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Abstract

Existing AU detection algorithms are mainly based on
appearance information extracted from 2D images, and
well-established facial biomechanics that governs 3D fa-
cial skin deformation is rarely considered. In this paper,
we propose a biomechanics-guided AU detection approach,
where facial muscle activation forces are modelled and
are employed to predict AU activation. Specifically, our
model consists of two branches: 3D physics branch and
2D image branch. In 3D physics branch, we first derive
the Euler-Lagrange equation governing facial deformation.
The Euler-Lagrange equation represented as an ordinary
differential equation (ODE) is embedded into a differen-
tiable ODE solver. Muscle activation forces together with
other physics parameters are firstly regressed, and then are
utilized to simulate 3D deformation by solving the ODE.
By leveraging facial biomechanics, we obtain physically
plausible facial muscle activation forces. 2D image branch
compensates 3D physics branch by employing additional
appearance information from 2D images. Both estimated
forces and appearance features are employed for AU detec-
tion. The proposed approach achieves competitive AU de-
tection performance on two benchmark datasets. Further-
more, by leveraging biomechanics, our approach achieves
outstanding performance with reduced training data.

1. Introduction
Action unit (AU) describes a local facial behavior, rep-

resenting the movement of one facial muscle or a group of
facial muscles [6]. For example, AU12 (lip corner puller)
is corresponding to the muscle zygomatic major. AU15 (lip
corner depressor) is corresponding to the muscle depressor
anguli oris. In Figure 1, we visualize the muscles zygomatic
major and depressor anguli oris. Due to the muscle activa-
tion, facial changes, in terms of both appearance and skin
geometry, can be observed. Action unit detection task is to
automatically predict if an AU is activated or not, given a
2D image. The majority of existing AU detection methods
perform AU detection based on appearance information ex-

(a)	Zygomaticus	major (b)	Depressor	anguli oris

Figure 1. Visualization of depressor anguli oris (shown in (a)) and
orbicularis oris (shown in (b)). Images are from https://en.
wikipedia.org/wiki available under Public Domain.

tracted from 2D images [4,16,26,46]. These algorithms are
mainly data-driven, whose performance highly depends on
the quantity and quality of AU annotations. Unfortunately,
AU annotations are hard to obtain and prone to errors. Be-
sides, data-driven AU detection algorithms can’t generalize
well to unseen scenarios beyond training samples.

To perform robust and generalizable AU detection un-
der limited AU annotations, generic knowledge about the
anatomical spatial relationships among facial muscles is
considered, based on which AU relationships are de-
rived [16, 17, 48, 49]. Facial biomechanics, which defines
the dynamic of facial 3D deformation given muscle acti-
vation forces and is represented as second-order ODEs, is
rarely considered. Facial biomechanics is important since
it directly connects the muscle activation to skin deforma-
tion through principled physics laws, which is applicable to
different subjects and independent of a specific dataset.

In this paper, we propose a biomechanics-guided AU
detection approach, where facial muscle activation forces
are modelled given 2D images and are employed for AU
detection task. Our model consists of two branches: 3D
physics branch and 2D image branch. In 3D physics branch,
the Euler-Lagrange equation governing 3D deformation is
firstly derived, which is represented as an ordinary differ-
ential equation (ODE). Muscle activation forces together
with other physics parameters are regressed and utilized for
physics-based reconstruction by solving the ODE. 2D im-
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age branch compensates 3D branch by employing appear-
ance information. Finally, the estimated muscle activation
forces together with image features are employed for AU
detection. Our contributions lie in three parts:

• We are the first to explicitly integrate facial biome-
chanics for AU detection task. Particularly, our physics
branch explicitly models muscle activation forces. Af-
ter training, physically plausible and anatomically
meaningful forces are employed for AU detection.

• We are the first to introduce a generalized coordinate
using facial blendshape basis and derive the Euler-
Lagrange equation in the defined generalized coordi-
nate. The Euler-Lagrange equation is then embedded
into a differentiable ODE solver for physics-based re-
construction.

• We empirically demonstrate the effectiveness of our
proposed approach on two benchmark datasets. Fur-
thermore, our method remains robust under limited AU
annotations and is cross-dataset generalizable.

2. Related Works

Facial Action Unit detection: Existing AU algorithms are
mainly appearance-based approaches, where deep features
are extracted from 2D images for AU prediction tasks [11,
16, 37]. Sophisticated network architectures are considered
for extracting better deep features, such as ResNet50 [10]
and Inception Network [38]. AU spatial relationships have
been widely considered for appearance-based AU detection,
most of which are learned from data [11, 20, 33, 36, 37].
Besides, temporal relationships among AUs within con-
secutive frames have been modelled via a long short-term
memory model (LSTM) [2, 9]. Probabilistic models (e.g.,
dynamic Bayesian network and restricted Boltzmann ma-
chine) have also been considered for temporal AU rela-
tionship modelling [18, 42–44]. To simultaneously model
spatial and temporal dependencies among AUs, a spatio-
temporal graph convolutional network has been consid-
ered [33]. Nevertheless, these appearance-based AU detec-
tion methods suffer from subtle appearance changes. 3D
geometric deformation is another important visual cue since
it is evident that skin exhibits different facial expressions,
activated by the underlying facial muscles. Some works
explored the usage of 3D geometric deformation for ex-
pression recognition, whereby 3D shape changes are repre-
sented by deep features and are combined with appearance-
based features [8,22,39]. The methods mentioned above are
mainly data-driven and require sufficient AU annotations to
perform well.

For robust and generalizable AU detection, generic
knowledge is considered. The generic knowledge is about

static spatial muscle relationships, based on which AU re-
lationships are derived [5, 48]. Facial biomehcanics models
dynamic 3D skin deformation given the muscle activation.
To the best of our knowledge, facial biomechanics is not
considered for AU detection yet. In this paper, we propose
a biomechanics-guided AU detection approach to explicitly
incorporate the facial biomechanics for AU detection.

Physics-based Facial Motion Modeling: Physics-based
facial motion modelling remains an attractive topic in com-
puter graphics field. Given the fact that facial soft tissues are
structurally complex and exhibit highly non-linear constitu-
tive behavior, modeling facial motion behavior is challeng-
ing. Usually, human face is represented via a volumatric or
surface 3D mesh [1, 3, 34]. Finite volume method [1, 3, 41]
and finite element method [34] are widely considered for
spatial discretization. Newton’s second law is the govern-
ing differential equation for facial motion [14]. Physics pa-
rameters involved in the differential equations reflect real
properties of facial tissues and muscles, such as stiffness.
Physics parameters have to be carefully specified by domain
experts [23] or learned via neural networks from data [13].
To perform forward simulation over time, Euler method
is widely used for solving the differential equations given
muscle activation. Though anatomically explainable and
generalizable, existing physics-based facial motion model-
ing techniques in computer graphics are very computation-
ally expensive, prohibiting them from being employed for
computer vision tasks, such as AU detection. In this work,
we move one step forward in bridging realistic facial mod-
els to image-based facial recognition tasks, through the pro-
posed biomechanics-guided AU detection approach.

Besides facial motion modeling, different works have
been done on combining principled physics laws with exist-
ing deep learning techniques [12, 19, 27, 28]. These works,
though employ physics laws, focus on synthetic physics
systems and rarely consider real applications in computer
vision. Furthermore, majority of existing physics-based
deep models for computer vision tasks integrate physics
laws via a regularization term to ensure physical consis-
tency [40, 45]. In this paper, we propose a biomechanics-
guided approach which explicitly encodes facial biome-
chanics for AU detection task. Particularly, in 3D physics
branch, the proposed physics-based decoder simulates 3D
skin deformation by solving its governing ordinary differ-
ential equations.

3. Proposed Method

We firstly introduce the facial biomechanics. We then
introduce the proposed biomechanics-guided AU detection
framework. In the end, we introduce the training objective
of the proposed model.
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3.1. Facial Biomechanics

To model facial biomechanics, we employ a 3D surface
mesh for facial skin modeling. The muscles are then im-
plicitly modeled via pre-defined muscle effective areas on
the 3D surface mesh. The facial motion is described via the
mesh motion. A 3D mesh contains vertices i = 1, 2, ..., N ,
with N being the total number of vertices. Deformation ui

denotes the position of i-th vertex relative to its initial po-
sition at rest. An observed skin deformation u = {ui}Ni=1

corresponds to a meaningful facial expression. The exter-
nal forces F ext causing this skin deformation are originate
from facial muscles underneath the facial skin Fmus. In the
following, we firstly introduce the muscle activation force
Fmus and how it deforms the facial skin through external
forces F ext. We then introduce the Euler-Lagrange equa-
tion governing the motion of 3D facial skin given exter-
nal forces F ext. Lastly, we introduce the forward dynamic
solving the second-order ODE governing the dynamics.
Facial Muscle Activation Force: The facial muscles are
innervated by the facial nerve and then deform the skin by
contracting. Based on their contraction, the facial muscles
devoted to facial expression generation can roughly be split
into two types [7]: sheet and sphincter. A sheet muscle
consists of muscle fibers arranged in parallel threads. Dur-
ing a contraction, muscle fibers shorten equally to pull the
skin towards a fixed origin site of that muscle. For example,
frontalis belongs to sheet muscle. In a sphincter muscle,
muscle fibers form closed curves. During a contraction,
sphincter muscle slides to generate different movements,
e.g., closure or protrusion, and there is no fixed origin site
in sphincter muscles. Both orbicularis oculi and orbicu-
laris oris can be treated as sphincter muscles. In the end, a
contracted muscle exhibits a muscle activation force Fmus

m ,
where m denotes m-th facial muscle and m = 1, 2, ...,M
with M being the total number of muscles.

Vertices on a skin mesh receive non-zero muscle acti-
vation forces as external forces and then move. For each
muscle, its effective area includes all the vertices on the 3D
mesh receiving forces from that muscle and is defined ac-
cording to facial muscle anatomy. One vertex can receive
activation forces from different muscles. Particularly, we
leverage facial blendshapes that semantically correspond to
facial muscle activations to label the correspondence be-
tween muscles and mesh vertices (i.e., effective areas) and
pre-define a distribution matrix P ∈ RN×M . N is the num-
ber of vertices and M is the number of muscles. P(i,m) in-
dicates the probability of m-th muscle introducing external
force to i-th vertex. We visualize four major facial muscles
and their effective areas in Figure 2.

Given the distribution matrix, muscle forces Fmus are
distributed to each vertex on the mesh to obtain the external
force F ext that each vertex receives due to muscle contrac-
tion. The total external force that i-th vertex receives from

Frontalis 
(right and left)

Corrugator 
(right and left)

Zygomatic 
major

(right and left)

Depressor 
anguli oris

(right and left)

Figure 2. Four major muscles and their effective areas. The
bright part indicates the mesh vertices on a mesh corresponding
to the muscle. For the muscles that are causing bilateral symmet-
ric forces, e.g., fontalis, we consider the effective areas on the right
and left sides of the face separately.

muscles then becomes F ext
i =

∑M
m=1 P(i,m)Fmus

m . In the
end, the external force matrix F ext ∈ RN×3 becomes

F ext = PFmus (1)

Facial Skin Motion: The external forces cause the mo-
tion of a 3D mesh. For a 3D mesh in a motion, the de-
formation of each vertex is a function of time, i.e., ui(t) =
{ui,x(t), ui,y(t), ui,z(t)} in the Cartesian coordinate. De-
formation ui(t) denotes the position of i-th vertex at time t
relative to its initial position at rest. The velocity and ac-
celeration in the Cartesian coordinate of each vertex are
dui(t)

dt := u̇i(t) and d2ui(t)
dt2 := üi(t), respectively. We

treat a 3D mesh as a spring-mass system, and according to
Newton’s second law, the second-order ordinary differential
equation (ODE) for the motion of i-th vertex is

mi
d2ui(t)

dt2
:= miüi(t) = fi (2)

where mi is the mass of i-th vertex. fi = {F ext
i ,felas

i }
denotes the forces that i-th vertex receives. F ext

i =
{F ext

i,x , F ext
i,y , F ext

i,z } is the external force applied to i-th ver-
tex which is caused by muscle activation. If there is no ex-
ternal force applied, F ext

i = 0. felas
i is the internal elastic

force. For every pair of vertices connected through a spring,
i.e., (i, i′), they receive the elastic forces of the same mag-
nitude but opposite direction due to the deformation of the
spring, i.e., felas

i = −felas
i′ , and the elastic force is com-

puted following Hooke’s law [30].
To solve the second-order ODE (Eq. 2) in the Cartesian

coordinate, we need to solve for u of dimension N × 3. N ,
representing the total number of vertices of a facial mesh, is
usually huge (N ∼ 30, 000). Directly solving for u is hence
computational challenging. Instead, to reduce the dimen-
sion, we consider the dynamic in a generalized coordinate

8696



Linear 
Coefficients
𝑐𝑡 , 𝑐𝑡+1, …

Blendshape 
Bases

𝐵1, 𝐵2, … , 𝐵49

Observed 3D 
Mesh

𝑢𝑡, 𝑢𝑡+1, …

Encoder
3D mesh 

convolution

Images

𝑰𝒕, 𝑰𝒕+𝟏, …

Estimated Linear 

Coefficients
𝒄𝑡, 𝒄𝑡+1…

𝑭𝒎𝒖𝒔

ODE Solver  

𝑸

Decoder

AU prediction
𝒑𝑡, 𝒑𝑡+1, …

𝑴𝑩

Regression

Deep 
Model

Features

Physics Branch Image Branch

AU Loss

3D Reconstruction Loss

3D 

Reconstruction 

Model

Figure 3. Overview of the proposed physics branch for biomechanics-guided AU detection

with lower dimension. Particularly, we leverage the typical
construction of a 3D facial mesh and represent a mesh as a
linear combination of 3D facial blendshapes, i.e.,

u = c1B1 + c2B2 + · · ·+ cKBK (3)

where {Bj}Kj=1 are known and K is the total number of ba-
sis defined by the reconstruction model. Both u and Bj are
of N × 3 dimension. c = {cj}Kj=1 are the coefficients spe-
cific to each reconstructed mesh u. As a 3D facial mesh
can be completely specified by a facial blendshape basis
{Bj}Kj=1, the blendshape basis can be used as the gener-
alized coordinate to efficiently capture the facial dynamics.
We thus define the motion via coefficients c.

To derive the motion law w.r.t. c in the specified gen-
eralized coordinate, we leverage the Euler-Lagrange equa-
tion. For ui = ui(q1, q2, ..., qk), q = {q1, q2, ..., qk} de-
fines a generalized coordinate. Euler-Lagrange equation de-
fines the motion in the generalized coordinate as M(q)q̈ +
C(q, q̇) = Q, where M(q) is the generalized mass and Q
is the generalized force. C(q, q̇) = Ṁ q̇ − 1

2 q̇
T (∂M∂q )T q̇.

Defining the generalizaed coordinate q using the Blend-
shape basis, we derive the Euler-Lagrange equation in the
specified generalized coordinate as

MB c̈+ C(c, ċ) = Q (4)

where MB = 1
2

∑
i m

B
i is the generalized mass, and

mB
i = miB̂(i) where B̂(i) = B(i)TB(i) and B(i) =

[B1(i), B2(i), ..., Bj(i), ..., BK(i)] ∈ R3×K . Q =
∑

i Qi

is the generalized force with Qij = BT
j (i)fi. C(c, ċ) =

dMB

dt ċ − 1
2 ċ

T (∂M
B

∂c )T ċ. Since MB is not a function of
time t, nor a function of c, C(c, ċ) = 0. In the end, the

Euler-Lagrange equation for a whole mesh in the specified
generalized coordinate is

MB c̈ = Q (5)

Q =
∑

i Qi only contains external force caused by mus-
cle contraction as Qij = BT

j (i)f
ext
i , because the summed

elastic force for each pair of vertices becomes zero. De-
tailed derivations are in Appendix A and the verification of
the derived dynamic law is in Appendix B.
Forward Dynamic with an ODE Solver: Given the de-
rived dynamic law in the generalized coordinate defined by
the blendshape basis (Eq. 5), we perform forward dynamic
by solving the second-order ODE. We consider a standard
Euler integration method for solving the ODE as

c(t+ 1) = c(t) + ċ(t)

ċ(t+ 1) = ċ(t) + c̈(t)
(6)

where c̈(t) = (MB)−1Q(t) according to the dynamic law.
With the estimated linear coefficients c(t+1), we can obtain
the corresponding mesh u(t+ 1) following Eq. 3.

3.2. Biomechanics-based AU Detection

In this section, we introduce the architecture of our
model which consists of two branches: 3D physics branch
and 2D image branch. An overview of the proposed physics
branch is shown in Figure 3. Both two branches take a 2D
video as an input. 3D physics branch models muscle activa-
tion forces with geometric deformations leveraging biome-
chanics. 2D image branch employs standard image-based
AU detection model and estimates 2D appearance informa-
tion. Both 3D forces and 2D appearance information are
used for facial AU detection, whereby 2D appearance infor-
mation serves as a compensation of 3D forces.
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3.2.1 3D Physics Branch

3D physics branch employs an encoder-decoder architec-
ture, and biomechanics is embedded by incorporating a dif-
ferentiable ODE solver into the decoder. 3D physics-based
reconstruction is then performed by solving the ODE given
external forces together with physics parameters, which are
regressed given 3D deformations. Given an input image I ,
a 3D mesh u is obtained using the 3D reconstruction [15].
Encoder with 3D mesh convolution: The encoder E ex-
tracts 3D geometric features given 3D deformation u as

z3d = E(u; Φ) (7)

The encoder is realized via a 3D mesh convolution neural
network [29] mapping a deformed mesh u to the latent vari-
ables space. Φ denotes trainable parameters within the en-
coder that are unknown and to be learned during training.
Physics parameter estimation through regression: The
extracted 3D geometric features z3d are employed to es-
timate physically meaningful parameters through a regres-
sion neural network Freg as,

zphys = Freg(z
3d; Θ) (8)

with zphys = {MB ,Fmus}. Freg is realized through a
multi-layer perception and Θ denotes trainable parameters.
Decoder with a differentiable ODE solver: Given the
muscle activation forces, we first map the muscle activation
forces to the generalized forces Q =

∑
i Qi with

Qi = BT (i)fext
i = BT (i)(

M∑
m=1

P(i,m)Fmus
m ) (9)

and BT (i) = [B1(i);B2(i); ..., Bj(i); ..., BK(i)] ∈ RK×3.
Given {MB , Q}, instead of following a typical data-driven
decoder, we customize the decoder via a differentiable ODE
solver, through which we integrate the dynamic laws into
the decoder. Particularly, the decoder estimates coefficients
c̃ by solving the ODE (Eq. 5) as

c̃ = ODESolver[
d2c(t)

dt2
= (MB)−1Q] (10)

We employ the standard Euler integration method as our
ODE solver for predicting c̃ as we introduced previously
(Eq. 6). The initial velocity is defined as c(∆t)−c(0)

∆t . There
is no learnable parameters in the decoder. Through the in-
tegrated dynamic law in the decoder, we perform physics-
based reconstruction, ensuring the estimated physics pa-
rameters are meaningful.

3.2.2 2D Image Branch

We employ ResNet50 [10] for extracting image features.
Taking an image I as input, image feature z2d is obtained

z2d = F(I) (11)

F(·) is learned off the shelf and is fixed during training. Our
proposed framework is not limited to the ResNet50 and can
be straightforwardly applied to any image-based backbone.

3.2.3 AU Prediction

We employ physics parameters including the estimated
muscle activation forces Fmus and generalized positions c,
together with image features for predicting AU activation
y = {yr}Rr=1. R is the total number of AUs to be predicted.
yr = {0, 1} where yr = 1 indicates the activation of r-
th AU. The estimated forces and generalized positions have
specific physics meaning and semantically corresponding to
AU activation. Given physics-based parameters and image
features, AU activation is predicted as

p(yr = 1) = σ(H([Fmus||c||z2d])) (12)

where H is a shallow fully-connected neural network. σ is
the sigmoid function and “[·||·]” denotes concatenation.

3.3. Training Objectives

We first introduce two loss terms: 3D reconstruction loss
and AU detection loss. We then introduce two force regular-
ization terms. Lastly, we summarize the total training loss.
3D Reconstruction Loss is employed for training the 3D
physics branch. Specifically, given a sequence of observ-
able 3D meshes {ut}Tt=1 where T indicates the length of
the time sequence. The reconstruction loss is defined as

L3d =
1

T

T∑
t=1

||c(t)− c̃(t)||22 (13)

where c(t) denotes the ground truth generalized position at
time t and c̃(t) denotes the estimated one.
AU Detection Loss: For a sequence with time length T ,
GT AU labels are {yGT

t }Tt=1. For each yGT
t , we have

yGT
t = {yGT

t,r }Rr=1 with r indexing r-th AU and R is the
total number of AUs. The AU loss is defined based on AU
prediction error through a cross-entropy, i.e.,

Lau =
1

TR

T∑
t=1

R∑
r=1

yGT
t,r log(pt,r)+(1−yGT

t,r ) log(1−pt,r)

(14)
where pt,r = p(yt,r = 1) is the predicted occurrence prob-
ability of r-th AU at time t.
Force regularizations: To avoid noisy forces, we add L1
norm to the estimated forces as

Lclean =
1

M

M∑
j=1

|Fmus
j |1 (15)

By adding Lclearn, only the forces that are sufficiently sig-
nificant will be kept. Since forces can’t be changed sud-
denly, the estimated forces from two adjacent time steps
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Table 1. Comparison to Baseline Methods

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg
3D Geometry 35.0 40.7 49.7 69.0 73.0 78.7 78.4 59.8 10.6 30.8 25.7 13.3 47.0

3D Force 20.5 27.2 49.2 72.0 76.9 76.9 75.3 59.8 12.2 44.4 27.4 15.2 46.4
3D Position 52.9 47.9 56.9 76.3 80.2 80.9 82.3 58.5 18.7 40.1 32.2 20.4 53.9
3D Physics 58.6 48.4 58.1 75.3 78.1 80.5 82.7 58.6 29.4 46.6 39.1 30.9 57.3
2D Image 46.3 38.1 52.7 74.4 74.5 82.6 83.9 59.8 48.1 55.8 42.9 45.2 58.7

Physics + Image 57.4 52.6 64.6 79.3 81.5 82.7 85.6 67.9 47.3 58.0 47.0 44.9 64.1

should be similar. We thus introduce the second regulariza-
tion term to ensure the smoothness of the estimated forces:

Lsmooth =
1

T

T∑
t=2

||Fmus(t)− Fmus(t− 1)||22 (16)

Their effectiveness are empirically shown in Appendix C.
Total Training Loss in the end is defined as

L = λ3dL3d + λauLau + λcLclean + λsLsmooth (17)

where λ3d, λau, and λc, and λs are hyper-parameters bal-
ancing the importance of different terms and are to be tuned.

4. Experiments

To evaluate the performance, we first compare the pro-
posed model against different baseline models. We then
compare against the state-of-the-art AU detection methods.
We further study the effectiveness of the integrated biome-
chanics through a data efficiency evaluation and a cross-
dataset evaluation. Lastly, we provide qualitative evaluation
to understand the estimated muscle activation forces.
Datasets: We evaluate the proposed method on two bench-
mark datasets: BP4D [47] and DISFA [21]. Following pre-
vious works [16, 37], 12 AUs are used for evaluation on
BP4D. For DISFA, we evaluate on 8 AUs and AU with in-
tensity values greater than 2 are annotated as activated. We
perform three-fold cross-subject evaluation, and report av-
erage performance. More details are in Appendix C.
Evaluation Metrics: F1 score is considered to evaluate the
accuracy of AU detection. F1 score is calculated as 2p·r

p+r ,
where p is the precision and r is the recall.
Implementation Details: Given a 2D image, the corre-
sponding 3D surface mesh is obtained from the AU spe-
cific 3D reconstruction method [15] because its blendshape
basis is specific to facial AUs. To the best of our knowl-
edge, this is the first work using 3D blendshapes for AU
detection task. Other PCA-based 3D reconstruction mod-
els are not shown to be applicable to AU detection task and
we thus don’t consider. In image branch, the ResNet50 is
pre-trained on ImageNet. More details are in Appendix C.

4.1. Comparison to Baseline Methods

We compare the proposed method to baselines using dif-
ferent types of information for AU detection including ge-
ometry, force, position in 3D. Physics branch employs both
force and position for AU detection. Image branch employs
2D images for AU detection. We perform the evaluation
on BP4D as shown in Table 1. In physics branch, com-
bining force and position for AU prediction achieves aver-
age F1 score 57.3%, outperforming using force or position
alone (46.4% and 53.9%, respectively). Force describes the
deformation between two adjacent frames while position
describes the current status in the generalized coordinate.
In addition, leveraging sufficient physically meaningful pa-
rameters (i.e., force and position), the physics branch out-
performs geometry based model by 10.3%.

Comparing physics branch and image branch, we can
see that they achieve comparable performance on aver-
age, with F1 score being 57.3% and 58.7% respectively.
Physics based AU detection significantly outperforms im-
age based AU detection on some AUs that are hard to de-
tected through appearance. For example, for AU1, physics
based method achieves 58.6% while image based method
only achieves 46.3%. These results further demonstrate that
physics branch and image branch provides complementary
information for AU detection. Finally, by combing physics
branch and image branch, we achieve the best performance
with average F1 score 64.1%.

4.2. Comparison to the State-of-the-art Methods

We compare the proposed biomechanics-guided AU de-
tection method against the state-of-the-art methods includ-
ing: MLCR [24], ARL [32], CMS [31], SRERL [16] and
LP-Ne [25], , HMP-PS [37], UGN-B [35] and FAU [11].
We report the results on BP4D and DISFA datasets as
shown in Table 2 and Table 3, respectively. On BP4D, we
achieve competitive performance compared to the SOTA
methods, outperforming most of them. Particularly for
some AUs that are hard to be detection from images, our
approach performs better. For example, for AU1, our ap-
proach achieves F1 score 57.4%, which is 5.7% higher than
FAU. FAU employs transformers for image-based AU de-
tection, which is a more sophisticated neural architecture
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Table 2. The F1 score (in %) for the detection of 12 AUs on the BP4D dataset. The best results are indicated using bold.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
ARL [32] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1
CMS [31] 49.1 44.1 50.3 79.2 74.7 80.9 88.3 63.9 44.4 60.3 41.4 51.2 60.6

SRERL [16] 46.9 45.3 55.6 77.1 78.4 83.5 87.6 60.6 52.2 63.9 47.1 53.3 62.9
LP-Net [24] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

HMP-PS [37] 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
UGN-B [35] 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3

FAU [11] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
Ours 57.4 52.6 64.6 79.3 81.5 82.7 85.6 67.9 47.3 58.0 47.0 44.9 64.1

Table 3. The F1 score (in %) for the recognition of 8 AUs on the DISFA dataset. The best results are indicated using bold.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
ARL [32] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
CMS [31] 40.2 44.3 53.2 57.1 50.3 73.5 81.1 59.7 57.4

SRERL [16] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
LP-Net [24] 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9

HMP-PS [37] 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
UGN-B [33] 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0

FAU [11] 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
Ours 41.5 44.9 60.3 51.5 50.3 70.4 91.3 55.3 58.2

compared to ResNet50, the backbone of our image branch.
HMP-PS leveraged hybrid messages capturing AU relation-
ships for AU detection. However, the AU relationships are
extracted in an abstract level and are not sufficient to cap-
ture the principled relationships. Our approach, instead, by
leveraging biomechanics represented as the Euler-Lagrange
equation, outperforms HMP-PS by 0.7%. Besides, our
proposed framework is not limited to a specific image-
based AU model in the image branch. Consistent perfor-
mance improvement is expected with different image-based
AU models (e.g., FAU). On DIAFA dataset, our approach
achieves reasonable performance, and outperforms some of
the SOTA methods, e.g. CMS, SRERL, and LP-Net. The
AU-specific 3D reconstruction model [15] used for generat-
ing 3D meshes is not employed for DISFA yet. Hence, the
performance of the physics branch of our method is limited
due to the low quality of the 3D meshes.

4.3. Effectiveness of Incorporated Biomechanics

We further demonstrate that leveraging the biomechan-
ics can help improve the data efficiency and generalization,
with two additional evaluations as shown in the following.
Data Efficiency Evaluation: To show that, by leveraging

the anatomically meaningful forces, we can perform AU de-
tection with reduced data dependency, we evaluate the AU
detection performance under different amount of AU labels.
Particularly, we consider 50%, 20%, 5% amount of training
data for AU detection. We perform AU detection by using
AU detection loss plus reconstruction loss. In comparison,
we report the AU detection with AU detection loss only. Re-
sults are shown in Table. 4 As shown, as we decrease the

Table 4. Data Efficiency Evaluation

AU labels AU AU + Reconstruction
50% 39.0 46.2
20% 34.7 44.3
5% 27.9 33.0

training data, leveraging AU detection loss only can’t pro-
vide good AU detection performance anymore due to the
lack of samples. On the other hand, by leveraging the 3D re-
construction, the extracted geometric features are ensured to
be physically meaningful, and thus are able to provide rea-
sonably well AU detection performance. For example, with
only 50% training data, leveraging reconstruction loss, we
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obtain average F1 score 46.2%, which is 7.2% higher than
the AU detection performance using AU loss only. These
results further show that by leveraging the biomechanics,
our AU detection approach is less data dependent.
Cross-dataset Evaluation: We demonstrate the generaliza-
tion ability through a cross-dataset evaluation. Particularly,
we train the physics branch on BP4D dataset and test it on
DISFA dataset. We consider the performance on AUs that
overlapped between BP4D and DISFA. In comparison, we
report the baseline data-driven model, which is trained with
AU loss only. Results are shown in Table 5. As shown,

Table 5. Cross-dataset Evaluation

Method data-driven physics-based
Avg. 32.1 38.8

the physics branch based on biomechanics generalizes bet-
ter, with 6.7% improvement compared to the data-driven
model. These results show that biomechanics helps esti-
mate forces which apply to different subjects cross different
datasets, leading to improved generalization.

4.4. Understanding the Estimated Forces

To verify that the estimated muscle activation forces are
physically meaningful, we perform additional evaluation of
the estimated forces. Directly performing quantitative eval-
uation of the estimated muscle activation forces is challeng-
ing due to the lack of ground truth forces in the benchmark
datasets. Instead, we perform surrogate qualitative evalua-
tions to better understand the estimated forces.
Correlation between Force and AU Activation: We first
visualize the magnitude of the estimated forces and the cor-
responding AU activation, as shown in Figure 4. As shown,

(𝑎) (𝑏) (𝑐)

Figure 4. Correlation between estimated forces in magnitude (blue
curves) and AU labels (red curves): (a) AU1 and Fontalis of sub-
ject F001 (T1); (b) AU1 and Fontalis of subject F008 (T5); (c)
AU11 and Orbicularis Oris of subject F018 (T1).

the magnitude of the estimated forces is positively corre-
lated to the activation of AUs indicated by the GT AU la-
bels. Particularly, in Figure 4 (a), we observe two peaks of
the magnitude of the estimated force of Fontalis are corre-
sponding to the periods of AU1 being activated.

Force Visualization: We in addition visualize the estimated
forces distributed on the 3D mesh, as shown in Figure 5. We

(𝑎) (𝑏) (𝑐)

Figure 5. Force visualization: (a) for Fontalis (subject F001,
2469th frame of T1); (b) for Orbucularis Oris (subject F008,
413th frame of T8); (c) for Zygomatic Major (subject F001,
2471th frame of T1).

plot the magnitude of estimated muscle forces. On the top
row, we display the original images, and on the bottom row,
we display the corresponding estimated forces. The brighter
the area, the larger the magnitude of the force. In Fig. 5
(a), AU1 and AU2 are activated. Correspondingly, we ob-
serve the significant active force for the corresponding mus-
cle (i.e., Fontalis). Similarly, in Fig. 5 (b), AU6 is activated,
and the estimated force of the muscle Orbucularis Oris is
observed. In Fig. 5 (c), we observe the activated AU12 and
the corresponding force for muscle Zygomatic Major.

5. Conclusion

In this paper, we proposed a biomechanics-guided AU
detection approach, where facial muscle activation forces
are modeled and are employed for AU detection. Specifi-
cally, forces are modelled under an encoder-decoder frame-
work, where decoder performs physics-based reconstruc-
tion. By leveraging facial biomechanics, physically plausi-
ble and anatomically meaningful forces are estimated, given
2D videos. Both the estimated muscle activation forces and
image features are employed for AU detection. We empiri-
cally demonstrate the effectiveness of the proposed method
by comparing to state-of-the-art AU detection methods.
Furthermore, we demonstrate that, by leveraging facial mo-
tion mechanism, our model performs robust AU detection
under limited AU labels and is cross-dataset generalizable.
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