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Abstract

Gait recognition is a biometric technology that iden-
tifies people by their walking patterns. The silhouettes-
based method and the skeletons-based method are the two
most popular approaches. However, the silhouette data
are easily affected by clothing occlusion, and the skeleton
data lack body shape information. To obtain a more ro-
bust and comprehensive gait representation for recognition,
we propose a transformer-based gait recognition frame-
work called MMGaitFormer, which effectively fuses and ag-
gregates the spatial-temporal information from the skele-
tons and silhouettes. Specifically, a Spatial Fusion Mod-
ule (SFM) and a Temporal Fusion Module (TFM) are pro-
posed for effective spatial-level and temporal-level feature
fusion, respectively. The SFM performs fine-grained body
parts spatial fusion and guides the alignment of each part of
the silhouette and each joint of the skeleton through the at-
tention mechanism. The TFM performs temporal modeling
through Cycle Position Embedding (CPE) and fuses tempo-
ral information of two modalities. Experiments demonstrate
that our MMGaitFormer achieves state-of-the-art perfor-
mance on popular gait datasets. For the most challenging
“CL” (i.e., walking in different clothes) condition in CASIA-
B, our method achieves a rank-1 accuracy of 94.8%, which
outperforms the state-of-the-art single-modal methods by a
large margin.

1. Introduction

Gait recognition is a biometric technology that identi-
fies people by their walking patterns, which is one of the
most promising video-based biometric technologies in the
long-distance recognition system. However, it is still chal-
lenging to perform reliable gait recognition, as its perfor-
mance is severely affected by many complex factors, in-
cluding clothing, carrying conditions, cross-view, etc.. To
alleviate these issues, various methods have been proposed.
The appearance-based and model-based methods are the
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Figure 1. Comparison of different gait representations of a subject
from the CASIA-B gait dataset at different timesteps of normal
walks (a) and walking in different clothes (b). Each row depicts
the same frames as silhouette image, and 2D skeleton pose, the
combination of skeletons and silhouettes, respectively, from top-
to-bottom. Combines the complementary strengths of silhouette
and skeleton, it is expected to be a more comprehensive represen-
tation for gait.

two most popular approaches for video-based gait recogni-
tion. The appearance-based (i.e., silhouettes-based) meth-
ods [5, 9, 14, 19, 27] rely on binary human silhouette im-
ages segmented from the original video frame to eliminate
the influence of external factors. They utilized convolu-
tional neural networks (CNN) to extract spatio-temporal
features and achieved state-of-the-art performance. The
model-based methods [2,16,17,23] consider the underlying
physical structure of the body and express the gait in a more
comprehensible model. The most recent model-based ap-
proaches are skeletons-based, in which they represent gait
with the skeletons obtained from videos through pose esti-
mation models. With clear and robust skeleton representa-
tion, recent skeletons-based methods could even show com-
petitive results compared to appearance-based methods.

Although both silhouette-based and skeletons-based
methods have their advantages, we argue that the incom-
pleteness of both input representations of the gait infor-
mation limits further improvement of these methods. As
shown in Fig.1(a), although the silhouettes retain most body
shape information, the self-obscuring problem occurs when
body areas overlap. Moreover, when clothing condition
changes, as shown in Fig.1(b), the external body shape is
significantly changed by clothing obscuration. However,
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skeletons only keep the internal body structure information
which effectively solves the clothing-obscuring and self-
obscuring problems, but completely ignoring the discrim-
inative body shape information leads to poor performance.
Thus, we could observe that the silhouette retains the exter-
nal body shape information and omits some body-structure
clues, and the skeleton preserves the internal body structure
information. The two data modalities are complementary to
each other, and their combination is expected to be a more
comprehensive representation of gait.

Motivated by the observations above, to obtain robust
and comprehensive gait representation for recognition, we
propose a transformer-based gait recognition framework
called MMGaitFormer, which effectively fuses and aggre-
gates the spatial-temporal information from the skeletons
and silhouettes. Precisely, the proposed framework consists
of four main modules at three stages. Firstly, the silhou-
ette sequence and skeleton sequence are extracted from the
original RGB video by segmentation and pose estimation
methods, respectively. After that, we feed the silhouettes
and skeletons into independent encoding modules to ex-
tract unique spatio-temporal feature maps for each modal.
Finally, we propose a Spatial Fusion Module (SFM) and
a Temporal Fusion Module (TFM) for spatial and tempo-
ral feature fusion, respectively. As a video-based recog-
nition task, how to effectively extract discriminative gait
features from spatio-temporal information is the most crit-
ical issue. In this work, we consider both fine-grained fu-
sion at the spatial level and fine-aligned fusion at the tem-
poral level. In the SFM, we design a co-attention mod-
ule to enable the interactions between the silhouettes and
skeletons. Specifically, we construct strategies called Fine-
grained Body Parts Fusion (FBPF) to guide SFM for fine-
grained feature fusion learning based on prior positional re-
lationships between joints in the skeleton and corresponding
parts in the silhouette. In the TFM, we introduced an em-
bedding modeling operation for fine-aligned temporal mod-
eling, in which we design the Cycle Position Embedding
(CPE) to efficiently capture gait cycle features and better
model the temporal information for gait sequences.

The main contributions of the proposed method are sum-
marized as follows: (1) We propose an effective and novel
multi-modal gait recognition framework called MMGait-
Former, which utilizes a more comprehensive gait represen-
tation constructed from silhouettes and skeletons for better
recognition. (2) A co-attention-based Spatial Fusion Mod-
ule is proposed to perform a fine-grained body parts fusion
(FBPF) of spatial gait features by using the prior positional
relationships of each skeleton joint and each silhouette part.
(3) We propose a novel Temporal Fusion Module for feature
fusion at the temporal level, in which we design the Cycle
Position Embedding (CPE) to model temporal relationships
for gait sequences of arbitrary length. Experiments demon-

strate that our MMGaitFormer achieves state-of-the-art per-
formance on popular gait datasets. For the most challeng-
ing condition (i.e., walking in different clothes) in CASIA-
B [26], our method achieves a rank-1 accuracy of 94.8%,
which outperforms the state-of-the-art Single-modal meth-
ods by a large margin (+11.2% accuracy improvement ).

2. Related work
Appearance-based Methods rely on binary human silhou-
ette images extracted from the original images. Most recent
methods directly consider gait as a sequence of silhouettes.
These methods [5, 6, 9, 18, 20] follow a similar pipeline,
which extract spatial features using a well-designed net-
work at the frame level and then use a spatio-temporal ag-
gregate module to obtain the gait representation. For in-
stance, GaitPart [9] designed a Micro-motion Capture Mod-
ule (MCM) module to model the local micro-motion fea-
tures. GaitGL [20] proposed a 3D CNN network to simulta-
neously aggregate local spatio-temporal information. Gait-
Transformer [6] proposed Multiple-Temporal-Scale Trans-
former (MTST) for gait temporal modeling. Although the
silhouette-based approach achieved state-of-the-art perfor-
mance, the silhouette data will inevitably meet the problem
of clothing obscuring and self obscuring, limiting its further
improvement.
Model-based Methods consider the underlying physical
structure of the body and express the gait in a more compre-
hensible model [2, 16, 17]. The most recently model-based
methods commonly take skeletons as raw input data ex-
tracted from the original videos with pose estimation mod-
els. PoseGait [17] utilizes human prior knowledge to design
pose features and uses CNN to extract feature representa-
tions for recognition. GaitGraph [23] extracted the gait in-
formation from human 2D joints based on Graph Convolu-
tional Network (GCN) and achieve competitive results. Al-
though the skeleton-based methods are robust against view
and appearance changes, the skeleton data contains less
body shape information than the silhouette images.
Multi-modal Gait Recognition [4, 7, 13] approaches that
integrate depth, multi-sensor and video data have shown im-
provements in recognition performance in early research.
However, homogeneous multi-modal methods that solely
rely on video data have not been fully explored, and ex-
isting methods [15, 21, 25] still suffer critical issues: (1)
Simply concatenating the final global features of the two
modalities could not effectively capture fine-grained spatial
information. (2) The temporal information of the two modal
sequences is not fully utilized, and how to effectively fuse
their temporal features remains an open problem. Inspired
by the remarkable success of Transformer [24] in multi-
modal learning, we propose a transformer-based approach
that leverages two complementary data modalities, i.e., sil-
houette and skeleton, for comprehensive gait recognition.
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Figure 2. The pipeline of our MMGaitFormer. In the preprocessing stage, the silhouette sequence and skeleton sequence are extracted
from the original RGB video by segmentation method and pose estimation method, respectively. In the Encoding stage, we feed the
input silhouettes and skeletons into Silhouette Encoding Module (SiEM) and Skeleton Encoding Module (SkEM) to learn spatial-temporal
feature maps, respectively. In the Fusion stage, a Spatial Fusion Module (SFM) and a Temporal Fusion Module (TFM) are proposed for
effective fine-grained spatial and fine-aligned temporal feature fusion, respectively. ATT means cross-attention block, and two ATTs form
a co-attention structure for feature fusion. Embedding Modeling (EM) in TFM is used for temporal modeling. Separate Fully Connected
Layer (SFC) is used for the feature mapping in the Encoding and Fusion stage.

3. Method
In this section, we will describe the technical details of

our MMGaitFormer. In Sec.3.1, we present an overview
of our method. In Sec.3.2, we discuss the design moti-
vation of SiEM and SkEM. In Sec.3.3, we introduce our
proposed Spatial Fusion Module on how to integrate skele-
ton information and silhouette information by Fine-grained
Body Parts Fusion (FBPF). In Sec.3.4, we elaborate on our
proposed Temporal Fusion Module on how to use the Cycle
Position Embedding (CPE) to model and fuse the temporal
information of two modalities sequence.

3.1. Pipeline

To efficiently obtain, process, and fuse the gait represen-
tation of both modalities, we propose an effective and nov-
elty framework called MMGaitFormer which effectively
fuses the complementary spatio-temporal information of
both modalities while preserving the unique discriminative
features of each modality. The pipeline of the proposed
multi-modal gait recognition framework is shown in Fig.2.

In the preprocess stage, two types of gait representations
will be obtained offline from the original gait video. One is
the silhouette sequence S ∈ RCs

1×T s
1 ×H1×W1 extracted by

segmentation method, where C1 is the number of channels,
T s
1 is the length of the silhouette sequence and (H1,W1)

is the image size of each frame. Another input is the
skeleton sequence which is extracted by a pose estimation
model [10, 22]. The skeleton sequence can be described
by A ∈ RN1×N1 structurally and by K ∈ RCk

1×Tk
1 ×N1

feature-wise, where Ck
1 is the number of channels, T k

1 is
the length of the sequence and N1 is the number of joints.

In the encoding stage, given the sequence of silhouette
S and skeleton K, the feature maps Fs ∈ RCs

2×T s
2 ×H2 , and

Fk ∈ RCk
2×Tk

2 ×N2 are then extracted from the Silhouette
Encoding module (SiEM) and Skeleton Encoding module
(SkEM), respectively, in order to learn the unique spatio-
temporal information of each gait representation.

In the fusion stage, these feature maps are then fed into
two branches: (1) The Spatial Fusion Module fuses each sil-
houette part and each skeleton node at a fine granularity us-
ing the co-attention structure and obtains the spatial feature
representation Ys. (2) The Temporal Fusion Module mod-
els the temporal relation by Embedding Modeling and fuses
long-term feature information for each modal for temporal
feature representation Yt. We concatenate the Ys and Yt as
the final feature representation Y for the gait sequence.

Finally, we choose a combined loss to train the proposed
network, consisting the fusion loss Lfuse, the silhouette
loss Lsil and the skeleton loss Lske. The total loss is de-
fined as L = Lfuse + Lsil + Lske. We utilize the separate
Batch All triplet loss [12] as the loss function.

3.2. Silhouette and Skeleton Encoding Module

Motivation. The data structures of the two modal repre-
sentations are too different, so it is difficult to fuse them di-
rectly on the data-level. Therefore, we design independent
encoding modules to capture the unique discriminative in-
formation of each modal and enhance the spatial-temporal
feature representation for the subsequent fusion. To speed
up the model convergence, we specially perform silhouette
loss Lsil and skeleton loss Lske to supervise the learning of
each modal feature separately.
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Operation. Inspired by GaitGL [19] and GaitGraph [23],
we design our SiEM network and SkEM network. The
SiEM network is composed of 3D CNN blocks [20],
Max Pooling Layers and Micro-motion Capture Module
(MCM) [9]. For the SkEM, we introduce the graph con-
volutional network (GCN) to extract spatio-temporal gait
features from the sequence of skeleton graphs. The output
channel of the last block is set to 128, which is the same as
the output of the SiEM to facilitate subsequent fusion pro-
cessing. The SiEM and SkEM in our framework can also be
replaced by any gait recognition networks. The more com-
plex architecture of the SiEM and SkEM may bring in more
considerable performance gains, but that is not the priority
of the proposed method. Therefore, SiEM and SkEM can
be considered the baseline of our approach.

(b)

SkEM

SiEM

(a)

SkEM

SiEM

SFM

Figure 3. Comparison of different spatial fusion strategies. (a)
illustrates global feature-level fusion, (b) illustrates our proposed
co-attention based fine-grained feature fusion.

top 1/4

bottom 1/4

middle 1/2

nose,eye,ear

shoulder, hip
elbow, wrist

knee, ankle

Head
Co-ATT

Torso
Co-ATT

Legs
Co-ATT
(b)

(a)

Figure 4. (a) The human body area can be divided into three parts:
head, torso and legs, and different area of human gait possess
evidently different shapes and moving patterns during walking.
(shown by the images of the aspect ratio) (b) Fine-grained Body
Parts Fusion (FBPF): The computation of co-attention is restricted
between the corresponding regions of head, torso and legs.
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Figure 5. The network structure of our proposed Spatial Fusion
Module (a) and Temporal Fusion Module (b), both of which con-
tain a co-attention structure. Each co-attention structure consists
of two interconnected cross-attention blocks. The input of SFM
is the spatial feature embedding of silhouette fS

s and skeleton fS
k ,

and the pre-defined attention mask of cross-attention mS
s and mS

k

for fine-grained body parts fusion to restrict skeleton and silhou-
ette to corresponding regions for restricted attention computation.
TFM’s input is the temporal feature embedding of silhouette fT

s

and skeleton fS
k .

3.3. Spatial Fusion Module

Motivation. Concurrently with this work, individual ap-
proaches [21, 25] are also beginning to explore more ro-
bust features through the fusion of multiple gait modalities.
However, As shown in Fig.3 (a), these methods have a rel-
atively simple means of fusion and focus on the fusion at
the global feature level by a concatenation operation [25].
Such a fusion operation lacks interpretability and flexibil-
ity and also lacks the use of prior spatial information about
the human body. Moreover, these methods usually rely on
pre-trained models for each modal, which makes them more
like ensemble models than multi-modal models. To address
these issues, we propose a co-attention based fusion mod-
ule shown in Fig.5 (a) which adopts the interpretive fusion
of each body part’s external shape (silhouette) and inter-
nal structure (skeleton) by the attention mechanism (i.e.,
Fine-grained Body Parts Fusion), which is shown in Fig.3
(b). The attention-based learning structure also makes the
method more flexible, allowing end-to-end training without
relying on pre-trained models for each modal.
Fine-grained Body Parts Fusion. As shown in Fig.4 (a),
the human body area can be divided into three parts: head,
torso, and legs, and different body parts of human gait pos-
sess different shapes and moving patterns during walking.
Motivated by the above observations, we argue that spatial
feature fusion should be fine-grained and propose a simple
but effective strategy to achieve a more comprehensive fine-
grained spatial feature fusion by using human prior knowl-
edge. We restrict the silhouette and skeleton features to
compute cross-attention only with the corresponding body
parts by constructing attention masks mS

s and mS
k , as shown
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in Fig.4(b). On the one hand, the fusion between each body
part effectively utilizes the prior knowledge of the human
body and is therefore more interpretable. On the order hand,
the restricted attention computation can reduce the compu-
tational complexity by half and effectively reduce the risk
of overfitting.

In this work, we established a simple mapping rela-
tionship between silhouette and skeleton to construct pre-
defined attention masks shown in Fig.4 (b). The top quarter
(0-1/4), middle half (1/4-3/4), and the bottom quarter (3/4-
1) of the feature embedding fS

s represent silhouette fea-
tures of the head, torso, and legs respectively. Similarly,
the skeleton node vector is also divided into the same three
areas of the head (The node features of nose, eye, ear in
fS
k ), torso (shoulder, elbow, wrist, hip), and legs (knee, an-

kle).mS
s and mS

k are transposes of each other.
Spatial Co-attention Aggregation. The co-attention fu-
sion module enables the interactions between the silhou-
ettes and skeletons, which establishes various spatial re-
lationships between silhouette parts and skeleton joints to
exploit complementary strengths of the two data modali-
ties for a more robust and comprehensive gait feature rep-
resentation for recognition. Compared to individual cross-
attention modules, the co-attention structure can better inte-
grate the complementary advantages of the skeleton and sil-
houette. And by constructing Attention mask for restricted
attention computation, the risk of overfitting of Transfor-
based methods is reduced while improving interpretability.
Operation. As visualized in Fig.5 (a), the co-attention
module includes interlaced multi-head cross-attention
blocks. In this work, our cross-attention blocks follow the
ViT’s [8] multi-head attention structure. For the feature
maps Fs ∈ RCs

2×T s
2 ×H2 and Fk ∈ RCk

2×Tk
2 ×N2 , max-

pooling are used in the temporal axis to get the spatial fea-
ture embedding fS

s ∈ RC3×H2 and fS
k ∈ RC3×N2 , re-

spectively. These feature embeddings are then fed into co-
attention structure for complementary information fusion,
and subsequently followed by feed-forward network (FFN)
layer to generate the spatial feature representation Ys.

3.4. Temporal Fusion Module

Motivation. As a video-based recognition task, the tem-
poral relationships between gait frames contain unique bio-
logical information which is critical for recognition. To bet-
ter exploit the temporal information of the gait sequences
of both modals, we propose an attention-based Temporal
Fusion Module (TFM) to aggregate the temporal features
of both modals. Moreover, as shown in Fig.4(a), gait is a
cyclical and symmetric process. Therefore, we proposed
the Cycle Position Embedding to better model and align the
temporal information for the sequences of two modals.
Cycle Position Embedding. The attention mechanism can-
not distinguish the position information of the input fea-

Input: 

Position
Embedding:

...

...
Cycle
Position
Embedding:
(Cycle = 3)

...

...

...

...

Figure 6. The Comparison of Embedding Modeling by Position
Embedding and Embedding Modeling by our proposed Cycle Po-
sition Embedding (cycle = 3)

ture sequence. As shown in Fig.6, for existing vision trans-
former methods [8], Position Embedding of the same length
as the input sequence is used to indicate the order of the in-
put tokens. However, this approach limits the transformer
only to extract spatial-temporal information from fixed-
length gait sequences. To address this shortcoming, we
proposed Cycle Position Embedding (CPE), expressed as
Ps = {pi|i = 1, ..., s}, the s is the cycle size of position em-
bedding. We repeat the position embedding until it has the
same length as the feature embeddings to process sequences
of any size. On the one hand, the process of repeating for
position embeddings simulates the gait cycle process which
is a more efficient way to model the gait cycle in sequence.
And the size of the cycle s can be set interpretably accord-
ing to the number of frames in a gait cycle. On the other
hand, the risk of overfitting is further reduced by limiting
the number of learnable parameters, helping the proposed
Transformer-based model to converge better.

Moreover, the same frames in both sequences are per-
formed with the same position embedding for fine-aligned
temporal modeling. We prepend a sequence of feature em-
beddings for each modality with a learnable class embed-
ding (expressed as CLST

s and CLST
k ), whose state at the

output of the attention block serves as the temporal feature
representation of the corresponding modality.

Temporal Co-attention Aggregation. The network struc-
ture of TFM is illustrated in Fig.5 (b). Similar to SFM, we
also design a co-attention module to fuse and aggregate the
temporal information of two modals. Specifically, the tem-
poral features of the two modals differ significantly, so we
employ two separate FFN layers to map the unique tempo-
ral features of the two modals separately.

Operation For the feature maps Fs ∈ RCs
2×T s

2 ×H2 , and
Fk ∈ RCk

2×Tk
2 ×N2 , mean pooling is used in the spatial axis

to get the temporal feature embedding fT
s ∈ RC3×T s

2 and
fT
k ∈ RC3×Tk

2 , respectively. The embedding modeling op-
eration is applied to these feature embedding for temporal
modeling. These feature embeddings are then fed into the
co-attention structure for feature fusion and enhancement
and a temporal fusion feature representation Yt is obtained.
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4. EXPERIMENTS

4.1. Datasets and Evaluation Protocol

CASIA-B [26] is the most popular dataset for the cross-
view gait recognition task. It contains 124 subjects where
six sequences are sampled in normal walking (NM), two se-
quences are in walking with a bag (BG), and the rest are in
walking in coats (CL). Each walking has 11 views which are
uniformly distributed in [0◦, 180◦] at an interval of 18◦. In
total, there are (6 + 2 + 2)× 11 = 110 walking sequences
per subject. Following the large-sample training (LT) set-
tings in [5], our experiments take the first 74 subjects as the
training set and the rest 50 as the test set. For evaluation,
each subject’s first four normal walking sequences are re-
garded as the gallery, and the rest are regarded as the probe.
OUMVLP is the largest public gait dataset which has re-
leased both the silhouette data [11] and the skeleton data
[1], in which the skeleton data is extracted by Alpha-
Pose [10] and Openpose [3]. It contains 10307 subjects,
14 views per subject, and 2 walking sequences (#00-#01)
per view. For fair comparison with previous state-of-the-
art (SOTA) methods, we conduct experiments following the
same protocol as [5, 9, 20], the 10307 subjects are divided
into two groups: 5153 training and 5154 testing subjects.
For evaluation, sequences#01 are kept in the gallery, and
sequences#00 are regarded as the probe.

4.2. Training Details

Input. We adopt the same preprocessing approach as [5]
to obtain gait silhouettes for CASIA-B and OUMVLP. The
silhouette image of each frame is normalized to the size 64
× 44. For the CASIA-B, in which skeleton is not avail-
able, we utilized HRNet [22] to extract skeleton data. For
the OUMVLP, we directly use the skeleton data of Alpha-
Pose [10] provided by the OUMVLP-Pose [1].
Setting.All experiments utilize AdamW optimizer with a
weight decay of 1e-4. For CASIA-B dataset, the batch size
P × K is set to 8 × 16. During training, input sequences
are set to a length of 64. During testing, entire sequences
are utilized for gait feature extraction. The iteration num-
ber is set to 12K. Specially, we found that the SkEM and
SiEM required a higher learning rate (LR) than the SFM
and TFM for faster convergence. Therefore, LR in fusion
modules is set to 0.1× as that in the encoding module. And
encoding module’s LR is first set to 1e-3 and reset to 1e-
4 after 5K. For OUMVLP dataset, the batch size P × K
is set to 32 × 8. The iteration number is set to 60K. The
SkEM module based on skeleton data performs poorly on
the OUMVLP dataset. Therefore, we downscale the skele-
ton features in the spatial dimension by mean operation be-
fore performing the concatenation operation in SFM mod-
ule. The LR is first set to 1e-4, reset to 1e-5 after 50K. Ac-
cording to the statistics of the CASIA-B dataset, the average

number of frames in a gait cycle is 28 and the Encoder mod-
ules downscale the temporal dimension by a factor of four.
Therefore, the cycle size s of the CPE is set to 28/4 = 7.

4.3. Comparison with State-of-the-Art Methods

Evaluation on CASIA-B. Tab.1 shows a comparison be-
tween the SOTA methods and the proposed MMGaitFormer
framework. It can be seen that our method achieves
the best average accuracy in all three conditions. Com-
pared with SOTA silhouette-based gait recognition method
GaitGL [19], our method improves by +4.6% on mean ac-
curacy. Compared with the skeleton-based method Gait-
Graph [23], our method obtains an impressive improvement
by +20.1%. As shown in Tab.1, the proposed MMGait-
Former meets a new state-of-the-art, and the mean rank-1
accuracy is 96.4%, which outperforms our baseline meth-
ods SkEM (+22.1%) and SiEM (+6.4%) by a large margin.
Moreover, we further explore the effect of different walk-
ing conditions (NM, BG, and CL). For our proposed MM-
GaitFormer, the recognition accuracy in these conditions is
98.4%, 96.0%, and 94.8%, respectively. It can be observed
that the proposed method has an excellent performance in
both normal and complex conditions. Significantly, the per-
formance of ours is much better than that of GaitGL [19]
in CL conditions by +11.2%. The impressive experimental
results prove that the complementary advantages of skele-
ton and silhouette are used to obtain the great potential of
robustness to clothing changes in gait recognition.
Evaluation on OUMVLP. We further evaluate the perfor-
mance of the proposed method on the OUMVLP dataset,
which is the worldwide largest public gait dataset. As
shown in Tab.2, MMGaitFormer meets a new state-of-the-
art performance and the mean rank-1 accuracy is 90.1%
which increases by 2.5% compared with our baseline
method, i.e., SiEM. The improvement is smaller com-
pared to the improvements in CASIA-B. Considering that
the main improvements in CASIA-B were made on CL
condition, OUMVLP contains only normal walks, which
may lead to fewer improvements. Moreover, for the
skeleton-based methods, both the benchmark method CNN-
Pose [1] provided by the OUMVLP-Pose dataset and our re-
implementation baseline method GaitGraph [23] perform
poorly on OUMVLP, which may be one of the possible rea-
sons for limiting the performance of our method. Again, it
is worth mentioning that our method outperforms all SOTA
silhouette-based methods while training only 1/4 of the
epoch. Furthermore, we anticipate the possibility of fur-
ther improving the results by utilizing improved SkEM and
SiEM modules, which will be explored in future research.

4.4. Ablation Study

Effectiveness of SFM and TFM. To validate the effective-
ness of the proposed SFM and TFM, we conducted experi-
ments to compare the performance of our single modal en-
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Table 1. The rank-1 accuracy (%) on CASIA-B dataset under all view angles with different conditions, excluding identical-view case. *
means our reimplementation for encoding module.

Gallery NM 0◦ − 180◦ meanProbe Methods 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM

PoseGait [17] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7
GaitGraph [23] 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7

GaitGraph* (SkEM) 82.3 84.1 83.7 85.4 84.0 82.8 85.0 81.7 84.6 86.5 81.8 83.8
GaitNet [27] 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3
GaitSet [5] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [9] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GaitGL [19] 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

GaitGL* (SiEM) 95.1 98.6 99.0 97.4 94.9 93.5 96.2 98.6 99.0 97.5 90.9 96.4
MMGaitFormer (ours) 98.1 98.6 99.0 98.1 98.4 97.8 98.1 99.0 99.2 99.1 97.3 98.4

BG

PoseGait [17] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5
GaitGraph [23] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

GaitGraph*(SkEM) 67.5 72.4 72.7 71.2 72.4 72.3 73.1 73.4 70.6 69.8 65.5 71.0
GaitNet [27] 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9
GaitSet [5] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [9] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
GaitGL [19] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

GaitGL* (SiEM) 89.2 94.9 94.3 93.1 90.0 86.6 88.4 93.3 96.3 95.3 84.6 91.4
MMGaitFormer (ours) 97.1 95.9 97.1 95.7 96.1 95.2 95.2 97.1 97.3 96.1 93.5 96.0

CL

PoseGait [17] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0
GaitGraph [23] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3

GaitGraph*(SkEM) 65.2 66.8 65.7 64.8 70.9 64.9 72.1 68.9 69.9 70.3 69.1 68.1
GaitNet [27] 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
GaitSet [5] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [9] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GaitGL [19] 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

GaitGL* (SiEM) 77.6 88.3 90.5 85.4 81.7 75.0 81.2 84.7 87.2 83.7 68.0 82.1
MMGaitFormer (ours) 93.9 98.0 96.9 96.0 93.7 91.6 93.5 96.4 96.5 95.7 90.2 94.8

Table 2. The mean rank-1 accuracy (%) on OUMVLP excluding
the identical-view cases. * means our reimplementation for encod-
ing module.

Method Input Mean Acc

CNN-Pose [1] skeleton 20.4
GaitGraph* [23](SkEM) 21.1

Gaitset [5]

silhouette

87.1
GaitPart [9] 88.7
GLN [14] 89.2

GaitGL [19] 89.7
GaitGL* (SiEM) 87.6

BiFusion [21] fuse 89.9
MMGaitFormer(ours) 90.1

coding module with that of our multi-modal network. As
shown in Tab.3, the first two rows show the averaged accu-
racies of SkEM and SiEM, which could be considered as
our baseline. From the last three rows, we can observe that:
(1) Great performance gains were achieved by using only
SFM, especially in the CL condition, which demonstrates

that the complementary fusion of two modalities in spatial
can significantly improve gait recognition in the presence
of occlusion. (2) While there is no significant performance
gain from using only TFM, its performance is still better
than using only the skeleton for recognition. (3) Our ap-
proach achieves the best performance when using both SFM
and TFM for feature fusion, demonstrating that our two-
branch fusion framework can aggregate both temporal and
spatial features of the two modalities for more comprehen-
sive gait recognition. We can observe that the improvement
from SFM is much more significant than the improvement
from TFM. Considering that vision contains much more in-
formation than temporal information in the task of video
recognition, we can still regard TFM as a practical auxiliary
fusion module.

Analysis of Spatial Fusion Module. (1) We first per-
form an ablation study on the co-attention structure in SFM.
The first two rows in Tab.4 show the comparison between
the cross-attention using only a single modal and the co-
attention structure of two modals. As shown in Tab.4, any
cross-attention blocks removal leads to performance degra-
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Table 3. Ablation studies on the CASIA-B dataset. The results are
rank-1 accuracies averaged on all 11 views, excluding identical-
view cases.

SkEM SiEM TFM SFM NM BG CL Mean

✓ 83.8 71.0 68.1 74.3
✓ 96.4 91.4 82.1 90.0

✓ ✓ ✓ 84.4 74.4 66.3 75.0
✓ ✓ ✓ 98.0 94.6 92.7 95.1
✓ ✓ ✓ ✓ 98.4 96.0 94.8 96.4

dation, reduced average accuracy by -17.7% and -2.7%
respectively. The co-attention structure using two cross-
attention blocks achieves the best performance. We can
conclude that each cross-attention block can effectively im-
prove gait recognition performance. The co-attention struc-
ture can better integrate the complementary advantages of
the skeleton and silhouette. (2) To validate the effectiveness
of our proposed Fine-grained Body Parts Fusion (FBPF)
strategy, we conduct the ablation experiments by removing
the attention mask used for Fine-grained Body Parts Fusion
in SFM. As shown in the last two rows of the Tab.4, the pro-
posed fusion strategy improves the average rank-1 accuracy
by +2.4%, which proves that our strategy can effectively
guide the fusion of aligned local features, helping the model
to converge better and achieve better performance.

Table 4. Analysis of Spatial Fusion Module. w/o Sil-CA: remove
the cross attention block which query is silhouette feature from the
co-attention of SFM. Similarly, w/o Ske-CA: remove the cross at-
tention block which query is skeleton feature. w/o mask: remove
the pre-defined attention mask for FBPF in SFM.

Method NM BG CL Mean

Ours w/o Sil-CA 87.6 78.2 70.4 78.7
Ours w/o Ske-CA 97.8 94.0 89.3 93.7

Ours w/o mask 97.0 92.8 92.4 94.0
Ours 98.4 96.0 94.8 96.4

Analysis of Temporal Fusion Module. In Tab.5, we show
the effectiveness of our temporal embedding modelling in
the Temporal Fusion Module. (1) When no Embedding
Modeling is performed on the input sequence of TFM, the
average accuracy decreased by -0.8%. In particular, the re-
sults without EM are essentially the same as those without
TFM (The fourth row in Tab.3). The result demonstrates
that temporal modelling can capture temporal relationship
information for better fusion. (2) When using the vanilla
Position Embedding (PE) for Embedding (shown in Fig.6),
the accuracy reduced by -2.3%. Considering that PE does
not fully consider the feature of gait cycle process, the di-
rect introduction of too many training parameters may lead
to poor model performance because of overfitting. The re-

sult also demonstrates that our proposed Cycle Position Em-
bedding(CPE) model the temporal information of gait se-
quences more effectively.

Table 5. Analysis of Temporal Fusion Module. w/o EM: remove
the Embedding Modeling in TFM, which means no temporal mod-
eling. w/ EM (PE): Embedding Modeling by vanilla Position Em-
bedding [8]. w/ EM(CPE): Embedding Modeling by our proposed
Cycle Position Embedding.

Method NM BG CL Mean

Ours w/o EM 98.1 94.8 94.1 95.6
Ours w/ EM (PE) 97.3 93.5 91.5 94.1

Ours w/ EM (CPE) 98.4 96.0 94.8 96.4

Comparison with different fusion approaches. To en-
sure fair comparisons with single-modal-based approaches,
we adopt a careful experimental design that compares our
approach to different fusion strategies. We introduce two
strategies of global feature fusion for comparison, as de-
scribed in Section 3.3 and illustrated in Figure 3 (a). The re-
sults of the comparative experiments are presented in Table
6, which shows that our approach achieves a mean rank-1
accuracy improvement of +2.0% over the concatenation-
based fusion approach. Furthermore, when compared to
state-of-the-art multi-modal gait recognition methods, our
proposed MMGaitFormer achieves a significant 2.7% im-
provement in recognition accuracy, particularly in the chal-
lenging CL conditions. These results demonstrates the ef-
fectiveness of our proposed fine-grained fusion method,
which is a more comprehensive approach to better exploit
the complementary advantages of silhouette and skeleton.

Table 6. Comparison with different Fusion module. add fusion:
global feature fusion with add operation, cat fusion: global feature
fusion with concatenation operation.

Method NM BG CL Mean

add fusion 97.3 92.8 91.7 93.9
cat fusion 97.6 93.2 92.4 94.4

TransGait [15] 98.1 94.9 85.8 92.9
BiFusion [21] 98.7 96.0 92.1 95.6

Ours 98.4 96.0 94.8 96.4

5. Conclusion
Motivated by the complementary strengths of the sil-

houettes and skeletons for comprehensive gait representa-
tion for recognition, we propose a transformer-based multi-
modal framework called MMGaitFormer. In this work, we
propose a Spatial Fusion Module and a Temporal Fusion
Module to perform fine-grained fusion at the spatial level
and fine-aligned fusion at the temporal level. Extensive ex-
periments have shown the effectiveness of our framework.
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