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Abstract

Video object detection needs to solve feature degradation
situations that rarely happen in the image domain. One
solution is to use the temporal information and fuse the
features from the neighboring frames. With Transformer-
based object detectors getting a better performance on the
image domain tasks, recent works began to extend those
methods to video object detection. However, those exist-
ing Transformer-based video object detectors still follow
the same pipeline as those used for classical object detec-
tors, like enhancing the object feature representations by
aggregation. In this work, we take a different perspective on
video object detection. In detail, we improve the qualities
of queries for the Transformer-based models by aggrega-
tion. To achieve this goal, we first propose a vanilla query
aggregation module that weighted averages the queries ac-
cording to the features of the neighboring frames. Then,
we extend the vanilla module to a more practical version,
which generates and aggregates queries according to the
features of the input frames. Extensive experimental re-
sults validate the effectiveness of our proposed methods:
On the challenging ImageNet VID benchmark, when inte-
grated with our proposed modules, the current state-of-the-
art Transformer-based object detectors can be improved by
more than 2.4% on mAP and 4.2% on AP50. Code is avail-
able at https://github.com/YimingCuiCuiCui/FAQ.

1. Introduction
Object detection is an essential yet challenging task

which aims to localize and categorize all the objects of in-
terest in a given image [14,50,98]. With the development of
deep learning, extraordinary processes have been achieved
in static image object detection [3, 14, 22, 42, 47, 71]. Exist-
ing object detectors can be mainly divided into three cate-
gories: two-stage [3,29,32,46,65], one-stage [47,52,57,62–
64, 72, 73] and query-based models [4, 27, 56, 66, 71, 103].
For better performance, two-stage models generate a set
of proposals and then refine the prediction results, like R-
CNN families [15, 26, 32, 65]. However, these two-stage

object detectors usually suffer from a low inference speed.
Therefore, one-stage object detectors are introduced to bal-
ance the efficiency and performance, which directly pre-
dicts the object locations and categories based on the in-
put image feature maps, like YOLO series [62–64, 69] and
FCOS [72,73]. Recently, query-based object detectors have
been introduced, which generate the predictions based on a
series of input queries and do not require complicated post-
processing pipelines like NMS [2,55,60]. Some typical ex-
ample models are DETR series [4,56,66,103] in Figure 1(a)
and Sparse R-CNN series [24, 35, 71].

With the existing approaches getting better performance
on the image domain, researchers began to extend the tasks
to the video domain [10,41,67,75,83,85]. One of the most
challenging issues of video object detection is handling the
feature degradation caused by motion, which rarely appears
in static images. Since videos provide informative tem-
poral hints, post-processing-based video object detectors
are proposed [1, 31, 39, 40, 68]. As shown in Figure 1(c),
these methods first apply image object detectors on every
individual frame and then associate the prediction results.
However, since the image object detectors and the post-
processing pipelines are not optimized jointly, these models
usually suffer from poor performance.

Besides post-processing methods, feature-aggregation-
based models [6, 13, 30, 34, 38, 82, 100, 104] are introduced
to improve the feature representations for video object de-
tection. These approaches first weighted average the fea-
tures from the neighboring frames and then fed the aggre-
gated features into the task heads for the final prediction, as
shown in Figure 1(b). The pipeline for weighted averaging
is usually based on feature similarity [6, 79, 82, 104, 105]
or learnable networks [13, 34, 100]. Since Transformer-
based models perform better on image object detection, re-
searchers have begun extending them to the video domain
[34,76,100]. TransVOD families [34,100] introduce a tem-
poral Transformer to the original Deformable-DETR [103]
to fuse both the spatial and temporal information to handle
the feature degradation issue. Similarly, PTSEFormer [76]
introduces progressive feature aggregation modules to the
current Transformer-based image object detectors to boost
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Figure 1. The differences between the existing works and ours. (a) Transformer-based object detectors. (b) Feature-aggregation based
video object detectors. (c) Post-processing based video object detectors. (d) Ours. Previous works can be divided into feature-aggregation
based (b) and post-processing based (c) models. For Transformer-based models, these works either enhance the features used for detection
or the prediction results of each frame. In contrast, our methods (d) pay attention to the aggregation of queries for those Transformer-based
object detection models to handle the feature degradation issues.

the performance. Following the TransVOD series [34,100],
we use Transformer-based object detectors as the baseline
models in this work.

Unlike the existing models, we take a deeper look at the
Transformer-based object detectors and find out the unique
properties of their designs. We notice that the queries of
Transformer-based object detectors play an essential role in
the final prediction performance. Therefore, different from
the existing works, which apply different modules to ag-
gregate features (Figure 1(b)) or detection results in every
single frame (Figure 1(c)), we introduce a module to aggre-
gate the queries for the Transformer decoder, as shown in
Figure 1(d). The existing TransVOD families [34, 100] ini-
tialize the spatial and temporal queries randomly regardless
of the input frames and then aggregate them after several
Transformer layers. Unlike them, our models focus on ini-
tializing the object queries and enhancing their qualities of
Transformer-based approaches for better performance. By
associating and aggregating the initialization of the queries
with the input frames, our models can achieve a much better
performance compared to the TransVOD families [34, 100]
and PTSEFormer [76]. Meanwhile, our methods can be in-
tegrated into most of the existing Transformer-based image
object detectors to be adaptive to the video domain task.
Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to fo-
cus on the initialization of queries and aggregate them
based on the input features for Transformer-based

video object detectors to balance the model efficiency
and performance.

• We design a vanilla query aggregation (VQA) mod-
ule, which enhances the query representations for the
Transformer-based object detectors to improve their
performance on the video domain tasks. Then we ex-
tend it to a dynamic version, which can adaptively gen-
erate the initialization of queries and adjust the weights
for query aggregation according to the input frames.

• Our proposed method is a plug-and-play module
which can be integrated into most of the recent
state-of-the-art Transformer-based object detectors for
video tasks. Evaluated on the ImageNet VID bench-
mark, the performance of video object detection can
be improved by at least 2.0% on mAP when integrated
with our proposed modules.

2. Related Works

Image object detectors. Image object detection requires
the model to accurately predict the location and category
of the objects in the input image [14, 22, 42, 57, 97, 99].
R-CNN families [15, 32, 65, 65] introduce the basic frame-
work for two-stage object detectors, where proposals are
first roughly predicted and then refined for better perfor-
mance. Following R-CNN families, multiple two-stage
works [3, 15, 18, 46] are proposed to improve the perfor-
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mance of two-stage object detectors. Besides the detec-
tion accuracy, one-stage object detectors [47, 53, 57, 72, 73]
are introduced, which generate the predictions without the
need for region proposals to improve the inference speeds.
Meanwhile, anchor-free based models [23, 61, 72, 73] and
point-based methods [22, 42, 101] are proposed, which pro-
vides different perspectives to the object detection fields.
However, all the models mentioned above require the pre-
processing pipeline like anchor design [3, 57, 65] or post-
processing like NMS [55, 60].

Recently, query-based object detectors [4, 17, 19, 24, 27,
36, 56, 66, 71, 81, 87, 103] are proposed, which removes the
complicated anchor designs or post-processing pipelines in
the traditional models. Among them, Transformer-based
models, especially DETR [4] is a pioneer work which treats
the object detection task as a bipartite matching problem
and introduces a sequence-to-sequence model with 100 ran-
domly initialized queries. Following DETR, multiple works
[5, 5, 26, 37, 45, 56, 58, 66, 91, 103] are proposed to improve
the inference speed, performance, or convergence efficiency
of DETR. For one direction [26,56,58,81,87], prior knowl-
edge is introduced to the queries for faster convergence. In
another way, modulated self-attention modules with fewer
operations are proposed to improve the convergence speed
of DETR [17,56,66,92,103]. Meanwhile, multiple training
strategies [5, 37, 45, 91] are introduced to improve the con-
vergence speed and performance of the DETR series mod-
els. In this work, we mainly focus on Transformer-based
image object detectors and design modules to extend them
for the tasks in the video domain.

Video object detectors. Depending on the pipeline to im-
prove the detection performance, existing methods can be
divided into post-processing [31, 39, 40, 68] and feature-
aggregation [6,12,13,34,49,51,54,76,79,82,84,96,100,104]
based models. Post-processing based video object detec-
tors extend the models from the image domain by merg-
ing the prediction results according to the temporal infor-
mation. For example, Seq-NMS [31] associates the bound-
ing boxes from different frames with the IoU threshold; T-
CNN [40] links the object detection results from each frame
according to optical flows. These methods are not trained
end-to-end, and the performances are always sub-optimal.
Feature-aggregation based models enhance the feature rep-
resentations of the current frame by fusing those from the
neighboring frames. FGFA [104] and MANet [79] weight
average the features from the neighboring frames after be-
ing warped based on optical flows. SELSA [82], and Tem-
poral ROI Align [30] fuse the neighboring frames according
to their semantic similarity. MEGA [6] takes both temporal
information and semantic similarity into account and aggre-
gates local and global features jointly. Different from the
methods mentioned above, which generate weights for ag-
gregation using cosine similarity, TF-Blender [13] applies a

learnable network to predict the weights.
All the methods mentioned above are designed for the

classic object detectors like Faster R-CNN [65], or Center-
Net [22]. Recently, with DETR series [4, 26, 66, 103] in-
troduced for the image domain tasks, researchers have be-
gun to focus on how to use these Transformer-based models
for video object detection. Among them, TransVOD se-
ries [34, 100] introduces two key modules to boost the per-
formance: Temporal Query Encoder to fuse object queries
and Temporal Deformable Transformer Decoder (TDTD)
to obtain current frame detection results. Similarly, PT-
SEFormer [76] proposes the Spatial Transition Awareness
Model to fuse the temporal and spatial information for a
better prediction. These models still follow the feature-
aggregation based prototype, where those of the neighbor-
ing frames enhance features of the current frame before be-
ing fed into the task heads for the final prediction. Unlike
these methods mentioned above, we aggregate the queries
of those Transformer-based object detectors for the video
tasks, which the current researchers have never investigated.
Dynamic models. Dynamic networks aim to adjust the in-
ference paths according to the inputs selectively. Slimmable
networks [44,88,89] are models which can adaptively select
the computational complexity based on the inputs without
the need for retraining. In terms of applications for object
detection, neural architecture search (NAS) is one of the
widely used approaches. NAS-FPN [28] introduces NAS to
optimize designing FPNs for object detection according to
the input image. In other work like [77, 78, 86], NAS is ap-
plied to the existing image object detectors to improve the
performance. Besides NAS, recent works have begun using
dynamic models [17, 25, 59, 70, 90, 95, 102] to improve ef-
ficiency dynamic convolutions [7, 11, 20, 21, 80], dynamic
heads [16, 93, 94], and dynamic proposals [14], which are
introduced to the existing object detectors to balance the
performance and inference speed. For video object detec-
tion, DFA [8, 9] proposes a model which can dynamically
select the frames used to aggregate the features according
to the input frames. This work mainly focuses on dynami-
cally aggregating the queries for the Transformer-based ob-
ject detectors according to the input frames.

3. Preliminary
We first review the pipeline of the existing Transformer-

based object detectors for videos: Given an input frame
I , the multi-scale features extracted by the backbone like
ResNet [33] are denoted as F , which are then fed into a
Transformer encoder Nenc. Next, the outputs of Nenc are
fed into a Transformer decoder Ndec together with n ran-
domly initialized queries Q ∈ Rn×f , where n and f de-
note the number of queries and length of every query re-
spectively. The outputs of the Transformer decoder are
then fed into a task head Nt for the final prediction P =
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(a)

(b)

(c)

Figure 2. Framework of the proposed method. (a) Dynamic query aggregation with both basic queries and dynamic queries. (b) Details of
query aggregation. (c) The process to generate the dynamic queries based on the basic queries and input frame features.

{(bi, ci) ,= 1, 2, . . . , n}, where bi, ci represent the corre-
sponding locations and categories of the predicted bounding
boxes. The process above can be summarized as follows:

P = Nt (Ndec (Nenc (F ) ,Q)) (1)

The predictions P are then matched with the ground
truths Y using the Hungarian Algorithm [4] for bipartite
matching, and the final loss is the summation of all the
frames, as Equation 2.

L =
∑

LHungarian (P ,Y ) (2)

To handle the issue of feature degradation in the video
frames, existing models enhance the representations of dif-
ferent parts in Equation 1: Post-processing based mod-
els [31, 39, 40, 43] associate the predictions P from differ-
ent frames using temporal hints like optical flows or ob-
ject tracking to improve the performance of detection at
each frame, as Figure 1(c). Feature-aggregation based ap-
proaches [34, 79, 82, 100, 104] enhance the feature repre-
sentations for object detection by weighted averaging the
features F neighboring frames, as Figure 1(b). Different
from the methods mentioned above, we focus on improv-
ing the quality of queries Q by aggregation, as Figure 1(d),
which are the unique properties of Transformer-based mod-
els compared with the classic approaches. The query aggre-
gation operation is only applied on the first decoder layer.

4. Query Aggregation
4.1. Vanilla Query Aggregation

In terms of how to aggregate the query Q ∈ Rn×f of
frame I , a naive vanilla idea is to weighted average the

queries Qi from the neighboring frame I , where Ii ∈
N (I)1 and the size of N (Ii) is l, as Figure 2 (b). Within
one batch, l×n queries are randomly initialized and shared
across the training data during the training process. Within
the neighborhood N (Ii), the queries are different. There-
fore, the aggregated query ∆Qv ∈ Rn×f for the current
frame I is represented as:

∆Qv =
∑

∀Ii∈N (I)

wv
i Qi, (3)

where wv
i ∈ R is the learnable weights for aggregation.

A simple idea to generate the learnable weights is based
on the cosine similarity of the input frame features, shown
as the dots and arrows in Figure 2(b). Following the
existing feature-aggregation based video object detectors
[79, 82, 104], we generate wv

i according to Equation 4. We
will discuss more ways to aggregate the queries in the ex-
periment section.

wv
i =

α(F )β(Fi)

|α(F )||β(Fi)|
, (4)

where α, β are mapping functions and |·| denotes the nor-
mal. The corresponding features of the current frame I and
its neighbors Ii are denoted as F and Fi. Therefore, the
process in Equation 1 and 2 are updated as:

P v = Nt (Ndec (Nenc (F ) ,∆Qv))

Lv =
∑

LHungarian (P
v,Y ) ,

(5)

1For simplicity, I is also considered to be within the neighboring
frames N (I).
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Method AP AP50 AP75 APS APM APL FPS

Two-stage Object Detectors

Faster R-CNN [65] + DFF [105] 42.7 70.3 45.7 5.0 17.6 48.7 17.3
Faster R-CNN [65] + FGFA [104] 47.1 74.7 52.0 5.9 22.2 53.1 14.9
Faster R-CNN [65] + SELSA [82] 48.7 78.4 53.1 8.5 26.3 54.5 14.1
Faster R-CNN [65] + Temporal RoI Align [30] 48.5 79.8 52.3 7.2 26.5 54.4 10.5

DETR-based Object Detectors

SMCA-DETR [26] 53.5 74.2 59.6 7.6 25.7 60.5 13.4
SMCA-DETR [26] + TransVOD [100] 54.6↑1.1 78.5↑4.3 61.0↑1.4 9.1↑1.5 27.0↑1.3 61.4↑0.9 10.1
SMCA-DETR [26] + Ours 55.8↑2.3 79.1↑4.9 62.7↑3.3 9.3↑1.7 28.7↑3.0 62.6↑2.1 10.9

Conditional-DETR [58] 53.7 74.7 60.1 7.7 25.9 60.6 13.1
Conditional-DETR [58] + TransVOD [100] 54.8↑1.1 78.6↑3.9 61.3↑1.2 9.6↑1.9 27.5↑1.6 61.9↑1.3 9.9
Conditional-DETR [58] + Ours 56.1↑2.4 79.2↑4.5 63.0↑2.9 8.8↑1.1 29.0↑3.1 63.0↑2.4 10.3

DAB-DETR [56] 54.2 75.3 61.3 8.9 26.8 61.2 12.0
DAB-DETR [56] + TransVOD [100] 56.4↑2.2 77.2↑1.9 63.7↑2.4 10.1↑1.2 28.9↑2.1 63.5↑2.3 8.7
DAB-DETR [56] + Ours 58.0↑3.8 79.0↑3.7 65.5↑4.2 12.0↑3.1 30.1↑3.1 65.1↑3.9 9.2

Deformable-DETR [103] 55.4 76.2 62.2 10.5 27.5 62.3 15.3
Deformable-DETR [103] + TransVOD [100] 58.1↑2.7 79.1↑2.9 64.7↑2.5 11.0↑0.5 29.9↑2.4 65.2↑2.9 12.1
Deformable-DETR [103] + Ours 60.1↑4.7 81.7↑5.5 66.9↑4.7 13.2↑2.7 33.1↑5.6 66.9↑4.6 12.3

Table 1. Performance comparison with the recent state-of-the-art video object detection approaches on ImageNet VID validation set [67].
The AP50 here is the mAP evaluation metric in most of the existing works like TransVOD [100] and PTSEFormer [76].

where P v denotes the prediction results with the aggregated
queries ∆Qv .

4.2. Dynamic Query Aggregation

The vanilla query aggregation module has an issue
that these neighboring queries Qi are randomly initial-
ized, which are not related to their corresponding frames
Ii. Therefore, the neighboring queries Qi do not provide
enough temporal or semantic information to eliminate the
feature degradation issues caused by fast motion. Though
the weights wv

i used for aggregation are related to the fea-
tures Fi and F , there are not enough constraints on the
quantities of those randomly initialized queries Qi.

Therefore, we propose to update the vanilla query aggre-
gation module to a dynamic version, which adds constraints
to the queries and can adjust the weights according to the
neighboring frames. For implementation, the simple idea
is to generate the queries Qi directly from the features Fi

of the input frame. However, experiments show us that this
way is challenging to train and always gets a worse perfor-
mance. Unlike the naive idea mentioned above, we gen-
erate the new queries adaptive to the input frame from the
randomly initialized queries. We first define two kinds of
query vectors, shown with dashed and solid lines in Fig-
ure 2 (a) and (c): basic queries Qb

i ∈ Rn×f and dynamic
queries Qd

i ∈ Rm×f , where n = rm and r is set to be 4
by default. During the training and inference processes, we

generate the dynamic queries from the basic queries accord-
ing to the features Fi,F of the input frames as:

Qd
i = M

(
Qb

i ,Fi,F
)
, (6)

where M (·) is the mapping function to build the relation-
ship of the basic query Qb

i and the dynamic one Qd
i ac-

cording to F and Fi. Here we give a default example of
the implementation of M (·) and will analyze its design
in the experiment section in detail. We first divide the
basic queries Qb

i into m groups, where each group has r
queries. Then, for each group, we use the same weights
V = {vj , j = 1, 2, . . . , r}, V ∈ Rr×m to weighted aver-
age the queries in the current group, as Equation 7.

Qd
i =

r∑
j=1

vjQ
b
ij , (7)

where Qb
ij denotes the j-th basic query in the current group

of Qb
i . To build the relationship between the dynamic

queries Qd
i and their corresponding frame Ii, we generate

the weights V using the global features of Ii, as Figure 2(c),
denoted as:

V = G (A (Fi)) , (8)

where A is a global pooling operation to reduce the feature
resolution and generate the global-level features, and G is
a mapping function to project the pooled features to the di-
mension of r × m. Therefore, the process of aggregating
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Model VQA DQA Loss AP

A 55.4
B ✓ 56.7
C ✓ 58.5
D ✓ 58.9
E ✓ ✓ 60.1

Table 2. Analysis of the proposed modules.

the queries dynamically based on the features of the input
frames can be updated as follows:

∆Qd
i =

∑
∀Ii∈N (I)

wd
iQ

d
i (9)

During the training, as shown in Figure 2(a), we aggre-
gate both the dynamic queries Qd

i and basic queries Qb
i with

the same weights wd
i and generate the corresponding pre-

diction P d and P b, as Equation 10.

∆Qb =
∑

∀Ii∈N (I)

wd
iQ

b
i

P b = Nt

(
Ndec

(
Nenc (F ) ,∆Qb

))
P d = Nt

(
Ndec

(
Nenc (F ) ,∆Qd

)) (10)

In the training phase of Figure 2, the dynamic query is
generated from the same basic query group with the dashed
line surrounding it. We calculate the bipartite matching
losses for both P b and P d and use a hyperparameter γ to
balance their influence as Equation 11.

L =
∑

LHungarian
(
P d,Y

)
+ γ

∑
LHungarian

(
P b,Y

)
(11)

During the inference time, we only use the dynamic
queries Qd

i and their corresponding predictions P d as the
final outputs, which introduce only a little extra computa-
tional complexity to the original models. We will discuss
and analyze the model complexity in the experiment part.
The reason why to optimize basic queries in parallel in the
training phase and discard them in the inference phase are:
1. It is because of the inference speed. If these two kinds of
queries are used in the inference phase, the inference speed
will decrease. We do not want to improve the performance
by increasing the number of queries at the sacrifice of in-
ference speeds. 2. Our key idea is to aggregate the queries
with the guidance of the input frames. Therefore, the dy-
namic queries are what we finally want for the Transformer
decoder. The basic queries are used to help ease the diffi-
culty of training.

5. Experiments
5.1. Experimental Setup

We evaluate our proposed methods on the ImageNet
VID benchmark [67] with the recent state-of-the-art
Transformer-based object detection models [26,56,58,103].
Following the pipeline of TransVOD [34,100], we first pre-
train our models on the MS COCO [48] and then fine-tune
on the combination of ImageNet VID and DET datasets. All
the models are trained on 8 Tesla A100 GPUs, and during
the training and inference processes, 14 neighboring frames
are used for aggregation.

5.2. Main Results

In this section, we conduct experiments on the dynamic
query aggregation modules with the current Transformer-
based object detectors on the ImageNet VID benchmark
[67]. The experiments of vanilla query aggregation will be
provided in the following section. For a fair comparison, we
use the same experimental setups and compare these mod-
els with and without our proposed modules integrated. The
default backbone is ResNet-50 [33]. We summarize the re-
sults in Table 1. Visualization examples are provided in the
supplementary materials.

For most of the DETR-based object detectors, the per-
formance can be improved by at least 2.4% on the metric of
mAP compared with those not integrated with our proposed
modules. The performance is even better than those inte-
grated with TransVOD [100] by a large margin, which val-
idates the effectiveness of our dynamic query aggregation
modules. When considering the objects’ sizes, we notice
that the performance of large or medium objects is much
better than that of small objects. We argue that this is be-
cause the process to generate the dynamic queries Qd

i is
only based on the global features, which lack enough infor-
mation for the small objects.

5.3. Model Analysis

We conduct experiments with Deformable-DETR [103]
on the ImageNet VID benchmark [67] in this section to
study the design of our proposed modules, mainly the dy-
namic query aggregation module. More experiment results
are provided in the supplementary materials.
Analysis of M. We conduct experiments to analyze the de-
sign of M, as Table 3. Model A is our default setting where
only one V is generated, and r is set to be 4. Model B and
C increase the number of weight matrix V to be 2 and 4.
In detail, multiple outputs are provided in each group of Qb

i

instead of generating only one Qd
i . Model D replaces the

G and A operations in Equation 8 to MLPs, and Model E
generates Qd

i from Qb
i and Fi using multi-head cross atten-

tion. Models F and G follow model A but have different
ways of grouping the basic queries. Model F shuffles the

6370



Model AP AP50 AP75 Extra Param

A 60.1 81.7 66.9 37K
B 60.3 82.0 67.0 74K
C 60.5 82.3 67.2 147K
D 59.3 80.7 65.8 49K
E 58.2 79.3 64.9 26K
F 60.0 81.7 66.8 37K
G 60.1 81.6 67.0 37K

Table 3. Analysis of different designs on M.

Aggregation Methods AP AP50 AP75

Cosine Similarity 58.7 79.3 64.9
Simple Networks 59.5 80.2 65.3

Transformer 60.1 81.7 66.9

Table 4. Analysis of different ways to aggregate queries.

queries before grouping, and model G randomly clusters
non-consecutive queries into a group. From the table, we
notice that by increasing the numbers of V , there is a slight
improvement in the performance at the sacrifice of more ex-
tra parameters. For models D and E, the performance drops
a little bit. We argue that this is because local features from
Fi will bring misleading information and make the model
difficult to optimize. For models F and G, there is not much
difference with model A because the basic queries Qb

i are
randomly initialized, bringing robustness to our models.
Analysis of aggregation process. In section 4, we provide
a way to implement the aggregation process based on co-
sine similarity as the existing works [6, 79, 82, 104]. Here,
we analyze different ways to aggregate the queries as Table
4. Besides cosine similarity, we use simple learnable net-
works as TF-Blender [13] and Transformer as TransVOD
[34, 100]. For a fair comparison, all the models are trained
with 14 neighboring frames and tested on the ImageNet
VID benchmark val split. For the implementation de-
tails, we use the same structures as TF-Blender [13] and
TransVOD [34, 100]. The table shows that cosine simi-
larity based aggregation has the worst performance com-
pared to learnable simple networks and Transformers. By
default, we use the Transformer to aggregate the queries in
our work.
Analysis of each component. We conduct experiments
to study the effects of each proposed component. We de-
note the original Deformable-DETR [103] with ResNet-50
as the backbone of model A. Then, we introduce the vanilla
query aggregation modules with 14 neighboring frames to
the original Deformable-DETR to get model B. For model
C, we change the vanilla query aggregation module to the
dynamic version without the extra loss. To validate the ef-
fectiveness of our proposed modules, we conduct experi-
ments on mode D, where we use two groups of randomly
initialized Qb

i and Qd
i . We do not build a relationship be-

Figure 3. Model analysis on the number of queries. The default
model is Deformable-DETR [103] with ResNet-50 as the back-
bone.

tween them. Therefore, there is only a loss for these two
groups of queries but no relation to the input frames. Fi-
nally, we integrate the dynamic query aggregation module
and the extra loss to get model E. The results are summa-
rized in Table 2.

From the table, we notice that by only using the vanilla
query aggregation module, the performance can be im-
proved by 1.3% compared with the original Deformable-
DETR without aggregation. However, this is worse than
the original TransVOD [100] model. Updating the vanilla
query aggregation module to the dynamic version increases
the performance by 1.8%, which is better than the original
TransVOD. We argue that by introducing the contents of the
inputs into the queries, the performance can be improved by
a large margin. Model D removes the relations between the
basic and dynamic queries but leaves both losses for them.
It also performs well, though different than model E, which
contains both the dynamic query aggregation module and
the extra losses. From the experiments, we notice that by
either introducing the dynamic query aggregation or adding
two separate groups of randomly initialized queries, though
they are not related to the inputs, the performance can also
be improved. By combining these two modules, our pro-
posed methods achieve the best performance.
Analysis of the number of queries. We conduct experi-
ments with dynamic query aggregation on the number of
queries as Figure 3. From the figure, by increasing the
number of queries, the performance of the video object de-
tection will be improved accordingly. However, when the
number of queries is more than 500, the performance be-
gins to be saturated. We argue that this is because there are
enough queries to represent the objects in the input frames,
and some are redundant.
Analysis of model complexity. Here, we analyze the model
complexity of our proposed modules to the existing ob-
ject detectors. These methods mainly have four compu-
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Model r mAP AP50

Deformable-DETR - 55.4 76.2

Deformable-DETR + Ours

1 58.7 80.9
2 59.4 81.2
4 60.1 81.7
8 59.7 81.5

Table 5. Analysis of the effect of r. Experiments are conducted
with Deformable-DETR [103] using ResNet-50 as the backbone.

tational loads: 1. Feature extraction network from the
backbone Nex; 2. Transformer encoder networks Nenc; 3.
Transformer decoder networks Ndec; 4. task network Ntk.
Therefore, the total computational complexity is:

O (Ntk) +O (Ndec) +O (Nenc) +O (Nex) (12)

In our proposed models, we introduce a tiny network M
to generate the dynamic queries Qd

i . Therefore, during
the training process, the computational complexity of our
model is defined as:

O (Ntk) +O (Ndec) ∗ (r + 1)

+O (Nenc) +O (M) +
∑

O (Nex) ,
(13)

where r + 1 represents the extra loss calculated for aggre-
gation (both Qd

i and Qb
i ). Typically, in the Transformer-

based object detectors, O (M) ≪ O (Nex) ≈ O (Ndec) <
O (Nenc). Therefore, our model does not increase too many
computational loads to the existing models. When it comes
to the inference process, the computational complexity is
updated to be:

O (Ntk)+O (Ndec)+O (Nenc)+O (M)+
∑

O (Nex) , (14)

since only the dynamic queries Qd
i are taken into account.

The increasing computational load is affordable since the
impact of O (M) +

∑
O (Nex) is negligible compared to

those of the other networks structures like O (Ndec).
Analysis of r. We conduct experiments to analyze the effect
of r on the final performance. By default, m is set to be
300 for the dynamic queries so that the number of queries
will not affect the final performance during the inference
time. We change the value of r to use different numbers of
basic queries Qb

i to generate the same number of dynamic
queries Qd

i , and the results are summarized in Table 5. The
table shows that the performance is the worst when r is set
to 1. We argue that a limited number of basic queries are
not enough to generate the dynamic queries adaptive to the
input frames. However, the performance will be saturated
when r is set to be 8. We think this is because there are
enough and even redundant basic queries to generate the
dynamic ones.

Figure 4. Visualization of dynamic queries with TSNE [74].
Please zoom in for better visualization.

Analysis of Qb
i and Qd

i . To better understand our proposed
method, we analyze and visualize the queries from the orig-
inal models and the dynamic queries from our models. We
choose 100 video clips from the ImageNet VID benchmark
[67] and sample 14 frames from each video. We generate
the corresponding queries based on the input frames and
visualize them using the TSNE [74] as Figure 4. For the
original model, the queries are always the same regardless
of the input frames2. Regarding our dynamic queries, as
Figure 4, queries within the same video clips share similar
representations, like the clusters on the top and left, which
are better and easier to improve the performance of video
object detection.

6. Conclusion
In this paper, we discuss the unique property of the ex-

isting Transformer-based image object detectors and intro-
duce a plug-and-play module designed specifically for these
models for the video domain tasks. We first introduce a
vanilla version to aggregate the queries for the decoders
of the existing Transformer-based models to improve the
performance of video object detection. Then, we extend
the vanilla query aggregation module to a dynamic version
which builds the relationships between the queries and the
features of the input frame. Extensive experiments demon-
strate that, when integrated with our proposed modules, the
current state-of-the-art Transformer-based image object de-
tectors can perform much better on the video object detec-
tion task. We believe our proposed modules can bring some
light to the Transformer-based models for the video tasks.

2It is the same with our basic queries. Since all the input frames share
the same queries, we do not visualize them.
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