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Abstract

Given a piece of text, a video clip and a reference
audio, the movie dubbing (also known as visual voice
clone, V2C) task aims to generate speeches that match
the speaker’s emotion presented in the video using the de-
sired speaker voice as reference. V2C is more challeng-
ing than conventional text-to-speech tasks as it additionally
requires the generated speech to exactly match the vary-
ing emotions and speaking speed presented in the video.
Unlike previous works, we propose a novel movie dub-
bing architecture to tackle these problems via hierarchi-
cal prosody modeling, which bridges the visual informa-
tion to corresponding speech prosody from three aspects:
lip, face, and scene. Specifically, we align lip move-
ment to the speech duration, and convey facial expres-
sion to speech energy and pitch via attention mechanism
based on valence and arousal representations inspired by
the psychology findings. Moreover, we design an emo-
tion booster to capture the atmosphere from global video
scenes. All these embeddings are used together to gener-
ate mel-spectrogram, which is then converted into speech
waves by an existing vocoder. Extensive experimental re-
sults on the V2C and Chem benchmark datasets demon-
strate the favourable performance of the proposed method.
The code and trained models will be made available at
https://github.com/GalaxyCong/HPMDubbing.

1. Introduction

Movie dubbing, also known as visual voice clone
(V2C) [9], aims to convert a paragraph of text to a speech
with both desired voice specified by reference audio and de-
sired emotion and speed presented in the reference video as
shown in the top panel of Figure 1. V2C is more challeng-
ing than other speech synthesis tasks in two aspects: first,

Corresponding author.

OO n
- S I can't wait 3
i el to meet everyone!
[sescssssssssssas
Silent Video Text/Subtitle Reference Audio
L ] |
v
Speech

(a) Visual Voice Cloning (V2C)

m Surprised
/ Global Emotion \

Scene Atmosphere

Visual L [l AN et Prosody
{ e -«
Source | l ﬁ Attributes
\ Affective Display Pitch and Energy /
RECAK AR G

Lip Movement Tempo and Pause

(b) Hierarchical Prosody Modeling

Figure 1. (a) [llustration of the V2C tasks. (b) To generate natural
speech with proper emotions, we align the phonemes with lip mo-
tion, estimate pitch and energy based on facial expression’s arousal
and valence, and predict global emotion from video scenes.

it requires synchronization between lip motion and gener-
ated speech; second, it requires proper prosodic variations
of the generated speech to reflect the speaker’s emotion in
the video (i.e., the movie’s plot). These pose significant
challenges to existing voice cloning methods.

Although significant progress has been made, exist-
ing methods do not handle the challenges in V2C well.
Specifically, text-based dubbing methods [46—48, 54] con-
struct speeches from given text conditioned on the differ-
ent speaker embedding but do not consider audio-visual
synchronization. On the other hand, lip-referred dubbing
schemes [18,32,55] predict mel-spectrograms directly from
a sequence of lip movements typically by encoder-decoder
models. Due to high error rates in generated words, these
methods can hardly guarantee high-quality results. Further-
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more, video-and-text based dubbing methods [17, 20, 32]
focus on inferring speaker characters (e.g., age and gender).
However, these visual references usually do not convey tar-
geted emotion well as intended in V2C.

An ideal dub should align well with the target charac-
ter so that the audiences feel it is the character speaking
instead of the dubber [7]. Thus, a professional dubber usu-
ally has a keen sense of observing the unique characteris-
tics of the subject and acts on voice accordingly. In this
work, we address these issues with a hierarchical dubbing
architecture to synthesize speech. Unlike previous methods,
our model connects video representations to speech coun-
terparts at three levels: lip, face, and scene, as shown in
Figure 1.

In this paper, we propose a hierarchical prosody model-
ing for movie dubbing, which could keep the audio-visual
sync and synthesis speech with proper prosody follow-
ing the movie’s plot. Specifically, we first design a dura-
tion alignment module that controls speech speed by learn-
ing temporal correspondence via multi-head attention over
phonemes and lip motion. Second, we propose an affective-
display based Prosody Adaptor (PA), which learns affec-
tive psychology computing conditioned on facial expres-
sion and is supervised by corresponding energy and pitch
in the target voice. In particular, we introduce arousal and
valence features extracted from facial regions as emotion
representations. This is inspired by the affective comput-
ing method [51], which analyses the facial affect relying
on dimensional measures, namely valence (how positive the
emotional display is) and arousal (how calming or exciting
the expression looks). Third, we exploit a scene-atmosphere
based emotion booster, which fuses the global video rep-
resentation with the above adapted hidden sequence and is
supervised by the emotive state of the whole voice. The out-
puts of these three modules are fed into a transformer-based
decoder, which converts the speech-related representations
into mel-spectrogram. Finally, we output the target speech
waves from the mel-spectrogram via a powerful vocoder.

The contributions of this paper are summarized below:

* We propose a novel hierarchical movie dubbing archi-
tecture to better synthesize speech with proper prosody
by associating them with visual counterparts: lips, fa-
cial expressions, and surrounding scenes.

e We design an affective display-based prosody adap-
tor to predict the energy and pitch of speech from the
arousal and valence fluctuations of facial regions in
videos, which provides a fine-grained alignment with
speakers’ emotions.

» Extensive experimental results demonstrate the pro-
posed method performs well against state-of-the-art
models on two benchmark datasets.

2. Related Work

Text to Speech Synthesis. Over the recent years, nu-
merous TTS models [2,29, 40, 41, 47, 48, 54] have been
proposed for generating high-quality natural speech condi-
tioned on given text. Tacotron [54] is an end-to-end genera-
tive TTS model that synthesizes speech directly from char-
acters. Then, Tacotron2 [29] replaces the RNN structures by
introducing the attention mechanism to improve training ef-
ficiency and solve the long dependency issue. Furthermore,
FastSpeech [47] and Fastspeech2 [46] exploit the Feed-
Forward Transformer (FFT) to generate mel-spectrogram
from phoneme sequences. Despite the impressive voice
generated, these methods cannot provide the audio with de-
sired emotion and audio-visual sync for movie dubbing.

Lip to Speech Synthesis. This task aims to reconstruct
speech based on the lip motions alone [3,25]. Lip2Wav [42]
is a sequence-to-sequence architecture focusing on learning
mappings between lip and speech for individual speakers.
Recently, [15,18,49,55] improve the architecture and train-
ing methods, and provide the possibility of unconstrained
speech synthesis in the wild. However, lip-to-speech is in-
competent for movie dubbing because the word error rate is
still high [1,3, 11,13, 16]. In this work, we focus on recon-
structing accurate speech from lip motions and generating
the desired emotion and identity with proper prosody.

Talking Heads. Numerous methods have been developed
for audio-visual translation [58] or speaking style trans-
fer [57] by reconstructing the visual content in video [8,
30,31,50,53,59,61-63]. Wav2Lip [43] uses an expert lip-
syncs discriminator to morph lip movements of arbitrary
identities. Recently, Papantoniou et al. [38] develop a Neu-
ral Emotion Director (NED) to manipulate emotions while
preserving speech-related lip movements. However, these
methods cannot adapt to the movie dubbing task because
they emphasize using generative models to readjust the fa-
cial regions instead of reconstructing the desired speech.

Visual Voice Cloning. Movie dubbing, also known as vi-
sual voice clone, aims to convert scripts to speech with both
desired voice identity and emotion based on the reference
audio and video. To control the speed of generated speech,
Neural Dubber [20] exploits a text-video aligner by using
scaled dot-product attention mechanism. VTTS [17] uses
multi-source attention to fuse the triplets feature and out-
puts the mel-spectrogram via an RNN-based decoder. Since
explicit emotion categories [28] do not exist in these meth-
ods, Chen et al. [9] develops a V2C model on a more chal-
lenging Densiny Animation dataset, which concentrates on
emotional dubbing for movie characters. Although the V2C
considers emotion labels, the adopted global video repre-
sentation negatively affects the fine-grained emotional ex-
pression and makes it challenging to render correct prosody
corresponding to plot developments. To solve this issue, we
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Figure 2. Architecture of the proposed hierarchical modular network for movie dubbing, which consists of four main components: Duration
Aligner (Sec. 3.1), which learns to predict speech duration based on aligning lip movement and text phoneme; Prosody Adaptor (Sec. 3.2),
which predicts energy and pitch from facial arousal and valence, respectively; Atmosphere Booster (Sec. 3.3), which learns a global
emotion embedding from a video scene level; and Mel-Generator (Sec. 3.4), which generates mel-spectrograms from embeddings obtained
by the aforementioned three modules. The mel-spectrograms are finally converted to audio by a widely adopted vocoder.

propose a hierarchical movie dubbing architecture to better
synthesize speech with proper prosody and emotion.

3. Method

The main architecture of the proposed model is shown
in Fig. 2. First, we use a phoneme encoder [9] to con-
vert the input text Z.,; to a series of phoneme embeddings
O = {o1,...,01} and use a speaker encoder Fyyj [9] to
capture the voice characteristics ¢/ from different speakers.
Then, taking phonemes and lip regions as input, the dura-
tion aligner module uses a multi-head attention mechanism
to learn to associate phonemes with related lip movements.
Next, the affective display-based prosody adaptor module
learns to predict the energy and pitch of the desired speech
based on arousal and valence features extracted from facial
expressions, respectively. And then, the scene atmosphere
booster encodes a global representation of emotion of the
entire video content. All the outputs of the above three mod-
ules are combined to generate mel-spectrograms, which are
finally transformed to a waveform Y,,,;c. using a adopted
vocoder. We detail each module below.

3.1. Duration Aligner

The duration aligner contains three steps: (1) extracting
the lip features from movie; (2) aligning the phonemes of

text with the lips; (3) expanding the fused phoneme-lip rep-
resentation to the desired mel-spectrogram length.

Extracting lip feature. Let D,,, D} and D, be the width,
height and number of channels of the video frames, respec-
tively. We first extract lip regions X, € RTvXDPwxDnxDe
from the given video using mouth region pre-processing
from [20, 33-36]. Then we exploit the LipEncoder to ob-
tain the lip movement representation:

Ejip = LipEncoder(x,,) € RT»*Pm (D)

where T, denotes the number of video frames, and D,,
is the hidden dimension of the dynamic lip feature. The
LipEncoder consists of several feed-forward transformer
blocks that are suitable for capturing both long-term and
short-term dynamics lip movement features.

Aligning text with lips. Inspired by the success of atten-
tion mechanism for cross-modality alignment [10, 14, 19,
26, 27,44, 45, 64], we adopt multi-head attention to learn
the alignment between the text phoneme and the lip move-
ment sequence. We use lip embedding as a query to com-
pute the attention on text phonemes. The larger the atten-
tion, the more related between a lip embedding and a text
phoneme. Due to variations of mouth shapes and pronun-
ciations, the multi-head attention mechanism is suitable for
learning their alignments from different aspects. The text-
video context sequence Ejp ¢xt = [a}mmt, SN IS
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RT»xPm is a concatenation of outputs of n attention heads.
Concretely, the k-th head’s output aﬁpﬁm is obtained by:

Q'K T
LMV,

Nz 2 )
T K AT 1% T
Q:W?Elip JK=W;0 ,V=W/0",

k
i ot = softmax(

where W7 is a learnable parameter matrix, dy is the em-
beeding dimension of ay;, ,,,, and M is a mask matrix
indicating whether a token can be attended. The aligned
representation Fjy;, 44+ is later expanded to the length of the
desired mel-spectrogram.

Expanding to the desired length. According to the find-
ings in [20], in an audio-visual clip, the length of a mel-
spectrograms sequence is n times that of a video frame se-
quence because they are temporally synchronized in audio
and visual modalities. The number n is computed as:

_ Tpmer  sr/hs

= + 3
T, FPSGN’ )

where F'PS denotes the Frames per Second of the video,
sr denotes the sampling rate of the audio, and hs denotes
hop size when transforming the raw waveform into mel-
spectrograms. Phoneme-lip feature Ej;, ¢4 is simply du-
plicated n times in [20] as the final phoneme-lip represen-
tation, which lacks flexibility. Instead, we propose to use
transposed convolutions to learn the expansion of Ejp 14,
which can be formulated as:

M,ho.1ip = Conv-Transpose(n, Eiip tz) € R7VPm  (4)

where T, denotes the length of the desired mel-
spectrogram, D, is the dimension of the initial mel-
spectrogram. The parameters (stride and kernel size) of the
transposed convolution can be set under the guidance of n
so that Ty, ~ n x T,,.

3.2. Affective-display based Prosody Adaptor

One of the critical issues in the V2C task is to de-
scribe the speaker’s emotions in the given video. To solve
this problem, we design an affective-display based Prosody
Adaptor (PA), which uses the arousal and valence extracted
from facial expressions to represent the emotion. The
arousal and valence are then used to predict the energy and
pitch of the desired speech model.

Valence and Arousal Feature. To accurately capture the
valence and arousal information from facial expressions, we
utilize an emotion face-alignment network (EmoFAN) [51]
to encode the facial region into valence V and arousal A.
V,A = EmoFAN(z ) € RTv*Pm 5, € RTvXDuwxDnxDe
is the face region extracted via .S 3FD face detection [60].
The EmoFAN focuses on facial regions relevant to emotion
estimation, which utilizes a face alignment network (FAN)

for facial point detection to ensure robustness by jointly pre-
dicting categorical and continuous emotions.

Bridging Arousal with Energy. Arousal is the physiologi-
cal and psychological state of being awoken or of sense or-
gans stimulated to the point of perception. To bridge the vo-
cal energy with arousal display, we compute an arousal con-
text vector Al for frame-level energy of the desired speech
from phoneme-lip representation My, 14

T,—1
I __ k
Ai - § gi,kMpho,lizﬂ
k=0

A Ty—1 . (5)
ik = exp(&in)/ Z exp(&ij),

=0
€k = wy tanh(W] 4; + UzMz]fho,lz'p + ba)

where ¢ is frame index, A; is the i-th row of A, &; j, is the
attention weight on the k-th phoneme-lip feature M;f,wﬁp
(the k-th row of M,,,.1ip) regarding i-th arousal display;
wr, WZT, U and b, are learnable parameters; T}, is the
length of the desired mel-spectrogram.

Then, we use an energy predictor to project the arousal-

related phoneme-lip embedding A! to the energy of speech:
Eqro = Predictor({AL}1%), (6)

where E,., € R”v represents the predicted energy of
speech, and the energy predictor consists of several fully-
connected layers, Conv1D blocks and layer normalization.

Bridging Valence with Pitch. In prosody linguistics,
speakers can speak with a wide pitch range (this is usually
associated with excitement) while, at other times, with a
narrow range. Valence is the affective quality referring to
the intrinsic positiveness or negativeness of an event or sit-
uation. Similar to arousal to energy, we first compute a va-
lence context vector for the frame-level pitch of the desired
speech from phoneme-lip representation M, 1ip:

T,—1
I _ k
V; - E ’l/}iykMpho,lipa
k=0

R T,—1 A 7
Vi = exp(tik)/ Z exp(¥i ),
§=0
J)i,k = ng tanh(W;Vi + Ungho,zip +bg)

where wl, WT, UT and bg are learnable parameters.
Then, we exploit a pitch predictor to convert the valence-
related phoneme-lip embedding V! to the pitch of speech,
which can be formulated as:

P, = Predictor({V;'},). (8)
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Finally, we concatenate the two prosody-related features
as the contextualized affect primitives:

M, = {45 Vi ©
3.3. Scene Atmosphere Booster

As a unique form of artistic expression, the scene lay-
out and colours of the film convey an emotional atmosphere
to evoke resonance with the audience [5, 56]. To reason
the comprehensive emotion, we design a scene atmosphere
booster to combine the global context information and gen-
erated prosody. First, we use the I3D model [6] to extract
the scene representation S from the video. Then, we fuse
the global contextual emotion of vision with prosody infor-
mation of speech through a cross-model attention mecha-
nism by:

_‘

MyS
VD,
Finally, formulated as a maxpool and fully-connected

layer, the emotional predictor projects prosody-scene con-
text sequence MM, to emotional embedding:

M, = Softmax( M, € RTv*Dw (10)

Gemo = Maxpool(Predictor(Ms,)). (11)
3.4. Audio Generation

We fuse the three kinds of speech attribute information
by concatenation operation in the spatial dimension. Then,
we use transformer-based mel-spectrogram decoder to con-
vert the adapted hidden sequence into mel-spectrogram se-
quence in parallel by:

f = TransformerDecoder(Mpp 1ip ® Mp & Me), (12)

where Mpno,1ip, My, and M, denote the hidden represen-
tation of phoneme-lip feature, prosody variances, and emo-
tional tone, respectively. Specifically, our mel-spectrogram
decoder consists of a stack of self-attention layers [52] and
1D-convolution layers as in FastSpeech [47]. We then use
the mel-linear layer and postnet [48] to refine the hidden
states into final dimensional mel-spectrograms by:

y = PostNet(FC(f)). (13)

Finally, to generate the time-domain waveform y,, from
mel-spectrogram y, we use HiFi-GAN [23] as our vocoder,
which mainly consists of a transposed convolution network
and a multi-receptive field fusion module.

3.5. Loss Functions

Our model is trained in an end-to-end fashion via opti-
mizing the sum of all losses:

Ty—1

1 ~
Lpiten = 7w > (P = Poa)?, (14)
Y ot=1

Ty—1

1 A
Eenergy = ? Z (Et - Eéro)27 (15)
Y ot=1
C A .
Lemo =~ Gilog(GL,,,), (16)
=1
| Tl
Emel = ? Z Hft - ftH (17)
Y ot=1

ES = Al»cmel + )\2£pitch + AZﬁ’wCenergy + )\4£emoa (18)

where L1, Lpitchs Lenergy and Lemo, denote the losses
of mel-spectrogram, pitch, energy and global emotion re-
spectively. P;, E;, and f; are ground-truth pitch, energy,
and mel-spectrogram on frame-level, respectively. G is the
ground-truth emotional label and C denotes all categories.

4. Experimental Results

In this section, we first briefly describe the datasets used
for evaluation and the evaluation metric. Then we present
the implementation details of the proposed method. Last,
we show the results compared to state-of-the-art methods
and the ablation study.

4.1. Datasets

V2C is a multi-speaker dataset for animation movie dub-
bing with identity and emotion annotations [9]. It is col-
lected from 26 Disney cartoon movies and covers 153 di-
verse characters. V2C not only needs to generate voices
with identity characteristics according to the reference au-
dio but also capture emotional information based on the
reference movie clips. The whole dataset has 10,217
video clips with paired audio and subtitles. The train-
ing/validation/test size are 60%, 10%, 30%.

Chem is a single-speaker dataset composed of 6,640 short
video clips collected from the YouTube, with the total video
length of approximately nine hours [20]. The Chem dataset
is originally used for the unconstrained single-speaker lip-
to-speech synthesis [42], which takes place in a chemistry
lecture. For fluency and complete dubbing, each video clip
has sentence-level text and audio based on the start and end
timestamps. There are 6,240, 200, and 200 dubbing clips
for training, validation, and testing, respectively.

4.2. Evaluation Metrics

Audio-visual synchronization. To evaluate the synchro-
nization between the generated speech and the video quan-
titatively, we adopt Lip Sync Error Distance (LSE-D) and
Lip Sync Error Confidence (LSE-C) as our metrics, which
can explicitly test for synchronization between lip motions
and speech in unconstrained videos in the wild [12,43].

Mel Cepstral Distortion and its variants. MCD [24],
MCD-DTW [4] and MCD-DTW-SL [9] are adopted, which
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Methods

LSE-D| LSE-Ct MCDJ| MCD-DTW| MCD-DTW-SL| Id. Acc.T Emo. Acc. 1

MOS-N1  MOS-S*+

Ground Truth 6.734 7.813 00.00 00.00 00.00 90.62 84.38 461 +£0.15 4.74+0.12
SV2TTS [21] 13.733 2.725 21.08 12.87 49.56 33.62 37.19 2.03+0.22 192+0.15
SV2TTS* [21] 12.617 3.349 19.38 12.73 3451 35.18 42.05 2.07+0.07 2.15%£0.09
Tacotron* [54] 13.475 2.938 19.79 18.73 42.15 32.49 39.68 2.124+0.17 2.06 £0.12
FastSpeech2 [46] 12.261 2.958 20.78 14.39 19.41 21.72 46.82 2.79+0.10 2.63 £0.09
FastSpeech2* [46]  12.113 2.604 20.66 14.59 20.79 23.44 46.90 3.08 £0.06 2.89+0.07
V2C-Net! [9] 11.784 3.026 20.61 14.23 19.15 26.84 48.41 3.19£0.04 3.06 £0.06
Ours 8.036 5.608 15.66 12.29 13.48 37.75 61.46 4.03 +0.08 3.89 £ 0.07

Table 1. Results on the V2C dataset with comparisons against state-of-the-art methods. We provide the results using both objective metrics
(i.e., LSE-D, LSE-C, MCD, MCD-DTW and MCD-DTW-SL) and subjective metrics (i.e., MOS-Naturalness and MOS-Similarity). “Id.
Acc.” and “Emo. Acc.” are the identity and emotion accuracy of the generated speech, respectively. The method with “*” refers to a
variant taking video (emotion) embedding as an additional input as in [9]. T (|) means that the higher (lower) value is better.

reflect the similarity of mel-spectrograms. MCD-DTW uses
the Dynamic Time Warping (DTW) [37] algorithm to find
the minimum MCD between two speeches, while MCD-
DTW-SL introduces the duration measure coefficient to
consider the length and the quality of generated speech [9].
Emotion and identity accuracy. To measure whether the
generated speech carries proper emotion and speaker iden-
tity, we adopt an emotion accuracy (Emo. Acc.) and an
identity accuracy (Id. Acc.) as our metrics as in [9].

Subjective evaluations. To further evaluate the quality
of generated speech, we conduct a human study using a
subjective evaluation metric, following the settings in [9].
Specifically, we adopt the MOS-naturalness (MOS-N) and
MOS-similarity (MOS-S) to assess the naturalness of the
generated speech and the recognization of the desired voice.

4.3. Implementation Details

For the duration aligner, we use 4 Feed-Forward Trans-
former (FFT) blocks and 3 FFT blocks for the phoneme en-
coder and lip movement encoder, respectively. We set the
dimension of the phoneme feature O and lip features Ey;,
to 256. We use 8 attention heads for alignment between lip
and phoneme. For each movie clip, Our F'PS set is 25, the
sampling rate sr is 22050H z. We use short-time fourier
transform (STFT) to obtain the mel-spectrum, and the num-
ber of points of the fourier transform is 1024. We use the
Conv-Transpose 1D module with 2 stride and 4 kernel sizes
to obtain the duration features. In Valence and Arousal Fea-
ture Encoder, the EmoFAN consists of one 2D convolution
with a kernel size of 7 x 7 and 3 convolution blocks (Con-
vBlock) with a kernel size of 3 x 3 and Average Pooling
stride of 2 x 2. Similarly, we set the dimension of the va-
lence and arousal feature to 256. For the mel-spectrograms
generator, the mel-spectrogram decoder consists of 6 FFT
blocks and the hidden state of mel-linear layer is of size 80.

For training, we use Adam [22] with 8; = 0.9, 85 =0.98,
e=10"" to optimize our model. For V2C and Chem dataset,
we set the learning rate schedule to 0.00001 and 0.00005,
respectively. In this work, we use pretrained HiFiGAN [23]

as the vocoder to transform the generated mel-spectrograms
into audio samples. We set the batch size to 16 on two
datasets. Our model is implemented in PyTorch [39]. All
the models are performed on a single NVIDIA GTX3090Ti
GPU. We train the model with 600 epochs on the V2C
dataset and 400 epochs on the Chem dataset.

4.4. Quantitative Evaluation

We compare with five related baselines of speech syn-
thesizes. (1) SV2TTS [21] is a basic TTS model to gen-
erate speech with reference audio for multi-speakers; (2)
Tacotron [54] is an end-to-end generative TTS model that
synthesizes speech directly from textual characters; (3)
FastSpeech2 [46] introduces the variance adaptor to con-
vert the text to waveform by end-to-end; (4) Neural Dub-
ber [20] synthesizes human speech for given video accord-
ing to the corresponding text; (5) V2C-Net [9] is the first
model for movie dubbing, which match the speaker’s emo-
tion presented in video. Note that we do not compare with
Neural Dubber [20] on the V2C benchmark due to the un-
availability of its code and missing implementation details.
Results on the V2C benchmark. The results are presented
in Table 1. Our method achieves the best performance on
all nine metrics. Specifically, in terms of audio-visual sync,
our method achieves 8.036 of LSE-D and 5.608 of LSE-C,
which significantly surpasses the previous best results and
is much closer to human performance. In terms of MCD,
MCD-DTW, and MCD-DTW-SL, our method achieves rel-
ative 24.02%, 13.63% and 29.61% improvements, respec-
tively. This indicates our method can achieve a better
mel-spectrogram than others. The above results together
show that bridging specific attributes of speech with corre-
sponding visual counterparts can make the generated speech
present better prosodies and lip motion sync. Additionally,
our method outperforms the previous method by a large
margin in emotion accuracy and can gain better identifica-
tion accuracy. This indicates the proposed method can bet-
ter capture and convey emotions, which is of great impor-
tance for the movie dubbing task. Last, the human subjec-
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Methods AQ T
Ground Truth

AV Synct LSE-D] LSE-C?
3934008 4.13+£007  6.926 7711

FastSpeech?2 [46] 3.71£0.08  3.29+0.09 11.86 2.805
Tacotron* [54] 3.55+£0.09 3.03+0.10 11.79 2.231
V2C-Net [9] 3.48+0.14  3.25+0.11 11.26 2.907
Neural Dubber [20]  3.74+0.08  3.9140.07 7.212 7.037
Ours 3.84+0.11 3.97+0.08 6.975 7.176

Table 2. Results on the Chem dataset with comparisons against
state-of-the-art methods. AQ (Audio Quality) and AV Sync
(audio-visual synchronization) are subjective metrics. Note that
the Chem dataset is a single-speaker non-movie dataset, and thus
there is no identity accuracy and emotion accuracy.

# Methods LSE-D| LSE-Ct MCD/ Id.Acc.?T Emo. Acc. T
1 w/o DA 11.835 3.716 19.53 18.75 38.33
2 w/o PA 8.514 5.274 16.34 10.42 22.08
3 w/o AB 8.261 5.408 15.90 33.33 53.92
4 w/o Valence 9.215 4.935 16.31 29.81 35.31
5 w/o Arousal 8.793 5.216 15.79 32.74 46.38
6 VA v.s. FF 9.160 5.011 19.87 23.67 39.58
7 w/omulti-head  10.948 3.894 18.65 24.85 40.25
8 Duplication 11.475 3.814 18.63 21.78 37.92
9 Full model 8.036 5.608 15.66 37.75 61.46

Table 3. Ablation study of the proposed method on the V2C
benchmark dataset.

tive evaluation results (see MOS-N and MOS-S) also show
that our method can generate speeches that are closer to re-
alistic speech according to naturalness and similarity.
Results on the Chem benchmark. As shown in Table 2,
our model is ahead of the state-of-the-art methods in all
metrics on the Chem benchmark. In terms of the audio-
visual sync, our method achieves 6.975 LSE-D and 7.176
LSE-C. Furthermore, in the subjective evaluations, our
method improves 10.34% on AQ and 22.15% on AV Sync.
The results show that our performance is much closer to
the ground truth recording, which indicates that our model
synthesizes high-quality natural speech by controlling the
prosody from hierarchical visual representation.

4.5. Ablation Studies

Effectiveness of Duration Aligner, Prosody Adaptor, and
Atmosphere Booster. We evaluate the effectiveness of
these three modules by removing them separately and re-
training the model. The results are shown in Row 1~3 of
Table 3. The result shows that all the proposed modules
contribute significantly to the overall performance, and each
module has a different focus. Specifically, the performance
on the audio-visual metrics (LSE-D, LSE-C, and MCD)
drops the most when removing the Duration Aligner (DA).
This reflects the DA module indeed helps the model learn
a better temporal synchronization. By contrast, the perfor-

1V2C republish official results on https://github.com/chengi008/V2C.

FS2 Ours GT

V2C-Net

Figure 3. Audiovisual consistency visualization on V2C dataset:
Ground Truth (GT), our model, FastSpeech 2 (FS2) and V2C-Net.

mance on identity accuracy and emotion accuracy drop the
most when removing the Prosody Adaptor (PA). This can
be attributed to the predicted pitch and energy representing
a speaker’s identity and his/her emotion. When removing
the Atmosphere Booster (AB), the performance drops com-
pared to the full model (Row 9) but does not drop as much
as when removing the other two modules. This indicates
the AB module also contributes the overall performance im-
provement but contributes the least in the three modules.

Effectiveness of valence and arousal. In our model, we
bridge arousal with energy and valence with pitch by atten-
tion mechanism. To evaluate their effectiveness, we cut off
the connection and predict energy and pitch directly from
the phoneme-lip representation. The results are presented
in Row 4~5 of Table 3. It shows that the performance drops
significantly when removing either of them and drops more
when removing valence. This indicates valence contributes
more than arousal on the V2C task.

Valence-and-Arousal v.s. Facial Expression. To com-
pare the role of affective display and facial expressions on
prosody inference, we replace the input of the APA module
with original embeddings of facial features from CNN. As
row “VA v.s. FF” of Table 3 shows, the model performance
drops significantly. This is likely caused by facial features
that are still far from the information-containing emotion,
which is not enough to guide prosody generation.

Multi-head Attention in Duration Adaptor. In our du-
ration aligner, we exploit multi-head attention to learn the
relation between the phoneme sequences and the lip mo-
tion. To verify its effectiveness, we conduct experiments
using conventional dot-product attention. The results are
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Figure 4. Visualization of audio on V2C dataset (top) and Chem dataset (bottom). Orange curves are Iy contours, where Fj is the
fundamental frequency of audio. Purple curves refer to the energy (volume) of audio. The horizontal axis is the duration of the audio. The
red circles highlight the mel-spectrograms at the same moment as the frame shown on the left side.

presented in Row 7 of Table 3. The performance drops sig-
nificantly on all metrics, such as 26.59% and 44.02% de-
crease on LSE-D and LSE-C compared to Row 9, respec-
tively. This indicates multi-head attention learns a much
better correlation between phonemes with lip movement.

Conv-Transpose v.s. Duplication. In our duration aligner,
we propose to use Conv-Transpose to learn the expansion of
the fused phoneme-lip representation to its desired length.
To verify its effectiveness, we replace it with simple make
n duplications as in [20]. The results are shown in Row
8 of Table 3. It shows that the performance drops signifi-
cantly. For example, it falls 15.94% on MCD metric. This
demonstrates the superiority of using transposed convolu-
tion to learn the upsampling than simply copying.

4.6. Qualitative Results

Audiovisual consistency visualization. Figure 3 presents
the mel-spectrograms of generated audios along with its
frames. Blue and red bounding boxes denote whether
the character is speaking or not, respectively. Compared
with other methods, the mel-spectrogram generated by our
model is closer to the ground truth, indicating better audio-
visual synchronization. This can be attributed to our dura-
tion aligner, which exploits multi-head alignment between
the text phoneme sequence and the lip movement sequence.
By controlling the lip movements explicitly, we obtain
the desired length of mel-spectrograms, which makes the
speech well synchronized with the input video.

Arousal and valence with prosody visualization. We se-
lected two examples from the test set of the V2C dataset
and Chem dataset to demonstrate the alignment between en-

ergy and arousal as well as pitch and valence. The valence
(positive or negative) and arousal (calming or exciting) of
facial expressions are shown in the first column. The main
pitch and energy are shown in orange and blue curves in the
right column. We use the red circle to highlight the pitch
and energy that correspond to the video frame shown in the
left column. The result shows that our method achieves en-
ergy and pitch closer to the ground truth speech. When the
chemistry teacher becomes excited and positive, our model
successfully leverages the affective display to synthesize a
similar pitch and energy as the ground-truth speech.

5. Conclusion

In this work, we propose a hierarchical prosody model-
ing network for movie dubbing, which bridges video repre-
sentations and speech attributes from three levels: lip, facial
expression, and scene. By associating these visual represen-
tations with their voice counterparts, we obtain more power-
ful representations for dubbing. Furthermore, we design an
affective-display based prosody adaptor, which effectively
learns to align the valence and arousal to the pitch and en-
ergy of speeches. Our proposed model sets new state-of-
the-art on both Chem and V2C-Animation benchmarks.
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