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Abstract

Most camera lens systems are designed in isolation, sepa-
rately from downstream computer vision methods. Recently,
joint optimization approaches that design lenses alongside
other components of the image acquisition and process-
ing pipeline—notably, downstream neural networks—have
achieved improved imaging quality or better performance
on vision tasks. However, these existing methods optimize
only a subset of lens parameters and cannot optimize glass
materials given their categorical nature. In this work, we
develop a differentiable spherical lens simulation model that
accurately captures geometrical aberrations. We propose
an optimization strategy to address the challenges of lens
design—notorious for non-convex loss function landscapes
and many manufacturing constraints—that are exacerbated
in joint optimization tasks. Specifically, we introduce quan-
tized continuous glass variables to facilitate the optimization
and selection of glass materials in an end-to-end design con-
text, and couple this with carefully designed constraints to
support manufacturability. In automotive object detection,
we report improved detection performance over existing de-
signs even when simplifying designs to two- or three-element
lenses, despite significantly degrading the image quality.

1. Introduction
The prevailing design paradigm for typical optical sys-

tems is to conceive them in isolation by use of simplified im-
age quality metrics such as spot size [28]. However, achiev-
ing ideal imaging properties or optimal performance on com-
puter vision tasks generally requires a more comprehensive
approach that includes the remaining parts of the image
acquisition and processing chain, in particular the sensor,
image signal processing, and downstream neural networks.

Over the years, many works have addressed the joint de-
sign of simple optical systems such as diffractive optical
elements (DOEs) [3, 20, 27, 31]. These works approach
joint optics design by simplifying the design to a single
phase plate that allows for a differentiable paraxial Fourier
image formation model, optimizable via stochastic gradi-
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Figure 1. We introduce a differentiable lens simulation model and
an optimization method to optimize compound lenses specifically
for downstream computer vision tasks, and apply them to automo-
tive object detection. Here, although the optimized two-element
lens has a worse average spot size than the baseline lens (136 µm
vs 80 µm), it achieves a better mean average precision (AP) on the
BDD100K dataset (32.0 vs 30.3). The optimized lens sacrifices
optical performance near the corners for better performance in the
small and medium field values where most of the objects are located.
In lens layout plots, dashed lines represent the baseline/optimized
counterpart and annotations indicate the optimized glass materials.

ent descent (SGD) variants. More recently, several differ-
entiable lens simulation models have been introduced to
address the more complex compound lens systems present
in most commodity-type cameras. Tseng et al. [35] build
such a model by training a proxy neural network, whereas
other works [11, 17, 32] directly implement differentiable
ray-tracing operations in automatic differentiation frame-
works [1, 22], an idea also discussed in [6, 40, 41]. However,
all relevant previous works [11, 17, 32, 35] optimize over
only a subset of possible surface profiles and spacings, and
ignore the optimization of glass materials altogether. Yet,
allowing all lens variables to be freely optimized—that is,
without predefined boundaries—provides an opportunity for
increased performance on downstream tasks.
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the final published version of the proceedings is available on IEEE Xplore.
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Unfortunately, lens design optimization is no trivial pro-
cess. Even optimizing for traditional optical performance
metrics presents significant difficulties, notably: harsh
loss function landscapes with abundant local minima and
saddle points [30, 36, 39], restrictive manufacturing con-
straints [2, 28], and risk of ray-tracing failures. Optimizing
a lens jointly on vision tasks only exacerbates these pitfalls
due to the noisy gradients of SGD when applied to complex
vision models [35]. Moreover, joint optimization does not
naturally allow external supervision from lens designers and,
as such, does not necessarily result in a manufacturable lens.

In this work, we introduce a computationally efficient
and differentiable pipeline for simulating and differentiating
through compound spherical refractive lenses with respect
to all design parameters in an end-to-end manner. Our for-
ward model integrates exact optical ray tracing, accurate ray
aiming, relative illumination, and distortion. Furthermore,
we develop an optimization strategy to facilitate the end-to-
end design of refractive lenses using SGD-based optimizers
while strongly encouraging manufacturable outcomes. To
this end, we carefully define losses to handle design con-
straints, and introduce quantized continuous glass variables
to facilitate the process of selecting the best glass materials
among glass catalogs that contain dozens of candidates—a
challenge unmet in prior joint optimization methods.

We apply our simulation and optimization pipeline to the
task of object detection (OD). We find that even simple two-
element lenses such as the ones in Fig. 1 can be compelling
candidates for low-cost automotive OD despite a noticeably
worse image quality. Then, we validate the proposed method
by demonstrating that optimizing the lens jointly with the
OD model leads to consistent improvements in detection
performance. We make the following contributions:

• We introduce a novel method for simulating and opti-
mizing compound optics with respect to glass materials,
surface profiles, and spacings.

• We validate the method on the end-to-end optimization
of an OD downstream loss, with lenses specifically
optimized for intersection over union (IoU) of bounding
boxes predicted from a jointly trained detector.

• We demonstrate that the proposed method results in
improved OD performance even when reducing the
number of optical elements in a given lens stack.

In addition, we release our code and designs1 in the hope
of enabling further joint design applications.
Limitations In end-to-end optics design, the inherent reso-
lution of the dataset used to represent real-world scenes—a
result of the pixel count, imaging quality, and compression
artifacts—needs to be discernibly superior to the modeled
optics if meaningful conclusions are to be drawn. Hence, we
focus on simple lenses with strong geometrical aberrations,

1https : / / github . com / princeton - computational -
imaging/joint-lens-design

Tseng [35] Sun [32] Hale [11] Li [17] Ours

Differentiable Lens Model

Hands-Free ✗ ✓ ✓ ✓ ✓
Efficient ✓ ✗ ✓ ✓ ✓
Accurate PSFs ✓ ✓ ✗ (✓) ✓
Distortion (✓) ✓ (✓) (✓) ✓
Aspherics ✓ ✓ (✓) ✓ ✗

Optimized Lens Variables

No Boundaries ✗ ✓ ✓ ✓ ✓
Spacings ✓ ✗ (✓) ✗ ✓
Surface Profiles ✓ (✓) ✗ (✓) ✓
Glass Materials ✗ ✗ ✗ ✗ ✓

Table 1. Comparison of related work on the joint optimization
of refractive compound optics, where each criterion is fully ✓,
partially (✓), or not ✗ met. See text for explanations.

namely refractive lenses with two to four spherical elements
whose combination of aperture and field of view (FOV) ex-
ceeds the capabilities of the lens configuration. Incidentally,
our method does not completely alleviate the need for human
supervision; as in most lens design problems, a suitable lens
design starting point is required for best performance.

2. Related Work
We briefly review the existing literature on joint optics de-

sign based on three aspects: optics simulation, optimization,
and integration with the downstream task. Tab. 1 compares
our work to other approaches that focus on compound optics.
Optics Simulation Many optics simulation models consist
primarily in convolving the point spread function (PSF) of
the optics design over the target image. This approach is used
in several works, in particular with DOEs [3, 20, 27, 31] that
have a single surface where the PSF can be approximated
using paraxial Fourier-based models.

In contrast, compound lenses have multiple surfaces with
varying materials and surface profiles. To capture these op-
tical systems accurately, exact ray tracing based on Snell’s
Law is typically used to complement paraxial optics. As
many existing models [12, 16, 19, 29] are not end-to-end dif-
ferentiable, recent works have introduced new differentiable
lens models to enable the joint design of compound lenses.
Tseng et al. [35] employ a proxy model that learns the map-
ping between lens variables and PSFs using pre-generated
lens data; while bypassing the intricacies of ray-based ren-
dering, it adds a cumbersome training step that needs to be
repeated for every lens configuration and only works for
predefined variable boundaries. Sun et al. [32] apply Monte
Carlo ray tracing from every pixel of the virtual detector
at the expense of computational efficiency. Halé et al. [11]
and Li et al. [17] apply ray-tracing operations in a way that
is reminiscent of conventional optical ray tracing [43] to
compute the PSFs, with the former assuming a Gaussian
shape for the PSFs and the latter assuming a square entrance
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Figure 2. Overview of our joint design approach. To tackle the lens design and OD subtasks jointly rather than in isolation, we simulate
realistic aberrations on the dataset images before they enter the object detector. The lens parameters ϕlens (with curvatures c, spacings s, and
glass variables g) are optimized both on a loss ℓlens, which targets optical performance and geometrical constraints via exact ray tracing, and
on the OD loss ℓOD. The object detector parameters ϕOD are trained concurrently to minimize ℓOD while adjusting to the lens aberrations.

pupil. The lens simulation model developed in our work
is most similar to Li et al. [17] with notable additions: we
implement accurate ray aiming and avoid discontinuity ar-
tifacts by addressing distortion and relative illumination in
separate steps (see Tab. 1). Crucially and as opposed to our
work, [17] does not optimize for computer vision tasks. We
note that our work deliberately focuses on spherical lenses
to enable low-cost automotive OD.
Optics Optimization Conventional lens design tasks usu-
ally seek a design of suitable complexity that fulfills a given
list of specifications; these are translated into a loss function
that targets optical performance criteria as well as many man-
ufacturing constraints [2]. The lens configuration is chosen
to provide sufficient degrees of freedom (DOF) and dic-
tates the number and nature of lens variables, notably: glass
materials, spacings between each optical surface, and sur-
face profile parameters—characterized by the curvature and,
for aspherics, additional polynomial coefficients [26]. The
de-facto optimizer for lens optimization is the Levenberg-
Marquardt algorithm [9, 42], which is also the default op-
tion [43] in common optical design software [33, 45].

In contrast, joint optics design optimizes the optics along-
side the downstream neural network parameters using SGD-
based optimization; as such, developing a lens optimization
strategy that synergizes with SGD is a focus of our work, en-
abling end-to-end optimization for vision downstream tasks.
Conversely, previous works circumvent these difficulties by
optimizing only a subset of both spacings and surface profile
parameters [11, 17, 32] or, in the case of [35], limiting the
variables within predefined boundaries (see Tab. 1).
Joint Domain-Specific Optics Optimization Many down-
stream tasks can be grouped under the umbrella term of
image reconstruction, where the goal is to retrieve the origi-
nal image despite lens aberrations [17, 34] or environmental
changes such as low-light imaging [35]. This includes high-
dynamic-range [20, 31], large field-of-view [23], extended
depth-of-field [27], and super-resolution [27] imaging. End-
to-end design has also been applied to traditional vision tasks
such as image classification [4], monocular depth estima-
tion [3, 10], or OD [3, 35]. While our approach supports any
downstream task that can be trained with SGD optimization,

here we focus on automotive OD, relevant to self-driving
vehicles and autonomous robots.

3. Differentiable Compound Lenses
In this work, we first introduce a method for the end-

to-end modeling and optimization of compound lenses in
computer vision tasks. We then apply the proposed method
to OD as illustrated in Fig. 2. We use natural images as input
to our method and as approximations of real-world scenes
with the following underlying assumptions (see supp.): the
objects are infinitely distant, the RGB values are proportional
to the luminance, and the FOV of the simulated lens matches
the scene. These approximations allow us to rely on existing
image datasets to study the effect of strong geometrical aber-
rations such as the ones of poorly corrected optics, that is,
lenses without the required DOF to correct the aberrations
under the desired specifications. Indeed, sophisticated lenses
(e.g., with a larger number of elements) are of limited inter-
est in our work since they do not significantly impact image
quality. Therefore, we focus on simple lenses composed of
a few (2–4) spherical lens elements while noting that poorly
corrected optics are harder to simulate accurately due to
larger PSFs, distortion, and spatial variations.

The throughput of a lens is an important consideration in
low-light OD. As such, we design all lenses to have similar
and relatively high throughput with a fixed f-number and no
any optical vignetting. Incidentally, we fix both the FOV
and focal length f such that f = d/2 tan(FOV/2) to ensure
that the corners of the virtual image sensor (with diagonal d)
correspond to the maximum FOV—assuming reasonable
distortion and defocus.

In the following, we describe the core components of the
proposed method. In Sec. 4, we elaborate on our complete
differentiable lens simulation model. In Sec. 5, we detail
the lens parameters ϕlens and our joint optimization strategy.
We assess the proposed method experimentally in Sec. 6.

4. Optical Image Formation Model
Sampling and tracing rays from every pixel of the virtual

detector [16, 32] is computationally prohibitive for our joint
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Figure 3. From the lens parameters ϕlens, our lens simulation model employs exact differentiable ray tracing to compute the spatially varying
PSF grid (a), relative illumination map (b), and distortion field (c), which are successively applied to the scene image IS to simulate realistic
geometrical aberrations (relative illumination is 20× amplified for clarity).

Without
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Figure 4. Rays that are targeted at the outer edge of the aperture
stop (cross section is shown in orange) successfully hit the target
area when using the proposed ray-aiming correction step, and badly
miss otherwise. Illustrated here is for the f/2 Tessar lens used in
Sec. 6 at full field of view (25°, see supp. for more examples).

design approach. Instead, our differentiable lens simulation
model applies a spatially varying convolution to the scene
image IS to generate the aberrated image

IA(x
′, y′) ≈ PSF(x′, y′) ∗ IS(x′, y′) . (1)

We model Eq. (1) by discretizing the image into a grid of
patches that are convolved with their corresponding PSF.
While the PSFs can theoretically take distortion and relative
illumination into account (as in Tseng et al. [35]), here we
simulate them in separate steps as shown in Fig. 3. This
avoids discontinuity artifacts and, in the case of distortion,
artificial blurring [19] as well as an increased computational
burden caused by large uncentered PSFs.
Ray Tracing Exact ray tracing is achieved by alternating
between two operations: 1) updating the coordinates of the
rays from one interface to the next, and 2) updating the
direction cosines following Snell’s Law. In practice, we
batch the operations over nr = nhnwnp rays, where nh,
nw, and np are the number of field values, wavelengths,
and pupil coordinates. All rays are initialized at the entrance
pupil. Unlike [17], we introduce a ray-aiming correction step
which is critical to accurately simulate lenses with strong
pupil aberrations (see Fig. 4); as in [5], the initial transverse
ray coordinates are scaled by deforming the entrance pupil
into a field-dependent elliptic shape (see supp.).
Geometrical PSFs Under dominant geometrical aberra-
tions, diffraction can be safely ignored and the PSFs can be
computed through the ray-counting method: setting a virtual
detector on the image plane and counting the rays hitting

(a) (b) (c)

Figure 5. Computation of the geometrical PSFs used to simulate
realistic aberrations. We first initialize rays at the entrance pupil (a),
which in this example overlaps with the aperture stop (orange)
located in object space. We propagate the rays using exact ray-
tracing operations (b) to obtain the spot diagrams. Then, we apply
kernel density estimation to retrieve the PSFs for all field values (c).

each bin (see Fig. 5). As the PSFs of axially symmetric
lenses are invariant to azimuth, here they are sampled radi-
ally at nh = 21 equidistant field values h, then interpolated,
rotated, and resized to fill the PSF grid (see Fig. 3(a)).

First, for each field, we span the entrance pupil uniformly
with rays—each representing an equal pupil area and amount
of energy—and trace them up to the image plane to obtain
the x ∈ Rnr and y ∈ Rnr coordinates that compose the
spot diagrams. The pupil sampling scheme (np = 2048)
corresponds to 32 equally spaced concentric circles with
jittering to properly sample the outer edge of the pupil (see
Fig. 5(a)). We trace nw = 15 wavelengths: 5 for each color
channel which are selected from the quantum efficiency of a
typical sensor (here, we use the Sony IMX172, see supp.).

Then, we center a square virtual grid for each field h at
the spot diagram centroid yh = (1/nwnp)

∑
w,p yh,w,p. We

set the size of the virtual grid to 260 µm as to collect all rays
throughout the full optimization process, and split it into
65 × 65 bins. Instead of naive ray counting, we employ the
differentiable alternative of kernel density estimation (KDE)
using a Gaussian kernel with a bandwidth half the size of a
bin, which effectively spreads the energy of each ray over
multiple bins. Incidentally, we reduce the computational
burden by duplicating all rays and bins across the y-axis.
Spatially Varying Convolution We employ the spatially
varying overlap-add method [14] using 9 × 9 rectangular im-
age patches with corresponding PSFs (see Fig. 3(a)). Each
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PSF in the grid is a weighted average of the sampled PSFs—
the weight for a field h corresponds to the proportion of the
patch that is closest to it—that is rotated to the appropriate
angle, then rescaled according to the image resolution. In
contrast to naive interpolation, this weighted average scheme
involves the full FOV of the lens in the simulation and op-
timization pipeline. For smooth interpolation, we use a 2D
Hann window with 25 % overlap.
Relative Illumination Assuming elliptic pupils, we can
obtain a coarse approximation of the relative illumination
factor Rh at a given field of interest h from the direction
cosines of two meridional rays and one sagittal ray [24]. We
apply the operation monochromatically (587.6 nm), then in-
terpolate the values according to the radial coordinate of each
pixel. Finally, the aberrated image is pixel-wise multiplied
with the relative illumination map (see Fig. 3(b)).
Distortion To efficiently simulate distortion, we approxi-
mate the relative distortion shift Dh at each field h by com-
paring the mean ray height yh at the image plane to the
undistorted reference value yh,ref

Dh =
yh − yh,ref
ynh,ref

, (2)

where the reference values yh,ref are the result of a
monochromatic paraxial ray-tracing operation (587.6 nm).
Next, the distorted (x′, y′) coordinates are computed by lin-
early interpolating and rotating the distortion shift based on
the field position of each pixel. Finally, the image is warped
using bicubic interpolation (see Fig. 3(c)).

5. Joint Optimization
Given the differentiable image formation model from

Sec. 4, we now seek to freely optimize all lens variables
on downstream tasks without compromising manufactura-
bility, which can be facilitated by employing well-defined
constraints. We note, however, that there exists no universal
set of rules to assess whether a lens design is manufacturable;
it notably depends on the expertise and equipment at hand.
Lens Variables We consider a compound lens as a stack
of M spherical glass elements with K interfaces (includ-
ing the aperture stop, but excluding the image plane) where
neighboring lens elements are either air spaced or cemented
together. Lens variables are denoted ϕlens = (c′, s′, g),
where c′ ∈ RK−2 are normalized curvatures of the spheri-
cal interfaces, s′ ∈ RK normalized glass and air spacings,
and g ∈ RM×dglass sets of dglass glass variables represent-
ing the dispersion curve of each glass element. The last
curvature (before the image plane) is not optimized, but alge-
braically solved at every training iteration to enforce a unit
focal length f ′ = 1. Then, the curvatures c and spacings s
are obtained by scaling their normalized counterparts to the
desired focal length: c = c′/f; s = s′f . As in [7], we imple-
ment a paraxial image solve to help the lens remain mostly
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Figure 6. Quantized continuous glass variables. Using continuous
glass variables enables the exploration of the solution space, but
the actual variables employed to model the lens are always their
closest catalog counterparts (ncat = 65). The arrows indicate the
whitened coordinate system.

in focus throughout optimization, which requires computing
the back focal length (BFL) to locate the paraxial image
plane with respect to the last optical surface. Then, the last
airspace sK = s′Kf +BFL is retrieved from the normalized
defocus s′K , which acts as the optimized variable.
Glass Variables Our aim in optimizing glass variables is
to find the best set of materials among the catalog glasses(
g′1, g

′
2, . . . , g

′
ncat

)
. To this end, we consider ncat = 65 rec-

ommended glasses from the Ohara catalog [21] (see Fig. 6).
We model the dispersion curve of each glass material with
dglass = 2 variables: the refractive index at the “d” Fraun-
hofer line (587.6 nm) and the Abbe number. As in [32], we
use the approximate dispersion model n(λ) ≈ A + B/λ2

to retrieve the refractive index at any wavelength λ, where
A and B follow from the definition of the “d”-line refrac-
tive index and Abbe number. We obtain our normalized
glass variables g by fitting a whitening transformation on the
refractive indices and Abbe numbers of all catalog glasses.
Quantized Continuous Glass Variables Using continuous
relaxations for glass optimization presents several issues in
SGD-based end-to-end optimization. Requiring the glass
variables to converge to catalog glasses while allowing them
to vary significantly during training is challenging as it would
require the delicate tuning of scheduled constraints.

To avoid this issue, we introduce quantized continuous
glass variables: glass variables that only exist in discrete sets,
but retain the optimizable property of continuous variables.
As illustrated in Fig. 6, in the forward pass, we replace each
set of variables gm with its closest catalog glass counterpart

g∗m = argmin
j

||gm − g′j||22 . (3)

As this operation is not differentiable, we approximate its
gradient using the “gradient step-through” operator [38].
This operation allows glass variables to undergo meaningful
optimization while ensuring that they always match available
glass materials. As our approach allows large jumps in lens
performance when new catalog glasses are selected from
one optimization step to the other, we couple it with a glass
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variable loss ℓGV to help the free variables stick close to
the selected glasses, therefore limiting the magnitude and
frequency of such jumps. The loss minimizes the squared
distance between each set of continuous glass variables gm
and the closest catalog glass

ℓGV =
∑
m

||gm − g∗m||22 . (4)

We find empirically that the lenses optimized with this ap-
proach retrieve a good performance within a few steps.
Design Losses In practice, we find that the training signal
due to the downstream OD loss is often noisy and can make
reliable optimization challenging.

To account for this as well as several manufacturing con-
straints, we add a set of design losses to assist the optimiza-
tion. First, we complement the noisy downstream detection
loss with a spot size loss ℓS for stability. The spot size is
equivalent to the RMS size of the PSF (for a given field h)
and is computed from the same transversal ray coordinates x
and y that compose the spot diagram (see Sec. 4). We for-
mulate ℓS as the average spot size across all field values

ℓS =
1

nh

∑
h

√
1

nwnp

∑
w,p

(yh,w,p − yh)
2
+ x2

h,w,p . (5)

Next, we add two additional ray path and ray angle losses,
which are defined by reusing intermediate operands from
every ray r involved in the computation of the spot diagrams
or spot size. The ray path loss ℓRP avoids overlapping
surfaces, enforces sufficient center/edge thicknesses in glass
elements, and imposes a sufficient image clearance (the clear
space between the last element and the image sensor). It is
defined using the horizontal distance ∆z ∈ RK×nr traveled
by every ray r across every glass or air spacing k. We want
all rays to travel a horizontal distance bounded between a
lower threshold ∆z

(k)
min and an upper threshold ∆z

(k)
max that

depend on the nature of the spacing. In our experiments,
these are set to enforce a minimum distance of 0.01 mm in
airspaces and 12 mm for image clearance, and a distance
between 1–3 mm in glass. The loss is formulated as

ℓRP =
1

nr

∑
k,r

max
(
∆z

(k)
min −∆zk,r, 0

)
+max

(
∆zk,r −∆z(k)max, 0

)
. (6)

The ray angle loss ℓRA limits all angles of incidence θ and re-
fraction θ′ to a threshold θmax = 60°; this aims to avoid ray
failures, stabilize the optimization process, and improve tol-
erancing. Tracing rays through spherical surfaces involves
the computation of intermediate values ζ = cos2 (θ) and
ζ ′ = cos2 (θ′), where negative values imply ray-tracing fail-
ure in the form of missed surfaces for ζ and total internal

reflection for ζ ′. Similar to ℓRP (Eq. (6)), this loss is based
on intermediate ray-tracing operands occurring at every in-
terface k prior to the image plane

ℓRA =
1

nr

∑
k,r

max
(
cos2 (θmax)− ζk,r, 0

)
+max

(
cos2 (θmax)− ζ ′k,r, 0

)
. (7)

End-to-End Optimization All previous loss terms are
combined to define a loss ℓlens that operates exclusively on
the lens design parameters ϕlens

ℓlens = ℓS + λRPℓRP + λRAℓRA + λGVℓGV , (8)

where we set λRP = 100, λRA = 100, and λGV = 0.01.
Eq. (8) can be used in isolation to optimize the baseline
lenses for spot size, but is also combined with object detec-
tion losses ℓOD to define the joint loss

ℓjoint = ℓOD + λlensℓlens , (9)

where λlens is set individually for each lens.

6. Experiments
In this section, we validate the proposed method on a

variety of different lens design tasks, compare it to existing
design methods, and confirm the effectiveness of compo-
nents of the method in ablation experiments. To this end, we
first introduce the dataset and training approach employed
for all experiments, describe baseline lens designs in Sec. 6.1,
and then discuss OD design experiments in Sec. 6.2.
Datasets We conduct our experiments with the BDD100K
dataset [44] containing 80k (70k/10k for training/evaluation)
all-in-focus images with moderate resolution (1280 × 720)
and minimal visible aberrations even before downsampling,
which makes it suitable for our experiments. We consider six
aggregated classes (car/van/suv, bus/truck/tram, bike, person,
traffic light, and traffic sign). We also evaluate our trained
models on the Udacity autonomous driving dataset [37]
which contains 14k higher-resolution images (1920 × 1200)
that were annotated using the same six classes.
Sensor Simulation We consider a sensor diagonal d =
16 mm and a quantum efficiency curve that follows the Sony
IMX172 sensor for representative wavelength sampling (see
supp.). The lens model is applied to the unaltered dataset
images which are subsequently resized (1024 × 1024) and
passed to the OD model. To observe larger OD performance
degradations, we also simulate a 2×-increased resolution
in which the aberrations appear proportionally larger; in
this setting, the dataset image occupies only the upper-left
quadrant of the original virtual scene, and we simulate the
aberrations accordingly as shown in Fig. 7.
Detector and Training Methodology We use the Reti-
naNet [18] object detector with a ResNet-50 backbone [13]
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Figure 7. Comparison between lenses optimized for spot size (Baseline) or object detection (Optimized) under 2× simulated resolution, for
2- (Doublet), 3- (Cooke), and 4-element (Tessar) designs. From top to bottom, we show 1) the lens designs (dashed lines represent the
baseline/optimized counterpart); 2) PSFs for different fields; 3) aberration charts (left: ray fan plots; right: field curves); and 4) images
where the bottom-right corner corresponds to on-axis imaging (0°) and the top-left corner to the maximum field of view (25°). Here, in
contrast to the baseline lenses, the optimized lenses detect additional persons (Doublet and Cooke) or traffic signs (Tessar).

for all experiments. We train all OD models with a batch
size of 8 and we jointly optimize the lens and OD model
with Adam [15]. The learning rates are set to 5·10−5 for ϕOD

and 5·10−3 for ϕlens over 50k steps, then both are decayed to
0 over 100k subsequent steps following a half cosine cycle.

Lens Distortion in Object Detection The object-matching
operation commonly used in IoU losses interferes with dis-
tortion since it moves the content associated with predefined
anchors. To account for this, we use Eq. (2) to apply a
correction step to all ground truth boxes when computing
the OD losses, by shifting the midpoint of each bounding
box segment, then drawing a new bounding box around the
shifted coordinates. However, to evaluate the average pre-
cision (AP) of the OD models in an unbiased manner, we
apply the correction step to the predicted boxes instead.

6.1. Baseline Lenses

We conduct our experiments using typical lenses with
2–4 elements as visualized in Fig. 7. In contrast to the
2-element Doublet, the 3-element Cooke triplet lens has
sufficient DOF for moderate aperture and FOV imaging [28].
The 4-element Tessar lens can be seen as a modified Cooke
triplet with more DOF [28]. All lenses are optimized for
the same first-order specifications, namely f/2 for aperture,
±25° for FOV, and focal length f = 17.2 mm. We note that
even 4-element spherical lenses do not have the required
DOF to adequately correct geometrical aberrations under
this combination of aperture and FOV [28]. Therefore, our
results can be interpreted as approximate lower bounds on
OD performance; reducing the aperture or FOV would likely
lead to similar or better performance in all cases.

To obtain our baseline lenses, we follow common prac-
tice and start from several starting points with various
configurations—namely, different aperture stop locations
or cemented interfaces—from varied sources [8, 25, 28], re-
optimize each of them using Eq. (8), and select the ones that
have the best average spot size according to Eq. (5).

6.2. Automotive Object Detection

We report our lens designs optimized for object detection
in Tab. 2 in terms of mean average precision (AP)—averaged
over the IoU thresholds (0.5, 0.55, . . . , 0.95) and all six
object classes. Additionally, we report the averaged PSNR
and SSIM image quality metrics to compare the images
before and after simulating the blur-inducing aberrations
(prior to applying relative illumination and distortion).

To provide approximate upper bounds for OD perfor-
mance, which is equivalent to training and evaluating the
OD models without any aberrations, we first report the AP
under “perfect” optics (first row of Tab. 2). We also eval-
uate this trained model when simulating the effect of each
baseline lens; this scenario, labeled µ–µ in Tab. 2, is akin
to attempting OD on strongly aberrated images using an
off-the-shelf OD model. This leads to a large decrease in AP
(-19.5/-7.4/-2.9 for 2/3/4 elements on 1× res. on BDD).

Then, we fine-tune the OD model to account for the sim-
ulated aberrations (µ–b), by modeling the lens using its
known design. In practice, this could also be achieved by
capturing a dataset using the manufactured lens and training
on it. This greatly alleviates the AP drop compared to “per-
fect” optics (-3.8/-1.1/-0.7 for 2/3/4 elements on 1× res. on
BDD) despite the significant degradation in image quality.
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Optics ϕlens
BDD100K

ϕOD
BDD100K Udacity

Spot↓ PSNR↑ SSIM↑ AP↑ AP↑
Perfect – – – – – 34.1 28.2

Doublet
(1× res.)

µ 80.1 26.6 0.82 µ 14.6 11.5
b 30.3 23.5

b 135.5 27.6 0.85 b 32.0(+1.7) 25.6(+2.1)
*Doublet
(2× res.)

µ 80.1 24.3 0.78 b 25.0 18.4
b 124.5 25.5 0.81 b 28.1(+3.1) 21.9(+3.5)

Cooke
(1× res.)

µ 30.6 29.1 0.88 µ 26.7 20.6
b 33.0 26.3

b 36.6 28.7 0.87 b 33.3(+0.3) 26.8(+0.5)
*Cooke
(2× res.)

µ 30.6 27.2 0.84 b 31.5 24.9
b 36.5 26.6 0.83 b 31.7(+0.2) 24.8(−0.1)

Tessar
(1× res.)

µ 14.8 29.6 0.90 µ 31.2 25.7
b 33.4 26.9

b 14.8 29.6 0.90 b 33.6(+0.2) 27.0(+0.1)
*Tessar
(2× res.)

µ 14.8 28.8 0.87 b 31.3 24.4
b 24.7 27.9 0.85 b 32.2(+0.9) 26.2(+1.8)

Table 2. Mean spot size (µm, see Eq. (5)), image quality metrics
(PSNR and SSIM), and final OD performance (AP) across varied
experimental settings. The lens and OD model parameters ϕlens

and ϕOD are either optimized b or fixed µ. When ϕOD is fixed,
we use the same parameters as in the perfect optics baseline (first
row). Settings with * are visualized in Fig. 7 (see supp. for others).

Setting Optics Spot (µm)↓ Vig. rays↓ AP↑

PM [35] Tessar (1× res.) 176.4 13.2 % 30.8 (PM); 29.0 (RT)
Ours 14.8 0.0 % 33.6 (RT)

PM [35] Tessar (2× res.) 104.0 7.4 % 23.9 (PM); 18.4 (RT)
Ours 24.7 0.0 % 32.2 (RT)

Table 3. Comparison with the proxy model (PM) of Tseng et al. [35]
on the joint optimization of the Tessar lens. We report the AP on
BDD100K, where aberrations are modeled using either the PM
or exact ray tracing (RT). We also report the mean spot size and
proportion of vignetted rays, where 0 % indicates that the design
specifications (f-number, FOV, and no vignetting) are fulfilled.

Finally, we jointly optimize the lens alongside the OD
model (b–b) using Eq. (9), which results in an increase
in AP over the scenario µ–b (e.g., +3.1/+0.2/+0.9 for 2/3/4
elements on 2× res. on BDD), validating the benefit of joint
optics/OD optimization. On 1×-res. BDD, the joint optimiza-
tion allows the Cooke triplet (AP of 33.3, up from 33.0) to
nearly reach the performance of the baseline Tessar lens (AP
of 33.4) which has one additional lens element. The improve-
ments are not specific to the BDD100K dataset: our experi-
ments validate that they generalize to the higher-resolution
Udacity dataset. We note that the optimized lenses improve
OD performance despite a mean spot size similar to or worse
than the baseline lenses (see supp. for a tolerancing analysis
and a comparison to other ray-tracing approaches).

Comparison to Proxy Model In Tab. 3, we perform the
Tessar lens experiments using a proxy model (PM) from
Tseng et al. [35]. We train the PM on the data of 10k vari-
ations of the baseline Tessar lens (see supp.) to output the

Setting AP↑ Comment

Complete methodology 32.2 –
Continuous glass variables 25.9 Unrealistic glass (ℓGV = 0.91)
No paraxial image solve 26.5 Last airspace is sK = s′Kf

No ray path loss λRP = 0 15.4 Unfeasible design (ray failures)
No ray angle loss λRA = 0 24.2 Unfeasible design (ray failures)

No spot size loss λS = 0 11.1 Spot size of 142 um (↑9.6×)

Table 4. Ablation study on the joint optimization of the Tessar lens
(2× res.), where we report the AP on BDD100K.

PSF, relative illumination factor Rh, and distortion shift Dh

for a given field value h and set of 22 lens variables. As
in [35], we predetermine boundaries for all lens variables,
which we optimize only on ℓOD (i.e., λlens = 0). Com-
pared to our method, the experiments show a significant
decrease in AP even when the aberrations are modeled us-
ing the PM rather than exact ray tracing during evaluation.
Moreover, the lenses optimized using the PM do not fulfill
the design specifications as a significant proportion of rays
are vignetted, further validating the proposed method.
Ablations In Tab. 4, we report ablation experiments on
the joint design of the Tessar lens for 2× resolution. The
experiments validate that each component of the proposed
method is required to avoid instability; in this setting, any
component removal leads to a drop in OD performance and,
in some cases, in manufacturability issues (see supp.). In
particular, using continuously relaxed glass variables not
only leads to unrealistic glass materials but also adds insta-
bility that can result in poorly behaved designs. This ablation
experiment validates the role of glass material optimization
in lens design for downstream detection tasks.

7. Conclusion
Where previous works in joint optics design attempt to

optimize compound lenses over only a subset of possible
surface profiles and spacings, here we establish a novel dif-
ferentiable lens model and optimization method to enable
the free optimization of all lens variables; notably, quantized
continuous glass variables circumvent issues due to the cat-
egorical nature of glass materials. On automotive OD, we
consistently observe improvements in detection even when
reducing the number of elements in a given lens stack. Along
with the release of code, we hope that this work will enable
exciting future research directions such as combining differ-
ent lens components (e.g., aspherics or diffractive optical
elements), modeling scenes with high-resolution multispec-
tral data, or enabling depth-sensitive downstream tasks.
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