion parameter φ, thus enabling a concrete manipulation operation. The Test-time State Adaptation (see Fig. 4b) regularizes the
object status after manipulation. The pre-trained Seg-Net helps the part-aware encoding and Test-time State Adaptation.
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Figure 4. (a) We first localize the jth part to manipulate by match-
ing the Seg-Net segmentation results with the point coordinate
offered by the command. Then, we jointly encode its visual feature
fj and command feature hj . (b) After manipulation, we predict the
articulation state of object (from Seg-Net) and compare it with the
target one (from command). The consistency loss, in a backward
manner, optimizes the predicted value of motion parameter ψ. For
(a) and (b), the network parameters of Seg-Net are fixed.

loss, Ls is the L1 distance loss, and Lo imposes constraints
on both the point offset L1 distance and direction. It is
formulated as

Lo(ôi, oi) = ||oi − ôi||+ (− oi
||oi||2

· ôi
||ôi||2

). (2)

When training Art-Net, we make all parameters of Seg-
Net not updated for feature inference. Specifically, the points
of movable parts are first selected by binary classification.
Then, they are shifted by offset vectors to form a more com-
pact 3D distribution {(pi + ôi)} where the intra-part points
are spatially closer. We adopt a breadth-first search [18] to
find neighboring points within a sphere of radius r and group
these points into a part cluster. The predicted articulation
state of each part is a voting result of per-point prediction.
Seg-Net output is utilized for the following process.

4.2. Art-Net

The architecture of Art-Net is shown in Fig. 3b. The input
to Art-Net is a single point cloud P with a user command.
The objective is to manipulate part(s) to the target articula-
tion states specified in the command. For the sake of clarity,

we take single-part manipulation as an example. Note that
multiple parts can be manipulated in parallel.

Part-aware encoding. This module finds the part to ma-
nipulate. As shown in Fig. 4a, as users provide the point
coordinate inside an object part, we use the segmentation
results of Seg-Net to localize the intact part matched with
this point, denoted as l̂j . Then, we represent the target state
T k
j from the command by a K-dimensional one-hot code.

To make it learnable, this code will be forwarded by an MLP
layer and propagated in part-level to form the command
feature hj ∈ RNj×d. Nj is the point number of part l̂j .

Meanwhile, we employ a PointNet++ [40] network to
extract per-point geometrical features, where the point fea-
ture of part l̂j is denoted as fj ∈ RNj×d. hj and fj are
concatenated to acquire the fused feature f j ∈ RNj×2d.

Articulation model estimation. We use f j to estimate the
associated articulation model, i.e., joint type τ , joint param-
eter ψ, and command-related motion parameter φ. Points
of f j are from the same object part, which share the con-
sistent articulation attributes and are naturally suitable for
predicting global articulation joint. Compared with alterna-
tive strategies, this module yields superior performance as
validated in Sec. 5.2.

We represent the parameters to be predicted in a per-point
representation, so as to enable robust estimation by voting
during the inference. Specifically, we form the joint type as
τj ∈ {0, 1}Nj , the direction of translation and rotation axis
as upj , u

r
j ∈ RNj×3, and the motion parameter as φj ∈ RNj .

To estimate the position of revolute joints ur, we follow
the general paradigm of [19, 28] to alternatively predict the
projection of each point into the related axis. Thus, vrj is
represented as [zrj ∈ RNj×3, drj ∈ RNj ], where zr stands
for the unit vector for the projection direction and dr is the
projection distance scalar. We decode the above parameters
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by different one-layer MLP heads as

τj = θtype(f j) and φj = θmot(f j).

upj = θppara(f j) and [zrj , d
r
j ] = θrpara(f j).

(3)

Note that parameters of prismatic and revolute joints are
learned individually due to their different motion properties.

Training objective. To supervise the joint type prediction,
we employ a binary cross entropy loss Ltype. To supervise
the motion parameter estimation, we use the L1 distance loss
Lmot to minimize the difference between the ground-truth
and predicted ones. For parameters of the prismatic joint, we
use a cosine distance loss, defined as Lp

para=arccos(ûpj · u
p
j ),

to restrict the translation axis direction. Since the parameters
of revolute joints are more complicated, we jointly penalize
the direction and position difference between the predicted
revolute joints and ground-truth with loss

Lr
para = Lr

ori(û
r
j , u

r
j) + Lr

pos(ẑ
r
j , d̂

r
j , z

r
j , d

r
j) + Lr

rot, (4)

where Lr
ori =arccos(ûrj · urj) is the loss for axis direction.

Lr
pos is the addition of three components: the direction loss

arccos(ẑrj ·zrj ) for the projection vector, the L1 loss ||d̂rj−drj ||
for the projection distance, and a point-axis distance loss.

For the last one, we shift the original point coordinate of
part l̂j towards the rotation axis by adding (d̂rj · ẑrj ). Then,
we apply the L1 loss on the distance between these shifted
points and ground-truth revolute axis. Lr

rot is an additional
loss following work of [15, 19] to confirm the orthogonality
of rotation matrix. It is formulated as Lr

rot = ||I3,3 − R̂j ·
Rj ||, where R̂j and Rj are the predicted and ground-truth
rotation matrices, respectively. They are computed from the
axis direction and rotation angle based on the Rodirgues’s
Rotation Formula [42]. By taking into consideration all the
articulation constraints, we formulate the loss as

Lart = Ltype + Lmot + IrLr
para + IpLp

para, (5)

where Ip and Ir are binary indicators that are dynamically
activated depending on the ground-truth joint type.

4.3. Inference

Basic inference. At test time, Seg-Net first clusters the
object points into individual movable parts. Art-Net receives
the command and localizes the part(s) to manipulate by part-
aware encoding module. It uses the part-level point feature to
vote for the joint type τ , joint parameters ψ, and command-
related motion parameter φ. As φ is a signed value including
the movement amplitude and direction, we refer to ψ and φ
to translate or rotate the selected part(s) accordingly.

Test-time State Adaptation inference. We observe that
the predicted motion parameter φ may not be accurate, i.e.,
the object state after manipulation do not satisfy the user

command. We design a Test-time State Adaptation (TTSA)
algorithm to self-refine the motion parameters at test time.

As shown in Fig. 4b, after operating point cloud P to P ′,
we send P ′ to Seg-Net again to estimate the actual per-part
state ŝ′. For jth part, we compare ŝ′j with the desired state
node {T k

j }. {T k
j } can be transformed to a normalized state

value s′j = k/(K − 1) to allow the quantitative comparison
with ŝ′j . Then, we use their difference as the loss to update
the motion parameter decoder θmot (defined in Eq. (3)) to
correct the motion predictions:

θ̂mot = argmin
θmot

1

M ′

M ′∑
j=1

||ŝj − sj ||, (6)

where M ′ is the number of manipulated object parts. We use
the new θ̂mot to re-predict the motion parameter φ and up-
date part state ŝ′j . We perform iterative optimization several
times to make the final state close to the target goal. Thanks
to the efficiency of gradient back-propagation, it introduces
minimal additional computation costs. Experiments in Sec-
tions 5.2 and 5.3 show that TTSA effectively reduces final
state errors, especially for data under distribution shift.

5. Experiments
Datasets. We employ two widely-used datasets of articu-
lated objects, Shape2Motion [51] and PartNet-Mobility [57].
We evaluate on nine common object categories from two
datasets, with each category comprising 30∼100 instances.
For each object category, we generate 10K, 1K, and 1K sam-
ples for training, validation, and testing, respectively. Each
sample consists of a command and a 3D point cloud of the
object. Each object contains one or more movable rigid parts
without prior knowledge on structure and articulation state.
To generate point clouds with various articulation states,
we follow Ditto [19] to import objects into the PyBullet1

simulator for modifying their articulation states.

Setting on state nodes. In main experiments, we setK=3 by
default. For each articulated part, T 0 is the fully-closed state,
T 1 is the half-open one, and T 2 is for fully-open notation.
For prismatic joints, the fully-open state means the upper
limit of part motion range defined in the dataset, and for
revolute joints, we uniformly set the fully-open status to 90◦.

Evaluation metrics. We adopt two kinds of metrics. The
static ones measure the object-structure-understanding per-
formance, and the dynamic metrics measure the command-
related performance. The former includes the widely-used
part segmentation mAP and the error of the predicted joint
type and joint parameter, i.e., τ and ψ in Sec. 3. The lat-
ter is the error of predicted motion parameter according to
the command, i.e., φ in Sec. 3. More dataset statistics and
training details are given in the supplementary material.

1https://pybullet.org/wordpress/
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Revolute Joint Prismatic Joint

Input Method Avg
cabinet oven laptop eyeglass micro fridge stapler table cabinet storage table

(Static) Errors of Axis Direction ↓
RPM-Net [61] 8.37◦ 4.57◦ 3.45◦ 8.27◦ 15.68◦ 4.91◦ 4.11◦ 17.57◦ 13.36◦ 6.32◦ 6.40◦ 7.38◦

ANCSH [28] 3.70◦ - 2.10◦ 1.94◦ 3.86◦ 1.70◦ - 7.53◦ - - 5.08◦ -
Associated Points 2.47◦ 2.63◦ 1.42◦ 1.95◦ 1.77◦ 1.33◦ 0.95◦ 2.47◦ 0.94◦ 4.21◦ 4.02◦ 5.45◦Single

Cart (Ours) 1.36◦ 0.80◦ 0.72◦ 0.94◦ 1.16◦ 0.84◦ 0.66◦ 1.05◦ 0.89◦ 2.57◦ 2.75◦ 2.31◦
Pair Ditto [19] 1.43◦ 0.92◦ 0.70◦ 1.00◦ 1.25◦ 0.87◦ 0.80◦ 1.10◦ 0.94◦ 2.19◦ 3.16◦ 2.84◦

(Static) Errors of Axis Position ↓
RPM-Net [61] 0.12 0.12 0.14 0.08 0.14 0.10 0.10 0.21 0.09 - - -
ANCSH [28] 0.06 - 0.08 0.05 0.04 0.04 - 0.08 - - - -
Associated Points 0.05 0.06 0.03 0.04 0.04 0.04 0.06 0.05 0.07 - - -Single

Cart (Ours) 0.03 0.04 0.02 0.02 0.03 0.03 0.04 0.02 0.04 - - -
Pair Ditto [19] 0.03 0.04 0.02 0.03 0.04 0.02 0.04 0.03 0.03 - - -

(Dynamic) Errors of Motion Parameter ↓
ANCSH* [28] 9.92◦ (0.21) - 5.98◦ 7.78◦ 10.72◦ 8.77◦ - 16.36◦ - - 0.21 -
State Difference 9.03◦ (0.11) 14.72◦ 6.42◦ 7.31◦ 6.53◦ 4.84◦ 8.83◦ 13.21◦ 10.40◦ 0.12 0.11 0.10
Cart w/o TTSA 6.02◦ (0.07) 8.83◦ 5.29◦ 6.46◦ 5.21◦ 3.49◦ 4.11◦ 7.56◦ 7.25◦ 0.08 0.07 0.06Single

Cart (Ours) 3.34◦ (0.02) 4.15◦ 2.13◦ 2.42◦ 4.57◦ 2.19◦ 3.82◦ 4.32◦ 3.13◦ 0.03 0.03 0.02
Pair Ditto* [19] 5.19◦ (0.04) 5.73◦ 2.58◦ 2.91◦ 5.15◦ 4.50◦ 4.03◦ 10.25◦ 6.43◦ 0.05 0.05 0.03

Table 1. Quantitative results of articulation estimation including both static and dynamic parameters. On all object classes, our method
achieves the best results when fairly compared to others. It even yields slightly better performance than Ditto [19] where the latter uses
stronger prior input. “*” denotes our modification to support predicting dynamic motion parameters.

Method
S2M [51] 48.7 51.9 67.7 59.9 54.3 52.2 60.6 46.6 45.5
RPM-Net [61] 55.5 58.2 69.6 65.2 70.0 69.3 57.9 46.4 45.3
ANCSH [28] - 73.2 90.5 78.4 69.4 - 82.0 - 61.2
Ditto [19] - 69.4 89.2 75.1 65.7 - 73.0 - 62.7
Cart 73.1 75.8 95.6 80.1 71.1 73.4 84.9 78.5 69.8

Table 2. Comparison on part segmentation mAP on nine object
categories. ANCSH and Ditto assume fixed object structure.

5.1. Baselines

S2M, RPM-Net, and ANCSH. We select three recent meth-
ods that take a single point cloud as input for fair comparison.
S2M [51] and RPM-Net [61] first predict possible point-wise
displacement, and utilize the inferred mobility information
for part and joint estimation. ANCSH [28] transforms a
set of object parts to canonical space, so that articulation
attributes can be more readily learned. ANCSH relies on
a simplified assumption that the number of object parts is
fixed, which limits the practical applicability.

Ditto. Ditto [19] is the SOTA approach for articulated object
understanding. We note that Cart works on a single input,
while Ditto needs a pair of observations of an articulated ob-
ject before and after interaction. This introduces much more
cues for articulation understanding than ours. To predict mo-
tion parameters, Ditto cannot receive user commands, so we
construct an input pair of the current point cloud and ground-
truth after manipulation for Ditto, and use its predicted state

Class Method mAP ↑ Direction ↓ Position ↓ Motion ↓
Ditto 62.1 6.5◦ 0.08 12.7◦

Ours w/o TTSA 72.0 2.0◦ 0.03 9.0◦Oven
Ours 72.0 2.0◦ 0.03 3.6◦

Ditto - 8.9◦ 0.09 15.6◦

Ours w/o TTSA 70.5 2.5◦ 0.04 8.7◦Fridge
Ours 70.5 2.5◦ 0.04 4.2◦

Table 3. Model performance on unseen object classes. The model
is trained on cabinet class and tested on oven and fridge classes.

difference as the motion value, termed Ditto*.

Associated Points. Compared to our method, it alters the
articulation estimation scheme using different point features.
These points are no longer from the same part proposal, and
instead are spatially close to the related joints. We follow
ANCSH [28] to learn the point-joint association scheme.

State Difference. Compared with Cart, we do not directly
learn the motion parameter by networks. Instead, we use
Seg-Net to predict the initial normalized articulation state
and compare it with required one indicated by commands.
For manipulation, we convert their state difference to ac-
tual motion distance and predict a moving direction, e.g.,
clockwise or counterclockwise for rotation joints.

Cart w/o TTSA. We remove the Test-time State Adaptation
algorithm (TTSA) for ablation study.
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Figure 5. Comparison on visualized results. We use different colors to represent distinct object parts predicted by the models.

5.2. Main Results

Comparison on static parameters. Table 1 shows quan-
titative evaluations on joint parameter prediction. Cart out-
performs two SOTA methods RPM-Net and ANCSH signifi-
cantly on all object categories. It even achieves comparable
performance with Ditto whose input gains extra advantages.

Our superior accuracy is attributed to we leveraging the
segmentation prior for voting. After segmentation, the
points in each segmented part share the consistent articu-
lation attributes. When they further vote for a global ar-
ticulation joint, our framework yields better performance.
[19, 28, 61] do not utilize this. The comparison between
Cart and Associated Points further validates our choice.

Table 2 presents the results of part segmentation, where
Cart surpasses other approaches by a large margin in terms
of mAP. ANCSH and Ditto both presume a fixed structure
for articulated objects. Thus, they can test only on certain
object classes. Instead, our clustering-based segmentation is
a structure-agnostic paradigm. It allows to apply Cart in a
large variety of articulation scenarios.

Comparison on dynamic parameters. All baselines and
Cart use command input for fairness. As existing works
do not directly support command-based manipulation, they
must manually convert commands to the compilable goal
states and derive the motion value and direction from the
state difference; see Sec. 5.1 for details.

As shown in the green region of Table 1, We try this
strategy on ANCSH and our method (i.e., State Difference),
because both are able to predict initial articulation states.
However, it yields inferior performance. There are two po-

tential reasons. First, the states are normalized values. When
converted to actual distances, the prediction errors increase
due to the object scale uncertainty. Second, additional esti-
mation on motion direction exposes the shape manipulation
to a higher failure risk, which is showcased in Fig. 5.

In contrast, Cart learns a signed motion value directly
from the object and command features, which allows for a
differentiable optimization paradigm. Moreover, we show
that applying Test-time State Adaption (TTSA) effectively
reduces prediction errors, indicating that TTSA contributes
to better manipulation aligned with the command. With
TTSA, Cart attains the best performance, even surpassing
Ditto* that takes as input the ground-truth clues.

Visualization results. Fig. 5 shows quantitative visualiza-
tion comparison to examine the manipulation ability of Cart.
We first exhibit the performance of Ditto* that uses enhanced
input. It is observed that a number of unsegmented points
(highlighted in green color) do not get involved in the ma-
nipulation procedure due to the segmentation error, resulting
in undesired noise. The predicted axis and motion param-
eters are also not so accurate, especially for objects with
complicated structures.

State difference mainly fails in predicting both correct
motion amplitude and direction, e.g., sometimes in opposite
direction. Associate Point struggles to accurately localize
articulation joints. Compared with them, Cart performs
better part segmentation, joint parameter estimation, and
motion parameter prediction. These fundamental elements
work jointly to guarantee the final manipulation quality.
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Input (random states) Closed Half-open Open

Figure 6. Manipulation effect on unseen object classes. The model
is trained on the cabinet class and tested on oven and fridge classes.

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

∆= 1° ∆= 1° ∆= 2° ∆= 1° ∆= 0°

∆= 1° ∆= 2° ∆= 0° ∆= 2° ∆= 1°

Figure 7. Manipulation experiments driven by more fine-grained
state nodes {T k}4k=0. ∆ is the angle difference between manipu-
lated states and ground truths.

5.3. Generalization to Unseen Categories

To verify the generalization ability, we test the model on
two unseen object categories. Table 3 summarizes the com-
parison regarding a series of metrics. Our method again
outperforms Ditto by a notable margin when the latter adopts
a stronger input. The key to achieve inter-class generaliza-
tion is our structure-agnostic part segmentation. It makes
the model easily fit to unseen data to accurately separate
different parts.

These results will facilitate downstream articulation es-
timations. It is noteworthy that our TTSA algorithm works
especially well on reducing motion errors. Under distribu-
tion shift, this technique makes substantial improvement by
learning from unlabeled data. We show the decent manipula-
tion outcome of Cart in Fig. 6.

5.4. More Fine-grained State Nodes

To accommodate more manipulation options, we conduct
experiments on a larger group of state nodes. Here, we set
K=5 to construct five state nodes {T k}4k=0, which have a
finer-grained division of the part motion range. For network
training, we encode the state nodes to 5D one-hot codes and
integrate them into our pipeline. The manipulation perfor-
mance is visualized in Fig. 7, where we also denote the angle
difference between the states of our results and of ground
truths by ∆. The negligible angle errors reveal that Cart is
robust to different settings of state nodes.

Real-world Object Point Cloud Manipulation Manipulation Simulation

Open

Close

Figure 8. Real-world experiment results on a laptop and a cabinet.

5.5. Real-world Experiments

We apply our method on real-world objects to verify
its generalization ability. As shown in Fig. 8, we choose
two articulated products, i.e., laptop and cabinet. We scan
the point clouds by an iPhone 13Pro RGB-D camera and
infer the articulation structures. Then, we give specified
commands to close the lid of a laptop, and to push back the
drawer of a cabinet. Despite the noisy input points, Cart still
manipulates the object shape accurately both for revolute
(for laptop) and prismatic (for cabinet) joints.

To simulate a physical manipulation in virtual environ-
ment, we further spawn the digital twin of actual objects
in Gazebo [23], a robot simulation platform. Following
Ditto [19], we employ a recent method [39] to reconstruct
the per-part meshes from point clouds and write them to-
gether with the articulation parameters into a URDF format,
which can represent a robot model and virtually move the
object parts. We use a simulated robot arm to manipulate the
specified parts with our predicted motion parameters for ac-
tion planning. By setting other physical properties to default
values, the manipulation generally satisfies our instructions.

6. Conclusion
We present Cart, a new approach for understanding the

structure properties of articulated objects and, more impor-
tantly, manipulating the object shape in response to user
commands. Our critical insight is to make user commands
connect to visual observations to ensure consistency between
manipulated geometry and command requirement. Towards
this goal, we develop a part-aware encoding module to ag-
gregate visual and command messages, and a Test-time State
Adaptation algorithm for shape regularization. Due to our
command-driven paradigm, we expect that the work will em-
power human-instructed embodied AI research and human-
machine interaction applications. The limitations and discus-
sions on work extension are given in the supplementary file
for readers to explore these insights.
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