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Figure 1. 3D reconstruction results with DiffusionMBIR. First row: measurement, second row: our method, third row: ground truth.
Yellow inset: measurement process. Sparse-view tomography: 8-view measurement, Limited-angle tomography: [0 90]◦ out of [0 180]◦

angle measurement, Compressed-sensing MRI: 1D uniform sub-sampling of ×2 acceleration. (In-distribution): test data aligned with
training data, (Out-of-distribution): test data vastly different from training data.

Abstract

Diffusion models have emerged as the new state-of-the-art
generative model with high quality samples, with intriguing
properties such as mode coverage and high flexibility.
They have also been shown to be effective inverse problem
solvers, acting as the prior of the distribution, while the
information of the forward model can be granted at the
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sampling stage. Nonetheless, as the generative process
remains in the same high dimensional (i.e. identical to
data dimension) space, the models have not been extended
to 3D inverse problems due to the extremely high memory
and computational cost. In this paper, we combine the
ideas from the conventional model-based iterative recon-
struction with the modern diffusion models, which leads
to a highly effective method for solving 3D medical image
reconstruction tasks such as sparse-view tomography,
limited angle tomography, compressed sensing MRI from
pre-trained 2D diffusion models. In essence, we propose
to augment the 2D diffusion prior with a model-based
prior in the remaining direction at test time, such that
one can achieve coherent reconstructions across all di-
mensions. Our method can be run in a single commodity
GPU, and establishes the new state-of-the-art, showing
that the proposed method can perform reconstructions
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of high fidelity and accuracy even in the most extreme
cases (e.g. 2-view 3D tomography). We further reveal
that the generalization capacity of the proposed method is
surprisingly high, and can be used to reconstruct volumes
that are entirely different from the training dataset. Code
available: https://github.com/HJ-harry/DiffusionMBIR

1. Introduction
Diffusion models learn the data distribution implic-

itly by learning the gradient of the log density (i.e.
∇x log pdata(x); score function) [9, 32], which is used at
inference to create generative samples. These models are
known to generate high-quality samples, cover the modes
well, and be highly robust to train, as it amounts to merely
minimizing a mean squared error loss on a denoising prob-
lem. Particularly, diffusion models are known to be much
more robust than other popular generative models [8], for
example, generative adversarial networks (GANs). Further-
more, one can use pre-trained diffusion models to solve in-
verse problems in an unsupervised fashion [5–7, 15, 32].
Such strategies has shown to be highly effective in many
cases, often establishing the new state-of-the-art on each
task. Specifically, applications to sparse view computed to-
mography (SV-CT) [5, 31], compressed sensing MRI (CS-
MRI) [6,7,31], super-resolution [4,6,15], inpainting [5,15]
among many others, have been proposed.

Nevertheless, to the best of our knowledge, all the meth-
ods considered so far focused on 2D imaging situations.
This is mostly due to the high-dimensional nature of the
generative constraint. Specifically, diffusion models gen-
erate samples by starting from pure noise, and iteratively
denoising the data until reaching the clean image. Conse-
quently, the generative process involves staying in the same
dimension as the data, which is prohibitive when one tries
to scale the data dimension to 3D. One should also note
that training a 3D diffusion model amounts to learning the
3D prior of the data density. This is undesirable in two as-
pects. First, the model is data hungry, and hence training
a 3D model would typically require thousands of volumes,
compared to 2D models that could be trained with less than
10 volumes. Second, the prior would be needlessly compli-
cated: when it comes to dynamic imaging or 3D imaging,
exploiting the spatial/temporal correlation [12, 33] is stan-
dard practice. Naively modeling the problem as 3D would
miss the chance of leveraging such information.

Another much more well-established method for solv-
ing 3D inverse problems is model-based iterative recon-
struction (MBIR) [14, 17], where the problem is formu-
lated as an optimization problem of weighted least squares
(WLS), constructed with the data consistency term, and
the regularization term. One of the most widely acknowl-
edged regularization in the field is the total variation (TV)
penalty [18, 28], known for its intriguing properties: edge-

preserving, while imposing smoothness. While the TV
prior has been widely explored, it is known to fall behind
the data-driven prior of the modern machine learning prac-
tice, as the function is too simplistic to fully model how the
image “looks like”.

In this work, we propose DiffusionMBIR, a method to
combine the best of both worlds: we incorporate the MBIR
optimization strategy into the diffusion sampling steps in or-
der to augment the data-driven prior with the conventional
TV prior, imposed to the z-direction only. Particularly, the
standard reverse diffusion (i.e. denoising) steps are run
independently with respect to the z-axis, and hence stan-
dard 2D diffusion models can be used. Subsequently, the
data consistency step is imposed by aggregating the slices,
then taking a single update step of the alternating direction
method of multipliers (ADMM) [3]. This step effectively
coerces the cross-talk between the slices with the measure-
ment information, and the TV prior. For efficient optimiza-
tion, we further propose a strategy in which we call vari-
able sharing, which enables us to only use a single sweep
of ADMM and conjugate gradient (CG) per denoising itera-
tion. Note that our method is fully general in that we are not
restricted to the given forward operator at test time. Hence,
we verify the efficacy of the method by performing exten-
sive experiments on sparse-view CT (SV-CT), limited an-
gle CT (LA-CT), and compressed sensing MRI (CS-MRI):
out method shows consistent improvements over the current
diffusion model-based inverse problem solvers, and shows
strong performance on all tasks (For representative results,
see Fig. 1. For conceptual illustration of the inverse prob-
lems, see Fig. 2).

In short, the main contributions of this paper is to devise
a diffusion model-based reconstruction method that 1) op-
erate with the voxel representation, 2) is memory-efficient
such that we can scale our solver to much higher dimen-
sions (i.e. > 2563), and 3) is not data hungry, such that it
can be trained with less than ten 3D volumes.

2. Background
Model-based iterative reconstruction (MBIR). Consider
a linear forward model for an imaging system (e.g. CT,
MRI)

y = Ax+ n, (1)

where y ∈ Rm is the measurement (i.e. sinogram, k-
space), x ∈ Rn is the image that we wish to reconstruct,
A ∈ Rm×n is the discrete transform matrix (i.e. Radon,
Fourier1), and n is the measurement noise in the system.
As the problem is ill-posed, a standard approach for the in-
verse problem that estimates the unknown image x from

1While we denote real-valued transforms and measurements for the
simplicity of exposition, the discrete Fourier transform (DFT) matrix, and
the corresponding measurement are complex-valued.
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Figure 2. Visualization of the measurement process for the three tasks we tackle in this work: (a) Limited angle CT (LA-CT)—measurement
model of Fig. 4, (b) sparse view CT (SV-CT)—measurement model of Fig. 3,6,7, (c) compressed sensing MRI (CS-MRI)—measurement
model of Fig. 8.

the measurement y is to perform the following regularized
reconstruction:

x∗ = argmin
x

1

2
∥y −Ax∥22 +R(x), (2)

where R is the suitable regularization for x, for instance,
sparsity in some transformed domain. One widely used
function is the TV penalty, R(x) = ∥Dx∥2,1, where D :=
[Dx,Dy,Dz]

T computes the finite difference in each axis.
Minimization of (2) can be performed with robust optimiza-
tion algorithms, such as fast iterative soft thresholding algo-
rithm (FISTA) [2] or ADMM.
Score-based diffusion models. A score-based diffusion
model is a generative model that defines the generative pro-
cess as the reverse of the data noising process. Specifically,
consider the stochastic process {x(t) ≜ xt}, t ∈ [0, 1],
where we introduce the time variable t to represent the
evolution of the random variable. Particularly, we define
p(x0) ≜ pdata(x), i.e. the data distribution, and p(xT )
to approximately a Gaussian distribution. The evolution
can be formalized with the following stochastic differential
equation

dx = f(x, t) dt+ g(t) dw, (3)

where f(x, t) : Rn+1 7→ Rn is the drift function,
g(t) : R 7→ R is the scalar diffusion function, and w is
the n−dimensional standard Brownian motion [27]. Let

f(x, t) = 0, g(t) =
√

d[σ2(t)]
dt . Then, the SDE simplifies to

the following Brownian motion

dx =

√
d[σ2(t)]

dt
dw, (4)

in which the mean remains the same across the evolution,
while Gaussian noise will be continuously added to x, even-
tually approaching pure Gaussian noise as the noise term

dominates. This is the so called variance-exploding SDE
(VE-SDE) in the literature [32], and as we construct all our
methods on the VE-SDE, we derive what follows from (4).
Directly applying Anderson’s theorem [1, 32] leads to the
following reverse SDE

dx = −d[σ2(t)]

dt
∇xt log p(xt) dt+

√
d[σ2(t)]

dt
dw̄, (5)

where dt, dw̄ are the reverse time differential, and the re-
verse standard n−dimensional Brownian motion. (5) de-
fines the generative process of the diffusion model, where
the equation can be solved by numerical integration. No-
tably, the key workhorse in the integration step is the score
function ∇xt

log p(xt), that can be trained with denoising
score matching (DSM) [34]

min
θ

Et,x(t)

[
λ(t)∥sθ(x(t), t)−∇xt

log p(x(t)|x(0))∥22
]
,

(6)

where sθ(x(t), t) : Rn×1 7→ Rn is a time-dependent
neural network, and λ(t) is the weighting scheme. Since
∇xt log p(x(t)|x(0)) is simply the residual noise added to
x(t) from x(0) scaled with noise variance, optimizing for
(6) amounts to training a residual denoiser across multi-
ple noise scales - a fairly robust training scheme. While
the training is robust, the equivalence between DSM and
explicit score matching (ESM) can be established [34]
in the optimization sense, and hence sθ∗(x(t), t) ≃
∇xt

log p(xt) can be used as a plug-in approximate in prac-
tice, i.e.

dx ≃ −d[σ2(t)]

dt
sθ∗(x(t), t) dt+

√
d[σ2(t)]

dt
dw̄. (7)
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One can solve (7) with, e.g. the predictor-corrector (PC)
sampler [32] by discretization of the time interval [0, 1] to
N bins.

3D diffusion. The generative process (i.e. reverse dif-
fusion), explicitly represented by (7), runs in the full data
dimension Rn. It is widely known that the voxel represen-
tation of 3D data is heavy, and scaling the data size over
643 requires excessive GPU memory [19]. For example, a
recent work that utilizes diffusion models for 3D shape re-
construction [35] uses the dataset of size 643. Other works
that use diffusion models for 3D generative modeling typ-
ically focus on the more efficient point cloud representa-
tion [20, 21, 40], where the number of point clouds remain
less than a few thousand (e.g. 2048 ≪ 643 in [20, 40]).
Naturally, point cloud representations are efficient but ex-
tremely sparse, certainly not suitable for the problem of to-
mographic reconstruction, where we require accurate esti-
mation of the interior.

There is one concurrent workshop paper that aims for
designing a diffusion model that can model the 3D voxel
representation [25]. In [25], the authors train a score func-
tion that can model 160 × 224 × 160 volumes, by training
a latent diffusion model [26], where the latent dimension is
relatively small (i.e. 20 × 28 × 20). However, the model
requires 1000 synthetic 3D volumes for the training dataset.
More importantly, using latent diffusion models for solving
inverse problems is not straightforward, and has never been
reported in literature.

Solving inverse problems with diffusion. Solving
the reverse SDE with the approximated score function (7)
amounts to sampling from the prior distribution p(x). For
the case of solving inverse problem, we desire to sample
from the posterior distribution p(x|y), where the relation-
ship between the two can be formulated by the Bayes’ rule
p(x|y) = p(x)p(y|x)/p(y), leading to

∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x). (8)

Here, the likelihood term enforces the data consistency, and
thereby inducing samples that satisfy y = Ax. Two ap-
proaches to incorporating (8) exist in the literature. First,
one can split the update step into the 1) prior update (i.e.
denoising), and then 2) projection in to the measurement
subspace [6, 32]. Formally, in the discrete setting,

x′
i−1 ← Solve(xi−1, sθ∗), (9)
xi ← P{x|Ax=y}(x

′
i−1), (10)

where Solve denotes a general numerical solver that can
solve the reverse-SDE in (7), and PC denotes the projection
operator to the set C. Specifically, when using the Euler-

Maruyama discretization, the equation reads2

x′
i−1 ← (σ2

i − σ2
i−1)sθ∗(xi−1, i− 1) +

√
σ2
i − σ2

i−1ϵ,

(11)

xi ← P{x|Ax=y}(x
′
i−1). (12)

Note that the stochasticity of Solve(·) is implicitly de-
fined. It was shown in [32] that using the PC solver, which
alternates between the numerical SDE solver and monte
carlo markov chain (MCMC) steps leads to superior per-
formance. Throughout the manuscript, we refer to a single
step of PC sampler as Solve(·) unless specified otherwise.
Alternatively, one can try to explicitly approximate the gra-
dient of the log likelihood and take the update in a single
step [5].

3. DiffusionMBIR
3.1. Main idea

To efficiently utilize the diffusion models for 3-D recon-
struction, one possible solution would be to apply 2-D dif-
fusion models slice by slice. Specifically, (9),(10) could be
applied parallel with respect to the z−axis. However, this
approach has one fundamental limitation. When the steps
are run without considering the inter-dependency between
the slices, the slices that are reconstructed will not be co-
herent with each other (especially when we have sparser
view angles). Consequently, when viewed from the coro-
nal/sagittal slice, the images contain severe artifacts.(see
Fig. 3,4 (d) row 2-3).

In order to address this issue, we are interested in com-
bining the advantages from the MBIR and the diffusion
model to oppress unwanted artifacts. Specifically, our pro-
posal is to adopt the alternating minimization approach in
(9),(10), but rather than applying them in 2-D domain, the
diffusion-based denoising step in (9) is applied slice-by-
slice, whereas the 2-D projection step in (10) is replaced
with the ADMM update step in 3-D volume. Specifically,
we consider the following sub-problem

min
x

1

2
∥y −Ax∥22 + ∥Dzx∥1, (13)

where unlike the conventional TV algorithms that take
∥Dx∥1, we only take the ℓ1 norm of the finite difference
in the z−axis. This choice stems from the fact that the prior
with respect to the xy plane is already taken care of with
the neural network sθ∗ , and all we need to imply is the spa-
tial correlation with respect to the remaining direction. In
other words, we are augmenting the generative prior with
the model-based sparsity prior. From our experiments, we

2For all equations and algorithms that are presented, we refer to the
sampled random Gaussian noise as ϵ ∼ N (0, I), unless specified other-
wise.
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observe that our prior augmentation strategy is highly effec-
tive in producing coherent 3D reconstructions throughout
all the three axes.

3.2. Algorithmic steps

We arrive at the update steps3

x+ = (ATA+ ρDT
z Dz)

−1(ATy + ρDT (z −w))
(14)

z+ = Sλ/ρ(Dzx
+ +w) (15)

w+ = w +Dzx
+ − z+, (16)

where ρ is the hyper-paremeter for the method of multi-
pliers, and S is the soft thresholding operator. Moreover,
(14) can be solved with conjugate gradient (CG), which
efficiently finds a solution for x that satisfies Ax = b:
we denote running K iterations of CG with initial point x
as CG(A, b,x,K). Full derivation for the ADMM steps
is provided in Supplementary section A. For simplicity,
we denote one sweep of (14),(15),(16) as x+, z+,w+ =
ADMM(x, z,w). Iterative application of ADMM(x, z,w)
would robustly solve the minimization problem in (13).
Hence, the naive implementation of the proposed algorithm
would be

x′
i−1 ← Solve(xi, sθ∗), (17)

xi−1 ← argmin
x′

i−1

1

2
∥y −Ax′

i−1∥22 + ∥Dzx
′
i−1∥1. (18)

Specifically, (17) would amount to parallel denoising for
each slice, whereas (18) augments the z-directional TV
prior and impose consistency. See the detailed (slow ver-
sion) solving steps in Algorithm 2 of the supplementary sec-
tion. Here, note that there are three sources of iteration in
the algorithm: 1) Numerical integration of SDE, indexed
with i, 2) ADMM iteration, and 3) the inner CG iteration,
used to solve (14).

Since diffusion models are slow in itself, multiplica-
tive additional cost of factors 2),3) will be prohibitive, and
should be refrained from. In the following, we devise a sim-
ple method to reduce this cost dramatically.

Fast and efficient implementation (variable sharing) In
Algorithm 2, we re-initialize the primal variable z, and the
dual variable w, everytime before the ADMM iteration runs
for the ith iteration of the SDE. In turn, this would lead to
slow convergence of the ADMM algorithm, as burn-in pe-
riod for the variables z,w would be required for the first
few iterations. Moreover, since solving for diffusion mod-
els would have large number of discretization steps N , the

3Detailed derivation of the following optimization steps can be found
in Supplementary section A.

Algorithm 1 DiffusionMBIR (fast; variable sharing)

Require: sθ∗ , N, λ, ρ, {σi}
1: xN ∼ N (0, σ2

T I)
2: zN ← torch.zeros like(xN )
3: wN ← torch.zeros like(xN )
4: for i = N − 1 : 0 do ▷ SDE iteration
5: x′

i ← Solve(xi+1, sθ∗)
6: ACG ← ATA+ ρDT

z Dz

7: bCG ← ATy + ρDT
z (zi+1 −wi+1)

8: xi ← CG(ACG, bCG,x
′
i, 1)

9: zi ← Sλ/ρ(Dzxi +wi+1)
10: wi ← wi+1 +Dzxi − zi
11: end for
12: return x0

difference between the two adjacent iterations xi and xi+1

is minimal. When dropping the values of z,w from the
i + 1th iteration and re-initializing at the ith iteration, one
would be dropping valuable information, and wasting com-
pute. Hence, we propose to initialize both zN ,wN as a
global variable before the start of the SDE iteration, and
keep the updated values throughout. Interesting enough, we
find that choosing M = 1,K = 1, i.e. single iteration for
both ADMM and CG are necessary for high fidelity recon-
struction. Our fast version of DiffusionMBIR is presented
in Algorithm 1.

Another caveat is when running the neural network
forward pass through the entire volume is not feasible
memory-wise, for example, when fitting the solver into a
single commodity GPU. One can circumvent this by divid-
ing the batch dimension4 into sub-batches, running the de-
noising step for the sub-patches separately, and then aggre-
gating them into the full volume again. The ADMM step can
be applied to the full volume after the aggregation, which
would yield the same solution with Algorithm 1. For both
the slow and the fast version of the algorithm, one can also
apply a projection to the measurement subspace at the end
when one wishes to exactly match the measurement con-
straint.

4. Experimental setup
We conduct experiments on three most widely studied

tasks in medical image reconstruction: 1) sparse view CT
(SV-CT), 2) limited angle CT (LA-CT), and 3) compressed
sensing MRI (CS-MRI). Specific details can be found in the
supplementary section B.
Dataset. For both CT reconstruction tasks (i.e. SV-CT,
LA-CT) we use the data from the AAPM 2016 CT low-dose
grand challenge. All volumes except for one are used for
training the 2D score function, and one volume is held-out

4In our implementation, the batch dimension corresponds to the
z−axis, as 2D slices are stacked.
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Figure 3. 8-view SV-CT reconstruction results of the test data (First row: axial slice, second row: sagittal slice, third row: coronal slice).
(a) FBP, (b) ADMM-TV, (c) Lahiri et al. [16], (d) Chung et al. [5], (e) proposed method, (f) ground truth. PSNR/SSIM values presented in
the upper right corner. Green lines in the inset of first row (a): measured angles.

8-view 4-view 2-view

Axial∗ Coronal Sagittal Axial∗ Coronal Sagittal Axial∗ Coronal Sagittal

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DiffusionMBIR (ours) 33.49 0.942 35.18 0.967 32.18 0.910 30.52 0.914 30.09 0.938 27.89 0.871 24.11 0.810 23.15 0.841 21.72 0.766

Chung et al. [5] 28.61 0.873 28.05 0.884 24.45 0.765 27.33 0.855 26.52 0.863 23.04 0.745 24.69 0.821 23.52 0.806 20.71 0.685
Lahiri et al. [16] 21.38 0.711 23.89 0.769 20.81 0.716 20.37 0.652 21.41 0.721 18.40 0.665 19.74 0.631 19.92 0.720 17.34 0.650
FBPConvNet [11] 16.57 0.553 19.12 0.774 18.11 0.714 16.45 0.529 19.47 0.713 15.48 0.610 16.31 0.521 17.05 0.521 11.07 0.483
ADMM-TV 16.79 0.645 18.95 0.772 17.27 0.716 13.59 0.618 15.23 0.682 14.60 0.638 10.28 0.409 13.77 0.616 11.49 0.553

Table 1. Quantitative evaluation of SV-CT (8, 4, 2-view) (PSNR, SSIM) on the AAPM 256×256 test set. Bold: Best, under: second best.∗:
the plane where the diffusion model prior takes place. Holds the same for Table. 3,4.∗: the plane where the diffusion model prior takes
place. Holds the same for Table. 3,4

for testing. For the task of CS-MRI, we take the data from
the multimodal brain tumor image segmentation benchmark
(BRATS) [22] 2018 FLAIR volume for testing. Note that
we use a pre-trained score function that was trained on
fastMRI knee [36] images only, and hence we need not split
the train/test data here.
Network training, inference. For CT tasks, we train the
ncsnpp model [32] on the AAPM dataset which consists
of about 3000 2D slices of training data. For the CS-MRI
task, we take the pre-trained model checkpoint from5 [7].
For inference (i.e. generation; inverse problem solving), we
base our sampler on the predictor-corrector (PC) sampling
scheme of [32]. We set N = 2000, which amounts to 4000
iterations of neural function evaluation with sθ∗ .
Comparison methods and evaluation. For CT tasks, we
first compare our method with Chung et al. [5], which is an-

5https://github.com/HJ-harry/score-MRI

other diffusion model approach for CT reconstruction, out-
performing [30]. As using the manifold constrained gra-
dient (MCG) of [5] requires 10GB of VRAM for a sin-
gle 2D slice (256×256), it is infeasible for us to leverage
such gradient step for our 3D reconstruction. Thus, we em-
ploy the projection onto convex sets (POCS) strategy of [5],
which amounts to taking algebraic reconstruction technique
(ART) in each data-consistency imposing step. We also
compare against some of the best-in-class fully supervised
methods. Namely, we include Lahiri et al. [16], and FBP-
ConvNet [11] (SV-CT) / Zhang et al. [37] (LA-CT) as base-
lines. For the implementation of [16], we use 2 stages,
but implement the De-streaking CNN as U-Nets rather than
simpler CNNs. Finally, we include isotropic ADMM-TV,
which uses the regularization function R(x) = ∥Dx∥2,1.

In the CS-MRI experiments, we compare against score-
MRI [7] as a representative diffusion model-based solver.
Moreover, we include comparisons with DuDoRNet [39],
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Figure 4. 90◦ LA-CT reconstruction results of the test data (First row: axial slice, second row: sagittal slice, third row: coronal slice). (a)
FBP, (b) Zhang et al. [37], (c) Lahiri et al. [16], (d) Chung et al. [5], (e) proposed method, (f) ground truth. PSNR/SSIM values presented
in the upper right corner. Green area in the inset of first row (a): measured, Yellow area in the inset of first row (a): not measured.

and U-Net [36]. Note that all networks including ours,
the training dataset (fastMRI knee) was set deliberately
different from the testing data (BRATS Flair), as it was
shown that diffusion model-based inverse problem solvers
are fairly robust to out of distribution (OOD) data in CS-
MRI settings [7, 10]. Quantitative evaluation was per-
formed with two standard metrics: peak-signal-to-noise-
ratio (PSNR), and structural similarity index (SSIM). We
report on metrics that are averaged over each planar direc-
tion, as we expect different performance for xy-slices as
compared to xz- and yz-slices.

5. Results

In this section, we present the results of the proposed
method. For further experiments and ablation studies, see
supplementary section C.
Sparse-view CT. We present the quantitative metrics of the
SV-CT reconstruction results in Table 1. The table shows
that the proposed method outscores the baselines by large
margins in most of the settings. Fig. 3 and Supplemen-
tary Fig. 6 show the 8,4-view SV-CT reconstruction result.
As shown at the first row of each figure, axial slices of
the proposed method have restored much finer details com-
pared to the baselines. Furthermore, the results of sagit-
tal and coronal slices in the second and third rows imply
that DiffusionMBIR could maintain the structural connec-
tivity of the original structures in all directions. In contrast,
Chung et al. [5] performs well on reconstructing the axial

slices, but do not have spatial integrity across the z direc-
tion, leading to shaggy artifacts that can be clearly seen in
coronal/sagittal slices. Lahiri et al. [16] often omits impor-
tant details, and is not capable of reconstruction, especially
when we only have 4 number of views. ADMM-TV hardly
produces satisfactory results due to the extremely limited
setting.

Limited angle CT. The results of the limited angle tomog-
raphy is presented in Table 3 and Fig. 4. We test on the case
where we have measurements in the [0, 90]◦ regime, and no
measurements in the [90, 180]◦ regime. Hence, the task is
to infill the missing views. Consistent with what was ob-
served from SV-CT experiments, we see that DiffusionM-
BIR improves over the conventional diffusion model-based
method [5], and also outperforms other fully supervised
methods, where we see even larger gaps in performance be-
tween the proposed method and all the other methods. No-
tably, Chung et al. [5] leverages no information from the
adjacent slices, and hence has high degree of freedom on
how to infill the missing angle. As the reconstruction is
stochastic, we cannot impose consistency across the differ-
ent slices. Often, this results in the structure of the torso
being completely distorted, as can be seen in the first row
of Fig. 4 (d). In contrast, our augmented prior imposes
smoothness across frames, and also naturally robustly pre-
serves the structure.

Compressed Sensing MRI. We test our method on the re-
construction of 1D uniform random sub-sampled images,
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Figure 5. 8-view SV-CT reconstruction results of the OOD data (Same geometry as in Fig. 3). (a) Ellipsis laid on top of the test data
volume, (b) Phantom that consists of spheres located randomly.

as was used in [36]. Specifically, we keep 15% of the au-
tocalibrating signal (ACS) region in the center, and retain
only the half of the k-space sampling lines, corresponding
to approximately 2× acceleration factor for the acquisition
scheme. The results are presented in Table 4 and supple-
mentary Fig. 8. Consistent with what was observed in the
experiments with SV-CT and LA-CT, we observe large im-
provements over the prior arts.

Out-of-distribution performance. It was shown in the
context of CS-MRI that diffusion models are surprisingly
robust to the out-of-distribution (OOD) data [7, 10]. For
example, the score function trained with proton-density
weighted, coronal knee scans only was able to generalize
to nearly all the different anatomy and contrasts that were
never seen at the test time. Would such generalization ca-
pacity also hold in the context of CT? Here, we answer with
a positive, and show that with the proposed method, one can
use the same score function even when the targeted ground
truth is vastly different from those in the training dataset.

In Fig. 5, we show two different cases (i.e. mild, severe)
of such OOD reconstruction. For both cases, we see that
8-view is enough to produce high fidelity reconstructions
that closely estimate the ground truth. Note that our prior is
constructed from the anatomy of the human body, which is
vastly different from what is given in Fig. 5 (b). Intuitively,
in the Bayesian perspective, this means that our diffusion
prior would have placed very little mass on images such as
Fig. 5 (b). Nonetheless, we can interpret that diffusion mod-
els tend to place some mass even to these heavily OOD re-
gions. Consequently, when incorporated with enough like-
lihood information, it is sufficient to guide proper poste-
rior sampling, as seen in this experiment. Such property is
particularly useful in medical imaging, where training data
mostly consists of normal patient data, and the distribution
is hence biased towards images without pathology. When at
test time, we are given a patient scan that contains lesions,

we desire a method that can fully generalize in such cases.

Choice of augmented prior. In this work, we proposed
to augment the diffusion generative prior with the model-
based TV prior, in which we chose to impose the TV con-
straint only in the redundant z−direction, while leaving the
xy−plane intact. This design choice stems from our as-
sumption that diffusion prior better matches the actual prior
distribution than the TV prior, and mixing with the TV prior
might compromise the ability of diffusion prior.

To verify that this is indeed the case, we conducted an
ablation study on TV(xyz) and TV(z) prior. Supplementary
Fig. 10 shows the visual and numerical results on the priors.
Both priors have scored high on PSNR and SSIM, but we
can figure out that the images with TV prior on xy-plane are
blurry compared to the samples from the proposed one. The
analysis implies that the usage of TV(xyz) prior shifted the
result a bit far apart from the well-trained diffusion prior.

6. Conclusion
In this work, we propose DiffusionMBIR, a diffusion

model-based reconstruction strategy for performing 3D
medical image reconstruction. We show that all we need
is a 2D diffusion model that can be trained with little
data (< 10 volumes), augmented with a classic TV prior
that operates on the redundant z direction. We devise a
way to seamlessly integrate the usual diffusion model sam-
pling steps with the ADMM iterations in an efficient way.
The results demonstrate that the proposed method is capa-
ble of achieving state-of-the-art reconstructions on Sparse-
view CT, Limited-angle CT, and Compressed-sensing MRI.
Specifically for Sparse-view CT, we show that our method
is capable of providing accurate reconstructions even with
as few as two views. Finally, we show that DiffusionMBIR
is capable of reconstructing OOD data that is vastly differ-
ent from what is presented in the training data.
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