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Abstract

Since light field simultaneously records spatial informa-
tion and angular information of light rays, it is considered
to be beneficial for many potential applications, and seman-
tic segmentation is one of them. The regular variation of
image information across views facilitates a comprehensive
scene understanding. However, in the case of limited mem-
ory, the high-dimensional property of light field makes the
problem more intractable than generic semantic segmenta-
tion, manifested in the difficulty of fully exploiting the re-
lationships among views while maintaining contextual in-
formation in single view. In this paper, we propose a novel
network called LF-IENet for light field semantic segmenta-
tion. It contains two different manners to mine complemen-
tary information from surrounding views to segment cen-
tral view. One is implicit feature integration that leverages
attention mechanism to compute inter-view and intra-view
similarity to modulate features of central view. The other is
explicit feature propagation that directly warps features of
other views to central view under the guidance of disparity.
They complement each other and jointly realize complemen-
tary information fusion across views in light field. The pro-
posed method achieves outperforming performance on both
real-world and synthetic light field datasets, demonstrating
the effectiveness of this new architecture.

1. Introduction

Semantic segmentation is a pixel-level task that assigns
a class label to each pixel of the given image, serving as a
key fundamental of visual understanding. Due to the partial
visibility incurred by occlusion as well as high intra-class
variation with diverse appearances, viewpoints and scales,
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Figure 1. Illustration of light field imaging. Red rectangle shows
an occlusion scene, in which the front wheel of bicycle is di-
vided into two areas (enclosed in blue and yellow boxes) and the
back wheel is complete (enclosed in green box). Since viewpoints
are arranged on a regular grid in angular plane, the location and
scale of these areas are regularly changed across views, which is a
unique advantage of light field. Influenced by the pedestrian with
big disparity, the changes near the front wheel are significant.

accurate segmentation is a fairly challenging problem. A
series of image segmentation methods [4, 11, 41, 43] have
been proposed to address these challenges. Furthermore,
[1, 7, 23, 37] take depth information into consideration to
overcome the deficiency of single image. Recently, [16,24]
employ light field to achieve impressive performance, pro-
viding a new perspective for semantic segmentation.

Compared to traditional imaging system, 4D light field
records intensity for rays in terms of position and direction,
yielding a regularly distributed multi-view image array. The
information embedded in additional angular dimensions is
beneficial for detail analysis to thoroughly parse scenes. As
shown in Fig. 1, the front wheel of bicycle is occluded,
forming two small areas that are hard to assign labels. With
the transformation of viewpoint, the scale of areas changes
accordingly. Capturing such regular change with the help
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(a) Central view image (b) Image-based input

(c) Patch-based input

Figure 2. Illustration of input form for light field with an angular
resolution of 5 × 5. Red rectangles in (a) show three patches with
similar color, different disparity and semantic labels. (c) are corre-
sponding patch arrays composed of all SAIs. Super-resolution and
disparity estimation can use patch-based input because the former
only needs to consider surrounding pixels, and the latter empha-
sizes pixel matching across views. On the contrary, semantic seg-
mentation cannot assign correct labels based on local information
in (c). It requires context information from (b).

of disparity facilitates eliminating ambiguity around object
boundaries and occlusion. To this end, it is meaningful to
introduce light field into semantic segmentation.

As an emerging research field, light field semantic seg-
mentation can absorb foundations from the great progress
of generic semantic segmentation. For instance, a straight-
forward solution is to organize light field into a 2D macro-
pixel image (MacPI) and then apply image semantic seg-
mentation. Video semantic segmentation is also available
because light field can be converted into a sub-aperture im-
age (SAI) array, which is similar in form to video sequence.
Since depth and disparity are used interchangeably, the dis-
parity contained in light field is workable for RGB-D se-
mantic segmentation. Nevertheless, directly applying these
three kinds of methods cannot make full use of advantages
of 4D light field. First, treating light field as 2D image in-
evitably ignores angular information. Second, the regular
2D angular information between SAIs is more compact and
intact than 1D temporal information in video. Third, RGB-
D-based methods merely extract depth as input, lacking fur-
ther process about light field. Consequently, it is necessary
to design a framework tailored for light field.

In order to realize an overall extraction of 4D informa-
tion in light field, an effective way is to model spatial re-
lationships in each SAI separately, and then perform inter-
actions across all views along the angular dimension. This

modeling mechanism is commonly used in research of light
field like super-resolution [33, 38] and disparity estimation
[27, 32]. Considering prohibitive inference cost and lim-
ited memory usage, each SAI is cropped into multiple small
patches for calculation. However, as illustrated in Fig. 2,
it is catastrophic and unsuitable for semantic segmentation
because independent small patches discard valuable contex-
tual information [35]. Resizing all SAIs to an extremely low
scale along the spatial dimension is an alternative manner,
but it gives up resolution and granularity which are critical
for dense prediction tasks.

In the light of above issues, we present a well-engineered
framework, which includes an implicit branch and an ex-
plicit branch to fully explore structural information in light
field for robust semantic segmentation of central view. The
implicit branch only processes a few SAIs and utilizes self-
attention and cross-attention mechanisms to calculate simi-
larity for feature integration. The explicit branch processes
all SAIs to estimate disparity for subsequent feature prop-
agation. In brief, our framework realizes feature enhance-
ment for central view through implicit feature integration
and explicit feature propagation. It is worth noting that two
branches transmit supplemental information to each other.
Specifically, implicit branch leverages estimated disparity
from explicit branch to adjust the weight of cross-attention,
enhancing the perception of variation among views. On the
other hand, the features to be warped in explicit branch
derive from implicit branch. The output features of two
branches are fused for final prediction.

Our contributions can be summarized as follows. (1) We
present a network called LF-IENet which incorporates im-
plicit and explicit view correlation to exploit light field. The
former learns a unified representation within target view and
across views. The latter uses disparity to propagate features
to target view. (2) The proposed network exists information
interaction between two manners, acting as a supplemen-
tary item for one another rather than standalone and jointly
improving the utilization efficiency of light field. (3) Exten-
sive experiments on the light field semantic segmentation
dataset confirm the effectiveness of our method.

2. Related Work
In this section, we briefly review generic semantic seg-

mentation and light field semantic segmentation that are
closely related to our work. Since the proposed method uses
disparity cue, we additionally introduce light field depth es-
timation and its application to other tasks.

2.1. Generic Semantic Segmentation

As the pioneering work of image semantic segmenta-
tion, FCN [21] firstly adopts fully convolution networks to
make pixel-wise predictions combined with the success of
deep learning. To make high-accuracy predictions, recent
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researches present various schemes following FCN. PSP-
Net [41] and DeepLab [4] utilize parallel adaptive pooling
operations and atrous spatial pyramid pooling to capture
multi-scale context, respectively. [11, 15, 42] propose dif-
ferent attention mechanisms to focus on the similarity be-
tween pixels for relational context. More recent works like
SETR [43] and SegFormer [34] apply transformer to extract
global context and achieve outstanding performance.

Video semantic segmentation emphasizes real-time pre-
diction for each frame in a video sequence, which requires a
trade-off between quality and speed. Therefore, researchers
devote efforts into two directions. Methods in the first cate-
gory [45,46] concentrate on improving the segmentation ef-
ficiency. They reuse the high-level features extracted from
key frame, and propagate them along temporal dimension
through optical flow. The second category [20,26,30] aim at
high-accuracy segmentation result. They incorporate tem-
poral context from several consecutive frames, and interact
with target frame to enforce consistency.

RGB-D semantic segmentation is another branch of se-
mantic segmentation. It introduces depth information to
distinguish instances which share similar color and texture.
[7,23,36] feed RGB and depth data to two parallel streams,
where the output features are seamlessly integrated for pre-
diction. In contrast, some methods propose well-engineered
layers to replace general convolutional layers by applying
depth values, such as S-Conv [6] and ShapeConv [1]. Fur-
thermore, [28, 37] use multitask learning strategy to com-
bine semantic segmentation and depth estimation, in which
depth is treated as one of the supervised signals.

2.2. Light Field Semantic Segmentation

Compared with generic semantic segmentation, the re-
search related to light field semantic segmentation is in a
preliminary stage. Chen et al. [16] present the first CNN-
based method to achieve this goal. They utilize feature ex-
traction backbones to process MacPI, obtaining the result of
entire light field. However, only utilizing 2D spatial infor-
mation is one-sided. Sheng et al. [24] adopt light field to
refine the result of central view image. On the basis of ex-
isting image semantic segmentation works [35,41], they in-
sert a new branch that excavates structural information from
EPIs to refine features of central view. Nevertheless, lines in
EPIs are susceptible to noise and occlusion and information
involved in more than half of views is abandoned.

Different from the currently only two light field semantic
segmentation works mentioned above, the proposed method
fully explores spatial and angular information from the light
field. It adopts two ways to enhance feature representation
of central view. One is to perform feature interaction be-
tween side view and center view for geographic relation in-
tegration. The other is to utilize the estimated disparity to
warp features of side view to central view.

2.3. Light Field Disparity Estimation

The goal of light field disparity estimation is to com-
pute a displacement map that represents the spatial pro-
jection coordinate transformation between adjacent views.
After long-term research and accumulation, massive meth-
ods [12,19,22,25,27,32,40,44] have been proposed to boost
the development of this field. They can be divided into con-
ventional methods and learning-based methods, EPI-based
methods and non-EPI-based methods, full-supervised meth-
ods and unsupervised methods.

Disparity information has been exploited to help other
light field tasks. For example, it is used to warp multi-view
features to align central view for superior super-resolution
result [8, 17]. The intractable problem of light field di-
mensionality reduction can also be solved with disparity for
high-efficiency data compression [3, 10].

3. The Proposed LF-IENet
In this section, we describe the proposed LF-IENet for

light field semantic segmentation. Given a 4D light field
L ∈ RU×V×H×W×3 composed of U×V SAIs with H×W
spatial resolution, only central view image Lac ∈RH×W×3

has annotated semantic labels Yac
∈ RH×W×Ccls , in which

Ccls is the total number of semantic categories. The remain-
ing SAIs except Lac

are denoted as reference view images
Lai

r
∈ RH×W×3 (i = 1, · · · , UV − 1). Our proposed net-

work only predicts semantic labels Y ac ∈ RH×W×Ccls for
central view with the help of reference views. Note that here
a represents angular coordinates (u, v) and we achieve se-
mantic segmentation using SAIs distributed on a square ar-
ray of angular dimensions, i.e., U = V = A.

The arrangement of this section is organized as follows.
In Section 3.1, we introduce the core idea and framework
of the proposed LF-IENet from a global perspective. The
implicit and explicit branches that utilize structural infor-
mation of light field are elaborated in Section 3.2 and Sec-
tion 3.3, respectively. In Section 3.4, we present the loss
functions used to train the proposed network.

3.1. Motivation and Framework

Light field records the same scene from multiple regu-
larly varying views, containing a wealth of visual informa-
tion and encoding geometric information. The surrounding
view image in different angular directions possesses sub-
pixel offsets in specific spatial direction. As shown in Fig. 1,
the blue and yellow regions of central view can not only cor-
relate the similar features from green region of same view,
but also from blue, yellow and green regions of other views.
Besides, the spatial location of these regions varies with the
change of view. Therefore, a rigorous exploration of the
complementary information within a single view and across
views is crucial for high-quality semantic segmentation.

9174



random sample ···

w
ei

gh
t  

sh
ar

ed

···

B
ac

kb
on

e

central view

＋ R
el

u
3×

3 
C

on
v

 R
el

u
3×

3 
C

on
v

Warping  R
el

u
1×

1 
C

on
v

 S
ig

m
oi

d
1×

1 
C

on
v

ad
ap

tiv
e 

av
gp

oo
l

channel attention

×  R
el

u
1×

1 
C

on
v

 R
el

u
3×

3 
C

on
v

En
co

di
ng

En
co

di
ng

En
co

di
ng

···
self attention

���
1

���
1

���
�

���
�

���

cross attention

disparity offset > �

Segmentation
Head

B
ac

kb
on

e

���
1

���
�

���

���

���

Softmax

SoftmaxTr
an

sp
os

e

Transpose

×

× ＋

×

× ＋

���

������

�����

ex
pl

ic
it 

br
an

ch
im

pl
ic

it 
br

an
ch

C

C

C
Disparity
Estimator

···

···

×5

���

���

���

���
1

���
�

���

�������
�

�����

����1

����2

���

D

＋
���

1

���
�

���

���

�����

addition
 multiplication

＋
×

concatenationC

�

Figure 3. Architecture of the proposed LF-IENet. Central SAI and n (n ≤ 4) reference SAIs are fed into a shared backbone to extract
features. At the same time, a disparity estimator predicts disparity value for light field image. To fully exploit complementary information
from reference views to reinforce central view, we adopt two different approaches, called implicit feature integration and explicit feature
propagation. The former uses self-attention and cross-attention to integrate similar context information, in which the cross-attention focuses
more on inconsistent regions across views. The latter propagates feature based on the estimated disparity and relative angular position.
Loss functions for training are viewed with red rectangles. Note that n reference views are randomly sampled from one of the eight image
stacks, whose viewpoints change along horizontal, vertical, left and right diagonal directions in order.

One feasible scheme is to apply the powerful attention
mechanism [29] to light field. It can implicitly retrieve use-
ful information from reference views and central view by
computing the feature correlation to enhance the represen-
tation of central view. However, this solution is incapable of
fully utilizing 2D angular information in light field because
of ignoring the relative position association among view-
points. Feature propagation based on disparity is another
valid solution. It firstly computes a disparity prior from light
field, and then explicitly produces the features of central
view by propagating the features of reference views under
the guidance of estimated disparity. Obviously, the accu-
racy of light field disparity estimation determines the qual-
ity of propagated features. In this paper, we touch on the
joint learning of complementary information among views
in the aforementioned implicit and explicit manners, which
are both important and effective for semantic segmentation
of central view image.

The overall pipeline of our proposed method is illus-
trated in Fig. 3. It takes entire light field as input and out-
puts the result of central view. There are two branches in the
network. In the implicit branch, it firstly uses a feature ex-
traction backbone to process several view images including
central view image. Then self-attention and cross-attention
are performed to reinforce feature representation capability,

in which self-attention is designed to gather context infor-
mation within central view, while cross-attention aims at ex-
ploiting similarity from other views to compensate central
view. In the explicit branch, it firstly computes an initial dis-
parity map through mature light field disparity estimation
technologies. According to photo-consistency assumption,
features of other reference views are propagated to central
view. Finally, the output features of two branches Fim and
Fex are aggregated to produce the final feature of central
view Fpred, which is then fed to a segmentation head to get
the predicted segmentation map.

3.2. Implicit Feature Integration

Limited by computation and memory, We select n SAIs
instead of all reference views to calculate cross-attention.
Following [39], we explore the complementary information
from surrounding reference view images that have horizon-
tal, vertical or diagonal sub-pixel shifts. A total of n+1 im-
ages including central view {La1

r
, · · · , Lan

r
, Lac} are fed to

the same backbone to extract feature {Fa1
r
, · · · , Fan

r
, Fac},

each of which has a size of Rc×h×w. After different par-
allel encoding layers, these features are further condensed
into {Fa1

r
, · · · , Fan

r
, Fac

} with a size of Rcv×h×w. Then
we generate Qac ∈ RN×cq , Kac ∈ RN×ck , Vac ∈ RN×cv

of central view image and Kai
r
∈ RN×ck , Vai

r
∈ RN×cv of
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each reference image, in which cq = ck, N = hw. Finally
we utilize self-attention to enhance feature of central view,
which is defined as:

Fself = R(softmax(Qac ·KT
ac
) · Vac

) + Fac (1)

where Fself ∈ Rcv×h×w, R denotes the reshape conversion
from N×cv to cv×h×w.

In order to make reference view images better supple-
ment central view image, cross-attention should pay more
attention to inconsistent regions among views, which are
not available via self-attention. As the yellow box and blue
box in Fig. 1 show, inconsistent regions can be expressed
as regions with large disparity. To this end, we generate an
attention mask Mai

r
∈ Rh×w for each reference view by

computing the disparity offset of each pixel, which is for-
mulated as follows:

Mai
r
=

{
1, d ∗ ||ai

r − ac||2 > σ / stride

0, otherwise
(2)

where d ∈ Rh×w is the disparity value of central view im-
age, || · ||2 is the euclidean distance, σ is the threshold value,
stride = H / h denotes the output stride of the backbone.
Then all key maps, value maps and attention masks of ref-
erence views are sequentially concatenated, permuted, and
reshaped to obtain KaR

∈ RNR×ck , VaR
∈ RNR×cv and

MaR
∈ R1×NR , respectively, in which NR = nhw. The

cross-attention weight is defined as:

Wcross = softmax(Qac
·KT

aR
) + ω / NR ∗MaR

(3)

where Wcross∈ RN×NR , ω denotes the additional weight
for pixels with large disparity. We multiply Wcross and VaR

to integrate the angular relation, thus enhancing the feature
of central view. The process is formulated as:

Fcross = R(Wcross · VaR
) + Fac

(4)

where Fcross ∈ Rcv×h×w. In this way, cross-attention
tends to get more information from inconsistent areas across
views with the aid of estimated disparity originating from
explicit branch. Finally, we obtain the output feature of im-
plicit branch Fim by concatenating Fself and Fcross along
the channel dimension.

3.3. Explicit Feature Propagation

To cast accurate geometric correspondences in feature
space, the paramount task is to obtain a high-quality dispar-
ity prior. Due to the lack of ground truth disparity for su-
pervision, we leverage OAVC [12], a conventional method
with superior performance as disparity estimator to predict
the disparity value D ∈RH×W of central view, in which the
label range is set to 256. Note that OAVC runs on the CPU,
which decreases the workload on the GPU and leads to a

massive reduction in computation time. To further improve
the precision of estimated disparity, we apply 5 cascaded 3
× 3 convolution layers with a local skip residual connection
to continuously calibrate D, then obtain d ∈ Rh×w with
the same resolution as Fai

r
through downsampling opera-

tion for subsequent feature propagation.
According to 4D light field structure, given a disparity d

of central view ac, the spatial coordinates (hi
r, w

i
r) of pixel

L(uc, vc, hc, wc) in reference view ai
r can be calculated via

the following transformation:

(hi
r, w

i
r) = (hc, wc) + d(hc, wc) ∗ (ac − ai

r) (5)

Thus, we successively warp each reference feature to cen-
tral view to get an aligned feature group {Fw

a1
r
, · · · , Fw

an
r
},

each of which has a size of Rc×h×w. Taking into account
that each reference view contributes differently to final rep-
resentation, we adopt channel attention to generate weights
for aggregating aligned features. Specifically, all parallel
aligned features are firstly concatenated along the channel
dimension, then an adaptive pooling is used to squeeze spa-
tial information. After two convolution layers and a sigmoid
function, we obtain weights and perform multiplication. Fi-
nally, two convolution layers are performed to compact the
channel of feature. The overall process is formulated as:

Fw
concat = [Fw

a1
r
, · · · , Fw

an
r
] (6)

Wchannel = ϕ(H1×1(H1×1(AdaptPool(Fw
concat)))) (7)

Fex = H3×3(H1×1(Wchannel ∗ Fw
concat)) (8)

where [·] represents the concatenation operation, Hs×s rep-
resents convolution layer with kernel size s×s, ϕ represents
the sigmoid function. Fex represents the output feature of
explicit branch, containing effective information from all
reference views to augment central view.

3.4. Loss Functions

The total loss Ltotal for training our proposed LF-IENet
in an end-to-end fashion consists of three parts. The first
term Lmain is the main cross-entropy loss at the end of
the network. The second term Laux1

is an auxiliary cross-
entropy loss at Fac

to help optimize the feature extraction
process in the backbone. In order to constrain the prop-
agated features in explicit branch close to the feature of
central view, we also add an auxiliary cross-entropy loss
at each propagated feature Fw

ai
r

as the third term Laux2
. It

also trains cascaded convolution layers which are used to
rectify the estimated disparity. Therefore, the total loss can
be formulated as:

Ltotal = Lmain + λ1 ∗ Laux1
+ λ2 ∗ Laux2

= CE(Spred, Yac
) + λ1 ∗ CE(Sac

, Yac
)

+ λ2 ∗
n∑

i=1

CE(Sw
ai

r
, Yac

) (9)
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where CE denotes cross-entropy loss function, Spred , Sac

and Sw
ai

r
, each of which has a size of RH×W×Ccls , denote

segmentation logits of Fpred, Fac
and Fw

ai
r
, respectively. λ1

and λ2 denote the weighting factor of two auxiliary losses
that require adjusting to deliver the best performance. Note
that we try to use mean average error (MAE) loss in image
space between warped reference images and central view
image to further optimize the estimated disparity, but it has
little effect on the accuracy of final segmentation result.

4. Experiments
4.1. Experimental Setup

Dataset. All the experimental results are produced on Ur-
banLF dataset [24], the only available light field semantic
segmentation benchmark up to now. There are two subsets
in it, consisting of 824 real-world samples (UrbanLF-Real)
and 250 synthetic samples (UrbanLF-Syn). Each sample
is composed of 81 SAIs with an angular resolution of 9 × 9
and pixel-wise annotation of central view for 14 classes. We
evaluate all methods on these two subsets using the standard
train-val-test split.
Evaluation Metrics. Following [24], we use pixel accuracy
(Acc), mean pixel accuracy (mAcc) and mean intersection-
over-union (mIoU) to evaluate performance. Results pro-
duced by both single-scale and multi-scale testing strate-
gies are recorded. For multi-scale testing, random horizon-
tal flipping and multi-scale scaling with four factors (0.75,
1.0, 1.25, 1.5) are exploited. In addition, we calculate the
number of parameters to evaluate the efficiency of methods.
Models & Baselines. The proposed LF-IENet can flexibly
combine with different backbones. We choose two widely
used backbones: ResNet-50 [13] and HRNetV2-W48 [31].
The latter has better feature extraction ability but is less ef-
ficient in terms of model size. We apply them into our light
field semantic segmentation framework, resulting in two
models: LF-IENet4-Res50 and LF-IENet3-HR48, in which
the number of reference views is 4 and 3, respectively.
Implementation details. We implement our methods with
the open source mmsegmentation toolbox [9]. By default,
we set σ = 0.8, ω = 0.2, λ1 = 0.4, λ2 = 0.1. Backbones
are pretrained on ImageNet [18] and the rest modules are
weighted through normal initialization. We adopt random
scaling, cropping, flipping, and photometric distortion for
data augmentation, in which the cropping size is set as 432
× 432 for UrbanLF-Real and 480 × 480 for UrbanLF-Syn.
Networks are trained using SGD optimizer with momentum
0.9 and weight decay 5e-4 for 80k iterations. The learning
rate is initialized as 0.01 and decreases according to ”poly”
schedule. Two NVIDIA RTX 3090 are used for distributed
training. During inference stage, we sequentially take ref-
erence views from each image stack as input and calculate
average segmentation score as the final prediction.

4.2. Comparison to State-of-the-art

To prove the effectiveness of our proposed networks, we
compare them with the state-of-the-art methods: PSPNet-
LF [24], OCR-LF [24]. Considering that the available light
field semantic segmentation approaches are rare, the com-
parison is also extended to other generic methods following
[24], including two image-based methods: DeepLabv3+

[4], SETR [43], three video-based methods: TDNet [14],
DAVSS [46], TMANet [30], three RGB-D-based methods:
MTINet [28], SA-Gate [7], ESANet [23].

Results on UrbanLF-Syn. Tab. 1 presents the quantita-
tive results on the UrbanLF-Syn subset which has obvious
changing across views as well as little image noise. Our LF-
IENet3-HR48 achieves a state-of-the-art mIoU of 81.78%
with single-scale testing. When multi-scale testing is per-
formed, it also ranks 1st place with highest scores on every
metric. Even if compared with RGB-D-based methods us-
ing ground truth depth, it gains better accuracy. Moreover,
our light-weight LF-IENet4-Res50 outperforms PSPNet-LF
with a heavy ResNet-101 backbone on metric of mAcc and
mIoU. The outstanding performance indicates the proposed
method effectively leverages complementary information
from reference views to reinforce central view image for
robust light field semantic segmentation. Fig. 4 shows the
qualitative results. It is observed that our methods gain good
segmentation results at the edges and occlusions.

Results on UrbanLF-Real. As shown in Tab. 2, our LF-
IENet achieves higher accuracy compared with generic se-
mantic segmentation methods. Compared with light field-
based methods, our LF-IENet3-HR48 is slightly worse than
OCR-LF with 0.13% mIoU margin applying single-scale
testing. The performance gap is highly associated with data
quality and focus of method. Specifically, light field cap-
tured by plenoptic camera contains plenty of noise, which
has an extremely negative effect on disparity estimation.
Meanwhile, the small baseline causes nearly identical SAIs,
making it dispensable to exploit complementary informa-
tion across views. Therefore, real-world samples are not
conducive to the advantages of the proposed method. On
the contrary, OCR-LF puts more effort into mining con-
textual information inside central view image without con-
sidering reference views during decoder stage, thus it gets
the highest scores at the expense of large parameters. It is
worth noting that the situation changes during multi-scale
testing. Differences between view images are magnified
through big scaling factors in favor of our approach, so that
LF-IENet3-HR48 obtains the best performance in this case.
Our LF-IENet4-Res50 is worse than PSPNet-LF on almost
all metrics. In addition to aforementioned reasons, it is rele-
vant to the capability of feature extraction backbone. Fig. 5
shows the qualitative results of our models and other two
light field-based methods.
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Method Backbone Type Params. Acc mAcc mIoU Acc∗ mAcc∗ mIoU∗

DeepLabv3+ [5] ResNet-101 Image 59.3M 89.60 83.55 75.39 90.99 85.35 78.05
SETR [43] Vit-Large Image 97.0M 90.97 85.26 77.69 91.74 86.60 79.32
TDNet [14] ResNet-50 Video 65.3M 89.06 83.43 74.71 89.79 84.32 76.39
DAVSS [46] Xception-65 Video 56.0M 89.47 82.94 74.27 90.94 85.15 77.33

TMANet [30] ResNet-50 Video 33.4M 89.76 84.44 76.41 90.99 86.30 78.87
MTINet [28] HRNetV2-W48 RGB-D 98.7M 91.24 86.94 79.10 91.86 87.34 80.01
ESANet [23] ResNet-34 RGB-D 46.9M 91.81 86.26 79.43 92.63 86.97 80.97
SA-Gate [7] ResNet-101 RGB-D 110.9M 92.10 87.04 79.53 93.18 88.51 81.72

PSPNet-LF [24] ResNet-101 LF 127.8M 90.55 85.91 77.88 91.55 87.54 80.09
OCR-LF [24] HRNetV2-W48 LF 137.4M 92.01 87.71 80.43 93.06 89.20 82.77

LF-IENet4 (Ours) ResNet-50 LF 94.6M 90.42 86.17 78.27 91.38 87.66 80.33
LF-IENet3 (Ours) HRNetV2-W48 LF 117.4M 92.41 88.31 81.78 93.26 89.25 83.32

Table 1. Comparison with state-of-the-art image, video, RGB-D and LF-based methods on UrbanLF-Syn. Our methods achieve outstanding
performance with proper model size. The best results are in bold and the second best results are underlined. * signifies multi-scale testing.

Method Backbone Type Params. Acc mAcc mIoU Acc∗ mAcc∗ mIoU∗

DeepLabv3+ [5] ResNet-101 Image 59.3M 91.02 83.53 76.27 91.50 84.30 77.35
SETR [43] Vit-Large Image 96.9M 92.16 84.27 77.74 92.71 84.93 79.05
TDNet [14] ResNet-50 Video 65.3M 91.05 83.38 76.48 91.79 84.85 78.36
DAVSS [46] Xception-65 Video 56.0M 91.04 83.54 75.91 91.74 84.54 77.68

TMANet [30] ResNet-50 Video 33.4M 91.67 84.13 77.14 91.87 84.55 77.91
PSPNet-LF [24] ResNet-101 LF 127.8M 92.14 84.86 78.10 92.77 85.73 79.55

OCR-LF [24] HRNetV2-W48 LF 137.4M 92.51 86.31 79.32 92.68 86.58 80.06

LF-IENet4 (Ours) ResNet-50 LF 94.6M 92.01 85.10 78.09 92.38 85.52 79.08
LF-IENet3 (Ours) HRNetV2-W48 LF 117.4M 92.09 86.03 79.19 92.82 86.87 80.49

Table 2. Comparison with state-of-the-art image, video and LF-based methods on UrbanLF-Real. Our methods achieve outstanding
performance with proper model size. The best results are in bold and the second best results are underlined. * signifies multi-scale testing.

4.3. Ablation Studies

This section introduces ablation studies to validate the
effectiveness of prominent components in our method. All
experiments are performed on UrbanLF-Syn with ResNet-
50 backbone. We only report mIoU of single-scale testing.
Effect of implicit feature integration. Our method lever-
ages cross-attention to implicitly integrate information from
reference views to assist central view. To validate the ben-
efit of this design, as shown in Tab. 3, we first introduce a
baseline (model-1) with only self-attention in the implicit
branch, then insert cross-attention into the implicit branch
of baseline (model-3), achieving a 1.05% mIoU improve-
ment. Moreover, when cross-attention is removed from LF-
IENet (model-5), the performance of the resulting model-2
degrades by 0.66% mIoU, proving the effect of implicit fea-
ture integration from another perspective.
Effect of explicit feature propagation. Similar to the pre-
vious ablation study, we investigate the impact of explicit
feature propagation by comparing model-2 to model-1 and
model-5 to model-3. It can be observed in Tab. 3 that model-
2 and model-5 obtain a 0.81% and 0.42% higher mIoU, re-
spectively. The performance gap demonstrates that feature

propagation also contributes to strengthening the feature of
central SAI. More importantly, it provides additional com-
plementary information for central view image in a different
way from implicit feature integration.
Effect of attention mask of cross-attention. The attention
mask in the proposed network aims to highlight the focus on
inconsistent areas across views, which cannot be achieved
by self-attention on central view image. To prove the effec-
tiveness introduced by attention mask, we simply remove
it without other modification to the original cross-attention
weights. Tab. 3 shows that the mIoU score of model-4 is de-
graded by 0.22% compared with model-5, indicating that it
makes sense to pay extra attention to large disparity regions.
Effect of the quality of estimated disparity. In the pro-
posed LF-IENet, feature propagation in the explicit branch
is implemented based on disparity, and the implicit branch
also applies disparity to enhance attention weight. To study
the impact of disparity, we conduct experiments with three
kinds of disparity value, including ground truth, result from
OAVC [12] and SubFocal [2]. As shown in Tab. 4, the per-
formance is positively related to the accuracy of disparity
prior. Once the ground truth disparity is available, the net-
work gains the highest mIoU score, outperforming 0.23%
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Figure 4. Comparison in terms of qualitative results on UrbanLF-Syn. Best viewed with zooming in red and green.

Central View Ground Truth PSPNet-LF OCR-LF LF-IENet4-Res50 LF-IENet3-HR48TMANetSETR

Figure 5. Comparison in terms of qualitative results on UrbanLF-Real. Best viewed with zooming in red and green.

Model Implicit Explicit Mask Params. mIoU
1 96.3M 76.80
2 ✓ 95.3M 77.61
3 ✓ ✓ 97.3M 77.85
4 ✓ ✓ 94.6M 78.05
5 ✓ ✓ ✓ 94.6M 78.27

Table 3. Ablation study with implicit feature integration, explicit
feature propagation, attention mask for LF-IENet4-Res50. Note
that all models keep self-attention in the implicit branch and the
channel number of variants is increased to make up the model size.
In addition, model-2 keeps all reference features from the implicit
branch. model-3 keeps the disparity map from the explicit branch.

Methods Backbone Disparity MSE mIoU

LF-IENet4 ResNet-50 Ground Truth - 78.50
LF-IENet4 ResNet-50 OAVC 0.11 78.27
LF-IENet4 ResNet-50 SubFocal 0.18 78.19

Table 4. Ablation study on UrbanLF-Syn with different estimated
disparity. MSE denotes the mean square error of disparity values.

than our default setting (i.e., OAVC). This points out a new
direction for us to further optimize the proposed method.
Effect of the number of reference views. Theoretically
speaking, with the increase in the number of reference view
images, the size and performance of the proposed network
rises. Here we investigate the relationship among these fac-
tors. Corresponding results are listed in Tab. 5. Restricted
by computation and memory, the maximum number of ref-
erence views is 4 and our network obtains the highest mIoU
score in this case. Moreover, the performance tends to be
saturated with more reference views.

Methods Backbone View(Ref) Params. mIoU

LF-IENet1 ResNet-50 1 59.3M 77.40
LF-IENet2 ResNet-50 2 71.0M 77.82
LF-IENet3 ResNet-50 3 82.8M 78.09
LF-IENet4 ResNet-50 4 94.6M 78.27

Table 5. Ablation study with the number of reference view images.

5. Conclusion
In this work, we explore light field semantic segmenta-

tion from a brand-new perspective. In order to take full
advantage of additional angular information embedded in
light field, we proposed two various manners, i.e., implicit
feature integration based on similarity and explicit feature
propagation relying on disparity to enhance features of cen-
tral view image. The implicit and explicit combination
framework can exert their own advantages and gain superior
performance. We also find that leveraging disparity cue to
calibrate weight of cross-attention to rise attention on incon-
sistent regions across views, further boosts performance. In
the future, we will extend the proposed method in two as-
pects: (1) accurate estimation of disparity prior. (2) efficient
model with fewer parameters and higher inference speed.
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