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Abstract

Determining the exact latitude and longitude that a
photo was taken is a useful and widely applicable task,
yet it remains exceptionally difficult despite the acceler-
ated progress of other computer vision tasks. Most previ-
ous approaches have opted to learn single representations
of query images, which are then classified at different lev-
els of geographic granularity. These approaches fail to
exploit the different visual cues that give context to differ-
ent hierarchies, such as the country, state, and city level.
To this end, we introduce an end-to-end transformer-based
architecture that exploits the relationship between differ-
ent geographic levels (which we refer to as hierarchies)
and the corresponding visual scene information in an im-
age through hierarchical cross-attention. We achieve this by
learning a query for each geographic hierarchy and scene
type. Furthermore, we learn a separate representation for
different environmental scenes, as different scenes in the
same location are often defined by completely different vi-
sual features. We achieve state of the art accuracy on 4
standard geo-localization datasets : Im2GPS, Im2GPS3k,
YFCC4k, and YFCC26k, as well as qualitatively demon-
strate how our method learns different representations for
different visual hierarchies and scenes, which has not been
demonstrated in the previous methods. Above previous test-
ing datasets mostly consist of iconic landmarks or images
taken from social media, which makes the dataset a sim-
ple memory task, or makes it biased towards certain places.
To address this issue we introduce a much harder testing
dataset, Google-World-Streets-15k, comprised of images
taken from Google Streetview covering the whole planet and
present state of the art results. Our code can be found at
https://github.com/AHKerrigan/GeoGuessNet.

*These authors contributed equally to the work

1. Introduction

Image geo-localization is the task of determining the
GPS coordinates of where a photo was taken as precisely
as possible. For certain locations, this may be an easy task,
as most cities will have noticeable buildings, landmarks, or
statues that give away their location. For instance, given an
image of the Eiffel Tower one could easily assume it was
taken somewhere in Paris. Noticing some of the finer fea-
tures, like the size of the tower in the image and other build-
ings that might be visible, a prediction within a few meters
could be fairly easy. However, given an image from a small
town outside of Paris, it may be very hard to predict its loca-
tion. Certain trees or a building’s architecture may indicate
the image is in France, but localizing finer than that can
pose a serious challenge. Adding in different times of day,
varying weather conditions, and different views of the same
location makes this problem even more complex as two im-
ages from the same location could look wildly different.

Many works have explored solutions to this problem,
with nearly all works focusing on the retrieval task, where
query images are matched to a gallery of geo-tagged images
to retrieve matching geo-tagged image [14,16,17,20,24,25].
There are two variations of the retrieval approach to this
problem, same-view and cross-view. In same-view both the
query and gallery images are taken at ground level. How-
ever, in cross-view the query images are ground level while
the gallery images are from an aerial view, either by satel-
lite or drone. This creates a challenging task as images with
the exact same location look very different from one an-
other. Regardless of same-view or cross-view, the evalu-
ation of the retrieval task is costly as features need to be
extracted and compared for every possible match with geo-
tagged gallery images, making global scale geo-localization
costly if not infeasible.

If, instead, the problem is approached as a classifica-
tion task, it’s possible to localize on the global scale given
enough training data [8,11,12,15,21,22]. These approaches
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segment the Earth into Google’s S2' cells that are assigned
GPS locations and serve as classes, speeding up evaluation.
Most previous classification-based visual geo-localization
approaches use the same strategy as any other classifica-
tion task: using an image backbone (either a Convolutional
Neural Network or a Vision Transformer [2]), they learn a
set of image features and output a probability distribution
for each possible location (or class) using an MLP. In more
recent works [ 1,12], using multiple sets of classes that rep-
resent different global scales, as well as utilizing informa-
tion about the scene characteristics of the image has shown
to improve results. These approaches produce one feature
vector for an image and presume that it is good enough to
localize at every geographic level. However, that is not how
a human would reason about finding out their location. If
a person had no idea where they were, they would likely
search for visual cues for a broad location (country, state)
before considering finer areas. Thus, a human would look
for a different set of features for each geographic level they
want to predict.

In this paper, we introduce a novel approach toward
world-wide visual geo-localization inspired by human ex-
perts. Typically, humans do not evaluate the entirety of a
scene and reason about its features, but rather identify im-
portant objects, markers, or landmarks and match them to a
cache of knowledge about various known locations. In our
approach, we emulate this by using a set of learned latent
arrays called “hierarchy queries” that learn a different set of
features for each geographic hierarchy. These queries also
learn to extract features relative to specific scene types (e.g.
forests, sports fields, industrial, etc.). We do this so that our
queries can focus more specifically on features relevant to
their assigned scene as well as the features related to their
assigned hierarchy. This is done via a Transformer Decoder
that cross-attends our hierarchy and scene queries with im-
age features that are extracted from a backbone. We also
implement a “hierarchy dependent decoder” that ensures
our model learns the specifics of each individual hierarchy.
To do this our “hierarchy dependent decoder” separates the
queries according to their assigned hierarchy, and has inde-
pendent weights for the Self-Attention and Feed-Forward
stages that are specific to each hierarchy.

We also note that the existing testing datasets contain
implicit biases which make them unfit to truly measure
a model’s geo-location accuracy. For instance, Im2GPS
[4,21] datasets contain many images of iconic landmarks,
which only tests whether a model has seen and memorized
the locations of those landmarks. Also, YFCC [18, 21]
testing sets are composed entirely of images posted on-
line that contained geo-tags in their metadata. This cre-
ates a bias towards locations that are commonly visited and
posted online, like tourist sites. Previous work has found

Ihttps://code.google.com/archive/p/s2-geometry-library/

this introduces significant geographical and often racial bi-
ases into the datasets [7] which we demonstrate in Fig-
ure 4. To this end, we introduce a challenging new test-
ing dataset called Google-World-Streets-15k, which is more
evenly distributed across the Earth and consists of real-
world images from Google Streetview.

The contributions of our paper include: (1) The
first Transformer Decoder for worldwide image geo-
localization. (2) The first model to produce multiple sets
of features for an input image, and the first model capable
of extracting scene-specific information without needing a
separate network for every scene. (3) A new testing dataset
that reduces landmark bias and reduces biases created by
social media. (4) A significant improvement over previous
SOTA methods on all datasets. (5) A qualitative analysis of
the features our model learns for every hierarchy and scene

query.

2. Related Works
2.1. Retrieval Based Image Geo-Localization

The retrieval method for geo-localization attempts to
match a query image to target image(s) from a reference
database (gallery). Most methods train by using separate
models for the ground and aerial views, bringing the fea-
tures of paired images together in a shared space. Many dif-
ferent approaches have been proposed to overcome the do-
main gap, with some methods implementing GANs [3] that
map images from one view to the other [14], others use a po-
lar transform that makes use of the prior geometric knowl-
edge to alter aerial views to look like ground views [ 16, 17],
and a few even combine the two techniques in an attempt to
have the images appear even more similar [20].

Most methods assume that the ground and aerial images
are perfectly aligned spatially. However, this is not always
the case. In circumstances where orientation and spatial
alignment aren’t perfect, the issue can be accounted for
ahead of time or even predicted [17]. VIGOR [25] creates
a dataset where the spatial location of a query image could
be located anywhere within the view of its matching aerial
image. Zhu [24] strays from the previous methods by using
a non-uniform crop that selects the most useful patches of
aerial images and ignores others.

2.2. Image Geo-Localization as Classification

By segmenting the Earth’s surface into distinct classes
and assigning a GPS coordinate to each class, a model is
allowed to predict a class directly instead of comparing fea-
tures to a reference database. Treating geo-localization this
way was first introduced by Weyand et al. [22]. In their
paper, they introduce a technique to generate classes that
utilizes Google’s S2 library and a set of training GPS co-
ordinates to partition the Earth into cells, which are treated
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Figure 1. A visualization of all 7 hierarchies used. The .4, value is set to 25000, 10000, 5000, 2000, 1000, 750, and 500 respectively for
hierarchies 1 to 7, while the ¢,,,:» value is set at 50 for every hierarchy. This generates 684, 1744, 3298, 7202, 12893, 16150, and 21673

classes for hierarchies 1 to 7 respectively.

as classes. Vo [21] was the first to introduce using multi-
ple different partitions of varying granularity. In contrast,
CPlaNet [ 5] develops a technique that uses combinatorial
partitioning. This approach uses multiple different coarse
partitions and encodes each of them as a graph, then re-
fining the graph by merging nodes. More details on class
generation will be discussed in Section 3.1.

Up until Individual Scene Networks (ISNs) [11], no in-
formation other than the image itself was used at training
time. The insight behind ISNs was that different image
contexts require different features to be learned in order to
accurately localize the image. They make use of this by
having three separate networks for indoor, natural, and ur-
ban images respectively. This way each network can learn
the important features for each scene and more accurately
predict locations. The use of hierarchical classes was also
introduced in [ 1]. While previous papers had utilized mul-
tiple geographic partitions, the authors in [ 1] observed that
these partitions could be connected through a hierarchical
structure. To make use of this, they proposed a new eval-
uation technique that combines the predictions of multiple
partitions, similar to YOLO9000 [13], which helps refine
the overall prediction. Kordopatis-Zilos [8] developed a
method that combines classification and retrieval. Their net-
work uses classification to get a predicted S2 cell, then re-
trieval within that cell to get a refined prediction.

Most recently, TransLocator [12] was introduced, which
learns from not only the RGB image but also the segmenta-
tion map produced by a trained segmentation network. Pro-
viding the segmentation map allows TransLocator to rely
on the segmentation if there are any variations in the image,
like weather or time of day, that would impact a normal
RGB-based model.

All of these methods fail to account for features that are
specific to different geographic hierarchies and don’t fully
utilize scene-specific information. We solve these problems
with our query-based learning approach.

3. Method

In our approach, we treat discrete locations as classes,
obtained by dividing the planet into Schneider-2 cells at dif-
ferent levels of geographic granularity. The size of each cell
is determined by the number of training images available in
the given region, with the constraint that each cell has ap-
proximately the same number of samples. We exploit the
hierarchical nature of geo-location by learning different sets
of features for each geographic hierarchy and for each scene
category from an input image. Finally, we classify a query
image by selecting the set of visual features correlated with
the most confident scene prediction. We use these sets of
features to map the image to an S2 cell at each hierarchi-
cal level and combine the predictions at all levels into one
refined prediction using the finest hierarchy.

3.1. Class Generation

With global geo-localization comes the problem of sep-
arating the Earth into classes. A naive way to do this would
be to simply tessellate the earth into the rectangles that are
created by latitude and longitude lines. This approach has
a few issues, for one the surface area of each rectangle
will vary with the distance from the poles, producing large
class imbalances. Instead, we utilize Schneider 2 cells us-
ing Google’s S2 Library. This process initially projects the
Earth onto 6 sides of a cube, thereby resulting in an initial 6
S2 cells. To create balanced classes, we split each cell with
more than t,,,, images from the training set located inside
of it. We ignore any cells that have less than ¢,,,;, to ensure
that classes have a significant number of images. The cells
are split recursively until all cells fall within %,,,;,, and ¢,,4,
images. This creates a set of balanced classes that cover the
entire Earth. These classes and hierarchies are visualized
in Figure 1 where we can see the increasing specificity of
our hierarchies. We begin with 684 classes at our coarsest
hierarchy and increase that to 21673 at our finest. During
evaluation we define the predicted location as the mean of
the location of all training images inside a predicted class.
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Figure 2. Our proposed network. We randomly initialize a set of learned queries for each hierarchy and scene. An image is first encoded by
Transformer Encoder and decoded by two decoders. The first decoder consists of NV layers as a Hierarchy Independent Decoder, followed
by E layers of our Hierarchy Dependent Decoder; this decoder only performs self-attention within each hierarchy, instead of across all
hierarchies, and has separate Feed-Forward Networks for each hierarchy. To determine which scene to use for prediction, the scene with
the highest average confidence (denoted by the 0" channel) is selected and queries are fed to their corresponding classifier to geo-localize
at each hierarchy. We get a final prediction by multiplying the class probabilities of the coarser hierarchies into the finer ones so that a

prediction using all hierarchical information can be made.

3.2. Model

Our model is shown in Figure 2, which is consists of
a SWIN encoder, two decoders, and seven hierarchy classi-
fiers. Here we outline the details behind our model’s design.

One problem faced in geo-localization is that two images
in the same geographic cell can share very few visual simi-
larities. Two images from the same location could be taken
at night or during the day, in sunny or rainy weather, or
simply from the same location but one image faces North
while the other faces South. Additionally, some informa-
tion in a scene can be relevant to one geographic hierarchy
(e.g. state) but not another (e.g. country). To that end,
we propose a novel decoder-based architecture designed
to learn unique sets of features for each of these possible
settings. We begin by defining our geographic queries as
GQ € RHSXD where H is the number of geographic hi-
erarchies, S is the number of scene labels, and D is the
dimension of the features. We define each individual geo-
graphic query as gg" where h and s represent the index of
the hierarchy and scene, respectively. The scene labels we
use are provided by Places2 dataset [23]. We implement a
pre-trained scene classification model to get the initial scene
label from the coarsest set of labels and finer labels are ex-
tracted using their hierarchical structure. We find that the
middle set of 16 scenes gives the best results for our model,
we show ablation on this in supplementary material.

3.3. GeoDecoder

Hierarchy Independent Decoder The geographic queries
are passed into our GeoDecoder, whose primary function
is, for each hierarchical query, to extract geographical in-
formation relevant to its individual task for the image to-
kens which have been produced by a Swin encoder [10].
As previously stated, our decoder performs operations on
a series of learned latent arrays called Geographic Queries
in a manner inspired by the Perceiver [6] and DETR [1].
We define X as the image tokens, GQF as the geographic
queries at the k" layer of the decoder. Each layer performs
multi-head self-attention (MSA) on the layer-normalized
(LN) geographic queries, followed by cross-attention be-
tween the output of self-attention and the image patch en-
codings, where cross-attention is defined as CA(Q, K) =
softmax(Q—\/%T)K. where @, K are Query and Key re-
spectively. Finally, we normalize the output of the cross-
attention operation and feed it into an feed-forward network
(FFN) to produce the output of the decoder layer. Therefore,
one decoder layer is defined as

yo4 = MSA(LN(GQ* 1)+ GQ*'. (1
yCA = CA(LN(y5*, LN (X)) + y°4, )
GQ* = FEN(LN(y“*)) +y“*. 3)
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Hierarchy Dependent Decoder

We find that a traditional transformer decoder structure for
the entire GeoDecoder results in a homogeneity of all hi-
erarchical queries. Therefore, in the final layers of the de-
coder, we perform self-attention only in an intra hierarchi-
cal manner rather than between all hierarchical queries. Ad-
ditionally, we assign each hierarchy its own feed-forward
network at the end of each layer rather than allowing hi-
erarchies to share one network. We define the set of ge-
ographic queries specifically for hierarchy h at layer k as
GQ¥. The feed-forward network for hierarchy F is referred
toas FFNy

Y54 = MSA(LN(GQI™)) + G, (@)
Yo = CA(LN(y°*), LN(X)) + 44, (5)
GQF = FFN,(LN(y©4)) + y©4. (6)

After each level, each GQﬁ is concatenated to reform the
full set of queries GQ). In the ablations Table 4, we show
the results of these hierarchy dependent layers.

3.4. Losses

As shown in Figure 2, our network is trained with two
losses. The first loss is scene prediction 10ss, Lscene, Which
is a Cross-Entropy loss between the predicated scene la-
bel §; ground truth scene labels s;. Our second loss is a
geo-location prediction loss, Lg,, which is a combination
of Cross-Entropy losses for each hierarchy. Given an im-
age X we define the set of location labels as hj, ho, ...,
hz, where h; denotes the ground-truth class distribution
in hierarchy ¢, and the respective predicted distribution as
hi, we define Lycene(x)y = CE(si,8;) and Lgeo(X) =
ST CE(hi, hi) and L(X) = Lgeo(X) + Lacene(X).

3.5. Inference

With the output of our GeoDecoder GQ°“! we can geo-
localize the image. As our system is designed to learn
different latent embeddings for different visual scenes, we
must first choose which features to proceed with. For
gq" € GQ we assign the confidence that the image belongs
to scene s to that vector’s Ot/ element. This minimizes the
need for an additional individual scene network like in [11],
while allowing specific weights within the decoder’s linear
layers to specialize in differentiating visual scenes. Once
we have GQ°%, the queries are separated and sent to the
classifier that is assigned to their hierarchy. This gives us 7
different sets of class probabilities, one for each hierarchy.
To condense this information into one class prediction, and
to exploit the hierarchical nature of our classes, we multi-
ply the probabilities of the classes in the coarser hierarchies
by their sub-classes found in the finer hierarchies. If we
define a class as C]H where 7 denotes the hierarchy and j

denotes the class label within that hierarchy, we can define
the probability of predicting a class CH7 for image X as:
p(X|CIT) = p(X|CHT) * p(X|C)T) % .5 p(X|CJ1),
given that C'7 is a subclass of C'®, C/'® is a subclass of
CH5 and so on. We perform this for every class in our finest
hierarchy so that we can use the finest geographic granular-
ity while also using the information learned for all of the
hierarchies.

Sanggeng, Indonesia Queensland, Australia  Lucélia, Brazil  Bordj Bou Arrerid], Algeria
§ ul - \

T

Borama, Somalia Atbara, Sudan Erdenet, Mongolia

|

Lara, Venezuela

Rufino, Argentina  Nouakchott, Mauritania Windhoek, Namibia ~Lokgwabe, Botswana

Figure 3. Example images from 16 different countries in the
Google-World-Streets-15k dataset

4. Google-World-Streets-15K Dataset

We propose a new testing dataset collected using Google
Streetview called Google-World-Streets-15k (see Figure 3
for some representative examples). As previous testing
datasets contain biases towards commonly visited locations
or landmarks, the goal of our dataset is to eliminate those
biases and have a more even distribution across the Earth.
In total, our dataset contains 14,955 images covering 193
countries.

In order to collect a fair distribution of images, we utilize
a database of 43,000 cities?, as well as the surface area of
every country. We first sample a country with a probabil-
ity proportional to its surface area compared to the Earth’s
total surface area. Then, we select a random city within
that country and a GPS coordinate within a 5 Km radius of
the center of the city to sample from the Google Streetview
API. This ensures that the dataset is evenly distributed ac-
cording to landmass and not biased towards the countries
and locations that people post online. Google Streetview

Zhttps://simplemaps.com/data/world-cities

23186



also blurs out any faces found in the photos, so a model that
is using people’s faces to predict a location will have to rely
on other features in the image to get a prediction.

In Figure 4 We show a heatmap of Google-World-
Streets-15k compared to heatmaps of YFCC26k and
Im2GPS3k. We note that a majority of YFCC26k and
Im2GPS3k are located in North America and Europe, with
very little representation in the other 4 populated conti-
nents. While Google-World-Streets-15k’s densest areas are
still the Northeastern US and Europe, we provide a much
more even sampling of the Earth with images on all pop-
ulated continents. We also note that the empty locations
on our dataset’s heatmap are mostly deserts, tundras, and
mountain ranges.

5. Experiments
5.1. Training Data

Our network is trained on the MediaEval Placing Tasks
2016 (MP-16) dataset [9]. This dataset consists of 4.72 mil-
lion randomly chosen geo-tagged images from the Yahoo
Flikr Creative Commons 100 Million (YFCC100M) [19]
dataset. Notably, this subset is fully uncurated, and con-
tains many examples that contain little if any geographic
information. These photos include pets, food, and random
household objects. We ensure that no photographer’s im-
ages appear in both the testing and training sets, to guar-
antee that our model learns from visual geographic signals
rather than the styles of individual photographers.

5.2. Testing Data

We test our method on five datasets: Im2GPS [4],
Im2GPS3k [21], YFCC dataset: YFCC26k [18] YFCC
4k [21], and proposed new dataset Google-World-Street-
15K described in the previous section. Im2GPS [4] and
Im2GPS3k [2 1], contain 237 and 2997 images respectively.
While small in size, both datasets are manually selected
and contain popular sights and landmarks from around the
world. We note that many of the landmarks that appear
in Im2GPS appear multiple times in the MP-16 dataset,
which may cause a bias towards those locations, this is ac-
counted for in our proposed testing dataset. YFCC dataset:
YFCC26k [18] and YFCC 4k [21], contain 25,600 and
4,536 images respectively. In contrast to Im2GPS and
like our training set MP-16, these images are randomly se-
lected and often contain very little geo-localizable informa-
tion, and therefore pose a more difficult challenge than the
Im2GPS datasets.

5.3. Evaluation

During evaluation we utilize the finest hierarchy class to
get an image’s predicted location. We report our accuracy at
the street (1 Km), city (25 Km), region (200 Km), country

Data Density

(a) Distribution of images in the YFCC26k validation set

Data Density

(b) Distribution of images in the In2GPS3k validation set

Data Density

(c) Distribution of images in our Google World Streets 15k validation set

Figure 4. A comparison of YFCC26k, Im2GPS3k, and our Google
World Streets 15k dataset. We see that popular datasets for testing
geo-localization systems are heavily concentrated in heavily pop-
ulated, metropolitan areas, particularly in America and western
Europe. By contrast, our dataset more evenly blankets the earth,
better representing all countries on earth.

(750 Km), and continent (2500 Km) scales. However, train-
ing on multiple hierarchies allows us to employ a parent-
child relationship and multiply the probabilities across all
hierarchies [11]. This allows the finest set of probabilities
to be enhanced to include all of the learned hierarchical in-
formation. We also use TenCrop during evaluation, which
is a cropping technique that returns the four corner crops,
center crop, and their flipped versions. All crops are passed
through the model and their outputs are averaged to get one
set of probabilities per hierarchy for each image.
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Table 1. Geo-localization accuracy of our proposed method
compared to previous methods, across four baseline datasets,
and our proposed dataset. Results denoted with * are using our
recreation of the given model.

Distance (a, [%] @ km)

Dataset Method Street City Region Country  Continent

1 km 25 km 200 km 750 km 2500 km
Human [21] = = 38 139 393
[LIKNN, o =4 [21] 14.4 333 477 61.6 734
MVME [5] 84 32,6 394 572 80.2
PlaNet [22] 8.4 24.5 37.6 53.6 71.3
Im2GPS CPlaNet [15] 16.5 37.1 464 62.0 78.5
[4] ISNs (M, f, S3) [11] 16.5 02 51.9 66.2 81.0
ISNs (M,f*,S3) [11] 16.9 43.0 519 66.7 80.2
Translocator 19.9 48.1 64.6 75.6 86.7
Ours 22.1 50.2 69.0 80.0 89.1
[LIKNN, o0 =4 [21] 72 19.4 26.9 389 55.9
PlaNet' [22] 85 24.8 34.3 484 64.6
. CPlaNet [15] 10.2 26.5 34.6 48.6 64.6
I'“;?Ps ISNs (M, f, S3) [1 1] 10.1 27.2 36.2 493 65.6
y ISNs (M,f*,S3) [11] 10.5 28.0 36.6 49.7 66.0
(211 Translocator 11.8 31.1 46.7 58.9 80.1
Ours 12.8 335 459 61.0 76.1
[LIKNN, 0 =4 [21] 2.3 5.7 11.0 23.5 42.0
PlaNet' [22] 5.6 14.3 222 36.4 55.8
CPlaNet [15] 79 14.8 219 36.4 555
YFCC | ISNs (M, f, St [11] 6.5 16.2 238 374 55.0
1k ISNs (M.f*,S3)f [11] 6.7 16.5 242 375 549
[21] Translocator 8.4 18.6 27.0 41.1 60.4
Ours 10.3 244 33.9 50.0 68.7
PlaNet! [22] 44 11.0 16.9 285 477
yFee | ISNs (ML, S5y [11] 53 12.1 18.8 31.8 50.6
ogk | ISNs (ML %, Sp)* [11] 53 12.3 19.0 31.9 50.7
[18] Translocator 72 17.8 28.0 41.3 60.6
Ours 10.1 23.9 34.1 49.6 69.0
Gws | SNs(MLT, S [11] 0.05 0.6 42 155 385
15k Translocator* 0.5 1.1 8.0 25.5 483
Ours 0.7 15 8.7 26.9 50.5

6. Results, Discussions and Analysis

In this section, we compare the performance of our
method with different baselines, and conduct a detailed ab-
lation study to demonstrate the importance of different com-
ponents in our system. Furthermore, we visualize the inter-
pretability of our method by showing the attention map be-
tween each query and the image patches from our encoder.

Our results are presented in Table 1. On Im2GPS, our
method achieves state of the art accuracy across all dis-
tances, improving by as much as 1.7% on the baseline. For
Im2GPS3k our method manages to beat the previous tech-
niques on a majority of distances, only falling short on the
200 and 2500 kilometer accuracies. More notably, our sys-
tem’s performance on the far more challenging YFCC4k
and YFCC26k datasets vastly outperforms previous geo-
localization works. On YFCC4k, our method achieves a
score of 10.3%, an improvement of 2.2% over Transloca-
tor. Similarly on YFCC26k, we achieve a 1KM accuracy
of 10.1%, improving over Translocator by 2.9%. Addi-
tionally, we compare our method to [12] on our Google-
World-Streets-15k(GWS) validation dataset. As expected,
the more realistic and fair nature of this dataset, in contrast
to the training set MP-16, resulted in poor performance on
all systems. However, we still outperform Translocator by
0.2% on 1KM accuracy and 0.4% on 25KM accuracy, sug-
gesting a stronger ability to focus on defining features of a
scene, rather than singular landmarks.

Table 2. Ablation Study on GeoDecoder Depth We find that
larger depths offer marginal increases in performance, and there
are diminishing returns for more than 8 layers.

Distance (a, [%] @ km)
Dataset Depth Street City Region Country  Continent
1 km 25 km 200 km 750 km 2500 km

3 11.9 329 45.0 59.5 75.4

Im2GPS3k 5 12.5 333 45.2 60.1 75.9
[21] 8 12.8 335 459 61.0 76.1

10 12.5 332 452 60.1 76.2

3 9.7 235 334 493 63.3

YFCC26k 5 9.9 23.6 33.8 49.6 68.5
[18] 8 10.1 23.9 34.1 49.6 69.0

10 10.0 23.7 33.6 50.1 69.2

Table 3. Ablation Study on scene prediction method We show
our max score selection method of scene queries outperforms both
scene prediction approach of [12], as well as treating scenes as an
additional task.

Distance (a, [%] @ km)
Dataset Method Street City Region Country  Continent
1 km 25 km 200 km 750 km 2500 km

No Scene Prediction 11.7 315 42.3 57.0 723

I“‘Z[GP]S3" Scene Prediction [12] | 12.2 328 443 595 758
Ours 12.8 33.5 459 61.0 76.1

No Scene Prediction 9.4 229 32,6 48.0 65.4

YF([:C]Zﬁk Scene Prediction [12] 9.7 232 33.0 48.8 67.0
Ours 10.1 239 34.1 49.6 69.0

Table 4. Ablation Study on Hierarchy Dependent Decoder We
show that converting the final two layers of the GeoDecoder to be
hierarchy dependent layers offers marginal returns.

Distance (a, [%] @ km)
Dataset | Layers Street City Region Country  Continent
1 km 25 km 200 km 750 km 2500 km

0 12.2 332 45.5 60.3 75.8

fm2GES | 2 128 35 459 61.0 76.1
4 12.8 334 45.0 60.7 75.6

N 6 12.6 33.2 445 59.9 75.3

0 9.7 23.5 33.8 49.2 68.7

YFCC26k 2 10.1 23.9 34.1 49.6 69.0
[18] 4 9.9 234 33.6 49.0 68.3

6 8.7 22.6 33.0 48.6 67.6

6.1. Qualitative Results

We provide a number of qualitative results, outlined in
Figure 5. For our attention maps, we use the attention be-
tween the image backbone features and the fine-level query
(corresponding to the correct scene). First, these results
show that each hierarchy query attends to different parts of
the image, as per our original hypothesis. Second, we can
see that the attention for the correct scene query is far more
precise than incorrect scene queries, demonstrating how our
system learns different features specific to each scene.

6.2. Ablations

Ablation Study on Encoder Type We perform an abla-
tions study on different image encoders. We show that our
method outperforms using ViT or Swin on their own. See
Table 5.

GeoDecoder Depth We perform two ablations on the
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Figure 5. A qualitative analysis of different queries. Here we show the attention maps between every query our model produces when
probed with the original Im2GPS3k image seen in the top left. Each row shows a hierarchy query for all scenes, while each column shows
each scene query for all hierarchies. This specific query image is of an outdoor sports field. We observe that the most relevant scene
labels were predicted as most confident and that their attention maps are more localized to specific features that would define a sports field.
Looking at the less confident scenes, we see that the attention maps look at more general features or at random areas of the image. This
is because those queries are trained to find features for their specific scenes. For example, the shopping and dining query will be looking
for things like tables, chairs, or storefronts that aren’t present in this query image, which is why we see the attention maps looking more

generally at the image rather than looking at specific features.

Table 5. Ablation Study on Encoder Type We show our method
performs better than simple image encoders.

Distance (a, [%] @ km)
Street City Region Country  Continent
Dataset | Model lkm  25km  200km  750km 2500 km
ViT 6.9 17.3 275 40.5 59.5
YFCC26k Swin 9.6 223 33.6 48.0 67.5
[18] Ours (ViT) 8.7 214 31.6 47.8 66.2
Ours (Swin) 10.1 23.9 34.1 49.6 69.0

architecture of the GeoDecoder. First, we experiment with
the GeoDecoder’s depth, varying it at n = 3,5, 8,10 (Ta-
ble 2). We see a steady improvement from 3 through 8,
but then a clear reduction in performance on all metrics at
n = 10. This suggests a point of diminishing returns. Addi-
tionally, we experiment with the hierarchy dependent layers
on the end of the GeoDecoder (Table 4). Recall, these lay-
ers restrict attention operations to queries within the same
hierarchy, and utilize specialized feed-forward layers. For
these experiments the total number of independent and de-
pendent decoder layers remains static at 8, and we increase
the number of dependent decoder layers from O to 6.

Scene Prediction One contribution of our method is
our approach toward distinguishing between different visual
scenes of the same location. To show the effectiveness of

our separated scene queries, we ablate on scene prediction
by evaluating performance with no scene prediction, as well
as using scene prediction as a secondary task as in [12]. We
then compare it to our scene prediction method. See (Table
3). We find that our scene queries selection method outper-
forms treating scenes as a secondary task by 0.6% and 0.4%
on Im2GPS3k and YFCC26k, respectively.

Additional Ablations We perform additional ablations
on the number of scenes and the number of hierarchies in
the supplementary.

7. Conclusion

In this work, we reformulated visual geo-localization via
the learning of multiple sets of geographic features. Given
an RGB image of any location on planet earth, our sys-
tem first learns a set of image features employing a SWIN
encoder, then uses the GeoDecoder to extract hierarchy-
specific features for each possible scene, choosing the most
confident scene before prediction. Our proposed method
improves over other geo-localization methods on multiple
benchmarks, especially on uncurated datasets most similar
to real-world use cases.

This work was supported by the US Army contract
W9I1INF-2120192.
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