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Abstract

Training machines to synthesize diverse handwritings
is an intriguing task. Recently, RNN-based methods have
been proposed to generate stylized online Chinese charac-
ters. However, these methods mainly focus on capturing
a person’s overall writing style, neglecting subtle style in-
consistencies between characters written by the same per-
son. For example, while a person’s handwriting typically
exhibits general uniformity (e.g., glyph slant and aspect
ratios), there are still small style variations in finer de-
tails (e.g., stroke length and curvature) of characters. In
light of this, we propose to disentangle the style repre-
sentations at both writer and character levels from indi-
vidual handwritings to synthesize realistic stylized online
handwritten characters. Specifically, we present the style-
disentangled Transformer (SDT), which employs two com-
plementary contrastive objectives to extract the style com-
monalities of reference samples and capture the detailed
style patterns of each sample, respectively. Extensive exper-
iments on various language scripts demonstrate the effec-
tiveness of SDT. Notably, our empirical findings reveal that
the two learned style representations provide information
at different frequency magnitudes, underscoring the impor-
tance of separate style extraction. Our source code is public
at: https://github.com/dailenson/SDT.

1. Introduction
As the oldest writing system, Chinese characters are

widely used across Asian countries. When compared
with Latin scripts, Chinese characters encompass an excep-
tionally vast lexicon (87,887 characters in GB18030-2022
charset) and have intricate structures composed of multiple
strokes. Recently, the intriguing task of generating Chinese
characters has garnered significant attention [10, 23, 32]. A
promising approach to synthesising realistic handwritings is

*Authors contributed equally.
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Figure 1. Illustration of two online handwritten Chinese charac-
ters, with each color representing a stroke. The increasing num-
bers indicate the writing order from the start to the end.

to progressively generate online characters (i.e., the hand-
writing trajectory in a sequential format) [40]. As shown in
Figure 1, online characters convey richer information (e.g.,
the order of writing) and thus pave the way for various ap-
plications, including writing robots [39].

Our goal is to automatically generate online Chinese
handwritings that not only correspond to specific textual
content, but also emulate the calligraphic style of a given
exemplar writer (e.g., glyph slant, shape, stroke length, and
curvature). This task thus holds potential for a wide range of
applications, such as font design and calligraphy education.
A popular solution [18] is to extract style information from
the provided stylized samples and merge it with the content
reference. DeepImitator [44] concatenates the style vector
obtained from a CNN encoder with a character embedding,
which is then fed into the RNN decoder to generate styl-
ized online characters. WriteLikeYou [30] adopts the large-
margin softmax loss [36] to promote discriminative learning
of style features. However, these methods mainly focus on
the overall writing style, thus overlooking the detailed style
inconsistencies (e.g., the highlighted regions in Figure 2)
between characters produced by the same writer.

The observations mentioned above inspire us to disen-
tangle style representations at the writer and character levels
from the stylized handwritings. However, accurately cap-
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Figure 2. Handwritten character samples from three unique writ-
ers, with each row containing characters by the same person. De-
spite sharing similar overall handwriting styles (e.g., glyph slant),
subtle style differences (e.g., stroke length, location, and curva-
ture) can still be observed among them.

turing these two styles is a challenging task. To address
this, we propose a style-disentangled Transformer (SDT)
equipped with a dual-head style encoder. Specifically, we
employ the contrastive learning framework [13] to guide
each head in concentrating on writer-wise and character-
wise styles, respectively. For the overall writer-wise style,
we treat characters from the same writer as positive in-
stances, and characters from different writers as negatives.
This enables the encoder to learn the style commonalities
among characters written by the same writer. Regarding the
detailed character-wise style, we independently sample pos-
itive pairs within a character, and sample negative samples
from other characters, as illustrated in Figure 3. Aggregat-
ing positive views of a character encourages the encoder to
focus on the intricate character style patterns.

In addition, we introduce a content encoder for SDT to
learn a textual feature with a global context. The two style
representations, along with the textual feature, are then fed
into a decoder that progressively generates online charac-
ters. Given that the output characters are in sequential form,
we employ Transformer [35], a powerful sequence model-
ing architecture, as our backbone.

To extend SDT for generating offline Chinese handwrit-
tings (i.e., character images with stroke-width, e.g., Fig-
ures 3-7 in Appendix), we further propose an offline-to-
offline generation framework. We first use SDT to generate
online characters with significant shape changes, and then
decorate them with stroke width, ink-blot effects, etc. This
enables us to generate authentic offline handwritings. For
more details, please refer to Appendix A.4.

We summarize our contributions in three key aspects:

• We are the first to disentangle two style representations
(i.e., writer-wise and character-wise) for enhancing
Chinese handwriting generation. Our findings show
that the former focuses more on low-frequency infor-
mation, while the latter captures higher frequencies.

𝒐𝒐+ 𝒐−

Figure 3. In this two-character example, we independently sample
the positive pair, i.e., o and o+, within the first character, while
the negative o− is sampled from another character. Our sampling
strategy randomly selects a small subset of patches, following a
uniform distribution.

• We introduce a novel online character generation
method, i.e., SDT. Extensive experiments on handwrit-
ing datasets in Chinese, English, Japanese, and Indic
scripts demonstrate its effectiveness and superiority.

• Building on the SDT, we further develop an offline-
to-offline framework that can produce more plausible
offline handwritten Chinese characters, as evidenced in
Appendix A.4.

2. Related Work
Handwriting generation. Various style-content disentan-
gling methods [1, 8, 18, 21, 24] have been proposed to gen-
erate handwritings with arbitrary styles. These methods as-
sume that reference samples can be decomposed into style
and content spaces. They disentangle calligraphic styles
from reference samples and recombine them with specific
textual content for controllable style synthesis. For in-
stance, DeepWriting [1] adopts RNNs to extract the style
vectors from online handwritings, and then combines them
with character embeddings for synthesizing stylized online
handwritings. However, it typically over-smooths the styles
of distinct letters and loses key details, since its extracted
style vectors are letter-independent [21].

DSD [21] addresses the over-smooth problem by seg-
menting online handwritten words into isolated letters and
encoding them into global and letter-specific style vectors,
improving synthetic handwriting quality. Compared with it,
our method can explicitly capture more fine-grained details
(e.g., stroke length, location and curvature), which are more
difficult to obtain. Besides, these methods [1, 21, 34] rely
on extra fine annotations to segment input cursive scripts,
while our SDT need not. Recently, HWT [3] uses a vanilla
Transformer encoder for style pattern extraction. However,
these methods [1, 3, 8, 18, 21] rely on complex content ref-
erences, such as recurrent embeddings and letter-wise fil-
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ter maps. SLOGAN [24] addresses this issue by extracting
textual contents from easily obtainable printed images, but
it struggles with generalizing to unseen handwriting styles
due to the fixed writer ID. In contrast, our SDT effectively
obtains content and style information, and thus can synthe-
size characters with arbitrary styles well.

Regarding handwritten Chinese characters, several at-
tempts [4, 16, 20] use GANs to generate Chinese hand-
writing images, but always result in characteristic artifacts.
Drawing [40] and FontRNN [31] adopt RNNs, but they can-
not flexibly control the handwriting styles. In addition,
DeepImitator [44] and WriteLikeYou [30] propose style-
controlled generation using style representations from of-
fline images [44] or online trajectories [30]. Unlike these
methods [30,44] that only extract an overall writer style, our
SDT captures both writer and character-level styles, signifi-
cantly improving the performance of handwriting imitation.

Contrastive learning. Contrastive learning [13, 41] has
been widely used in various fields [9, 28, 29, 33, 42, 43].
Some image translation studies [14, 27] use contrastive
learning to enhance natural image generation quality, en-
couraging content preservation during transfer. Unlike
these methods [14, 27], our SDT aligns independently sam-
pled patches from the same input, aiming to improve style
representations of handwritings.

3. Method
Problem statement. We aim to synthesize stylized online
handwritings with conditional content and style. Given a
content image I and a set of style images Xs = {xi

s}Ki=1,
randomly sampled from a writer ws, we aim to generate
an online handwritten Chinese character Ŷs that reflects the
calligraphic style of ws and retains the textual content of I .
The key challenge lies in obtaining discriminative style rep-
resentations from a limited number of stylized samples.

To address this task, inspired by our observations
(cf. Figure 2) of the overall uniformity (i.e., writer-wise
style) and inconsistent details (i.e., character-wise style),
we propose to disentangle the style of exemplar writers into
overall and detailed styles for enhancing handwriting im-
itation performance. To achieve this, we introduce a new
style-disentangled Transformer (SDT) approach to decou-
ple the two styles from individual handwritings. The overall
scheme of SDT is presented below.

3.1. Overall Scheme

As shown in Figure 4, SDT consists of a dual-head style
encoder, a content encoder, and a Transformer decoder.
The style encoder (cf. Section 3.2) is designed to learn the
writer-wise and character-wise styles. It firstly extracts rich
calligraphic style patterns from reference style examples Xs

via a sequential combination of a CNN and a Transformer

encoder, followed by the writer and glyph heads to disen-
tangle the writer-wise and character-wise styles from the
extracted style patterns. To this end, we propose two con-
trastive objectives, WriterNCE Lwri and GlyphNCE Lgly,
to encourage the encoder to learn the two styles, respec-
tively. Specifically, Lwri maximizes the mutual information
between character instances belonging to the same writer,
while Lgly associates the positive pair independently sam-
pled from the same character. Guided by Lwri and Lgly, the
writer and glyph heads can acquire discriminative writer-
wise and character-wise style features, respectively.

The content encoder uses a standard Resnet18 [15] as the
CNN backbone to learn the compact feature map qmap ∈
Rh×w×c from a content reference I , and feeds the flattened
feature patches into a Transformer encoder to extract the
textual content representation q ∈ Rd×c, where d = h× w
and c is the channel dimension. Benefiting from the strong
capability of Transformer to capture long-range dependen-
cies between feature patches, the content encoder expects
an informative content feature q with a global context.

After the two encoders, a multi-layer Transformer de-
coder (cf. Section 3.3) is used to synthesize Ŷs in an auto-
regressive fashion, conditioned on the two style representa-
tions and the content feature. This decoder is supervised by
the pen moving prediction loss Lpre and pen state classifi-
cation loss Lcls.

To summarize, the overall training objective of SDT
combines all four loss functions:

L = Lwri + Lgly + Lpre + λLcls, (1)

where λ serves as a trade-off factor. Each component of our
SDT is detailed in the following Section 3.2 and Section 3.3.

3.2. Dual-head Style Encoder

As illustrated in Figure 2, there are two distinct styles
in a person’s handwriting: writer-wise and character-wise
styles. We propose a dual-head style encoder to obtain the
two style representations. As shown in Figure 4, the input
X = {xi}Ki=1 is firstly encoded by ResNet18 to obtain a
sequence of feature maps Fm = {f i

m}Ki=1 ∈ RK×h×w×c.
Next, we flatten the spatial dimension of each feature map to
obtain feature sequences F = {f i}Ki=1 ∈ RK×d×c. These
feature sequences are then fed into a Transformer encoder to
extract more informative feature sequences Z = {zi}Ki=1 ∈
RK×d×c. Finally, we use the two heads, built on self-
attention [35], to further disentangle Z into the writer-wise
style representations E = {ei}Ki=1 ∈ RK×d×c via Lwri and
the character-wise counterparts G = {gi}Ki=1 ∈ RK×d×c

via Lgly, respectively. We next detail the two contrastive
learning objectives as follows.
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Figure 4. Overview of the proposed method. Our SDT consists of a dual-head style encoder, a content encoder and a Transformer
decoder. The writer-wise and character-wise style representations extracted by style encoder and the learned content feature are fed into
the Transformer decoder to progressively generate online handwritings. We utilize the WriterNCE Lwri and GlyphNCE Lgly to guide the
two heads for learning the corresponding styles. Lpre and Lcls denote the pen moving prediction and state classification loss, respectively.

3.2.1 Writer-wise Contrastive Learning

To explicitly encourage the writer head to learn the writer-
wise style, we propose to learn a feature space where the
style features from the same writer are closer than those
from different writers. The intuition is that one person’s
handwritings consistently exhibit similar style information,
which can serve as a crucial clue for distinguishing writers.
To this end, we take characters written by the same person
as positive pairs and those from different writers as negative
samples, and develop a new WriterNCE loss for writer-wise
style learning.

Specifically, let j ∈ M = {1, ..., N} be the index of
an element within a mini-batch and let A (j) = M\{j}
be other indices distinct from j, where N is the batch size.
Given a writer-wise style feature ej belonging to writer wj

as the anchor, we denote its in-batch positive sample set
as P (j) = {p ∈ A (j) : wp = wj} and its negative set as
A (j) \P (j). The WriterNCE loss is formulated as follows:

Lwri=
−1

N

∑
j∈M

1

|P (j)|
∑

p∈P (j)

log
exp (sim (ej , ep)/τ)∑

a∈A(j) exp (sim (ej , ea)/τ)
,

(2)
where sim (ej , ep)=f1 (ej)

⊤
f1(ep), τ is a temperature pa-

rameter and f1 (·) is a multi-layer perceptron (MLP) that
projects features to a ℓ2-normalized feature space where
Lwri is applied.

3.2.2 Character-wise Contrastive Learning

Compared with the overall writer-wise style, character-wise
style differences often exist in the fine details of distinct
characters, e.g., stroke length and curvature (cf. Figure 3).
Inspired by this, we aim to maximize the mutual informa-

tion between diverse views of a character, thereby enforcing
the glyph head to learn the character-wise style. As strokes
are distributed across arbitrary spatial locations in character
images, we propose to capture stroke details via contrastive
learning, by randomly selecting a small subset of patches
following a uniform distribution. Specifically, we conduct
sampling over the sequential patch tokens obtained from the
glyph head.

Given character-wise style features {gj}Bj=1 ∈ RB×d×c

extracted from B characters, we sample a positive patch
pair (i.e., o ∈ Rn×c and o+ ∈ Rn×c) from the same
randomly selected g, and B−1 negative patches {o−j }

B−1
j=1

from the remaining B−1 style features. Here, the number
of sampled patch tokens is n = d · α, where α is the sam-
pling ratio. The GlyphNCE loss is formulated as:

Lgly= − log
exp

(
sim

(
o, o+

)
/τ

)
exp (sim(o, o+)/τ)+

∑B−1
j=1 exp

(
sim

(
o, o−j

)
/τ

) ,
(3)

where sim (o, o+)=f2 (o)
⊤
f2(o

+), and f2(·) is an MLP
with the same structure as f1(·).

3.3. Transformer Decoder for Handwriting

The goal of the Transformer decoder is to progressively
generate realistic online characters, denoted as Ŷ , based
on the global content feature q and the obtained style rep-
resentations (i.e., E = {ei}Ki=1 and G = {gi}Ki=1). As
each online character consists of numerous points (i.e.,
Ŷ = {ŷj}Lj=1, with L being the total number of points; see
more details in Appendix A.10), the decoder faces the chal-
lenge of effectively integrating content and style features to
accurately depict all points of the character. To address this
challenge, we propose to fuse q, E and H within the multi-
head attention layers of our Transformer decoder. As shown
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Figure 5. Illustration of the fusion of the style information in our
Transformer decoder. At each time step, the query vector is first
encoded from the content feature q and previous points {yj}t−1

j=1.
Then, it successively attends to the writer-wise and character-wise
style features (i.e., E and G) for adaptively aggregating style in-
formation, which is finally decoded into the current-step output.

in Figure 5, E and H serve as the key/value vectors, while
Q serves as the query vector that successively attends to E
and G to aggregate style information.

During training, at any decoding step t, we take q as
the initial point. As shown in Figure 5, we apply self-
attention to the point sequence, i.e. the content context
[q, y1, ..., yt−1], to obtain the query vector Qt ∈ Rc. Here,
the ground-truth points {yj}t−1

j=1 are used to accelerate
model convergence in training [30, 37]. Subsequently, Qt

attends to E and G over the subsequent decoding layers to
adaptively aggregate style information, ultimately generat-
ing the output Ot ∈ R6R+3. The output with 6R + 3 logits
is then used to generate the pen moving (∆ût,∆v̂t) and the
pen state

(
m̂1

t , m̂
2
t , m̂

3
t

)
. Specifically, we use a Gaussian

mixture model (GMM) [11] with R bivariate normal distri-
butions to predict the pen moving, with each normal distri-
bution containing 6 parameters. Moreover, we use the other
3 logits to generate the pen state. The training loss for super-
vising the decoder comprises two parts: the pen movement
prediction loss Lpre (∆ût,∆v̂t), and the pen state classifi-
cation loss Lcls

(
m̂1

t , m̂
2
t , m̂

3
t

)
. Please refer to Appendix

A.11 for more details of these losses.
The inference phase is different from the training phase,

where the ground truth y is not available at test time. In-
stead, we take the generated points{ŷj}t−1

j=1 as the input of
the step t, and combine them with q, E, and G to predict the
next point ŷt. Such a process repeats until a pen-end state
(m̂3

t−1=1) is received.

4. Experiments
4.1. Chinese handwriting generation

Dataset. To evaluate SDT in generating Chinese handwrit-
ings, we use CASIA-OLHWDB (1.0-1.2) [22] for model

training and ICDAR-2013 competition database [38] for
testing. The training set consists of about 3.7 million online
Chinese handwritten characters produced by 1,020 writers,
while the test set contains 60 writers, with each contributing
3,755 most frequently used characters set of GB2312-80.
Following [12], we use the Ramer–Douglas–Peucker algo-
rithm [7] with a parameter of ϵ = 2 to remove redundant
points of characters, leading to an average sequence length
of 50. Following [44], we render offline style references
using coordinate points of online characters, and each style
sample is randomly sampled from the target-writer hand-
writings during inference, as shown in Figure 4. For content
images, we use the popular average Chinese font [17].
Evaluation metrics. We use Dynamic Time Warping
(DTW) [2,5], an elastic matching technique for aligning the
given two sequences, to calculate the distance between the
generated and real characters. Moreover, we use Content
Score [44] to measure the structure correctness of gener-
ated characters, and adopt Style Score [30] to quantify the
style similarity between the generated and real handwrit-
ings. We also conduct user preference studies to quantify
the subjective quality of the output characters. More details
are provided in Appendix A.1.1.
Implementation details. We set the number of the style
reference to K = 15, and resize the reference style and con-
tent images to 64×64. Moreover, each Transformer encoder
contains 2 self-attention layers, while the Transformer de-
coder has 4 layers for obtaining style representations (2 for
writer-wise and 2 for character-wise). Following the origgi-
nal Transformer [35], each Transformer layer contains the
multi-head attention with c = 512 dimensional states and
8 attention heads. Contrary to HWT [3], where F is con-
catenated before the Transformer encoder, we process each
feature sequence f ∈ F individually. Moreover, we apply
sinusoidal positional encoding [35] to input tokens before
feeding them to the Transformer encoder and decoder. For
training, we first pre-train the content encoder with 138k it-
erations (batch size of 256) for character classification on
training samples and then train the whole model with 148k
iterations (batch size of 128), on a single RTX3090 GPU.
The optimizer is Adam [19], with a learning rate of 0.0002
and gradient clipping of 5.0. The sampling ratio α is deter-
mined through a search over 0.25, 0.5, 0.75, 1.00, and 0.25
is chosen. Following [30], we set λ = 2. Further imple-
mentation details are provided in Appendix A.1.2.
Compared methods. We compare our proposed SDT with
state-of-the-art online Chinese character generation meth-
ods, i.e. Drawing [40], FontRNN [31], DeepImitator [44],
and WriteLikeYou [30]. To ensure a fair comparison, we
re-implement Drawing and FontRNN by adding the style
branch of DeepImitator [44], enabling them to achieve
arbitrary stylized character generation. To adapt Write-
LikeYou [30] to handle images, we update its encoder to
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DeepIm.
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WriteLi.

Target

Ours

Drawing

FontRNN

Figure 6. Comparisons with the state-of-the-art methods for online Chinese handwriting generation. The red and blue boxes highlight
failures of style imitation and structure preservation, respectively. WriteLi. indicates the WriteLikeYou-v2. The green boxes highlight
comparisons between the fine details of targets and generated characters.

Table 1. Comparisons with state-of-the-art methods on Chinese
dataset. See more results of WriteLikeYou [30] in Appendix A.6.

Method
Style

Score ↑
Content
Score ↑ DTW ↓ User

Prefer. (%) ↑
Drawing [40] 35.83 78.15 1.1813 3.53
FontRNN [31] 46.14 92.18 1.0448 7.07
DeepImitator [44] 50.67 90.92 1.0622 7.99
WriteLikeYou-v1 [30] 71.09 93.89 0.9832 11.67
WriteLikeYou-v2 [30] 72.37 96.44 0.9289 13.07
SDT(Ours) 94.50 97.04 0.8789 56.67

create two new variants: WriteLikeYou-v1 (i.e., CNN en-
coder [44]) and WriteLikeYou-v2 (i.e., the same CNN-
Transformer encoder as our SDT), based on the released of-
ficial code1. More details are available in Appendix A.1.3.
Quantitative comparison. Quantitative results are in Ta-
ble 1, revealing that SDT outperforms other methods across
all evaluation metrics. Notably, SDT surpasses the second-
best method by a significant 22.13% margin in Style Score,
demonstrating the proposed method’s exceptional style im-
itation performance.
Qualitative comparison. We visualize the generated sam-
ples of each method in Figure 6, which intuitively ex-
plains the significant superiority of SDT in the user pref-
erence study. In Figure 6, Drawing [40] generates the least
satisfactory results, often producing unreadable characters.
FontRNN [31] and DeepImitator [44] occasionally synthe-
size unpleasant stroke paddings, and WriteLikeYou [30]
struggles with generating complex characters regarding
style mimicry. In contrast, our method yields higher-quality
results, particularly in recovering fine character details.

1https://github.com/ShusenTang/WriteLikeYou

Table 2. Ablation study. Here, we further use FID to measure
the distance between generated and real samples for each writer
separately, and finally average them.

writer-wise character-wise Generated Samples Style Score↑ FID↓ DTW↓

85.52 27.75 0.8941

✓ 91.38 26.38 0.8841

✓ 90.31 26.89 0.8803

✓ ✓ 94.50 25.46 0.8789

Ground Truth

4.2. Analysis

In this section, we assess the impact of the two learned
style features and that of the style inputs. We also analyze
the effect of the sampling ratio α, and discuss the combina-
tion strategies in the Transformer decoder in Appendix A.5.
Besides, we discuss failure cases in Appendix A.7.
Quantitative evaluation of two style representations. We
ablate the effects of the two extracted style representations
in Table 2. The findings include: (1) Both style representa-
tions enhance the quality of generated outcomes in all eval-
uation metrics, particularly in terms of Style Score, improv-
ing by 4.79% and 5.86%, respectively. (2) Combining the
two style features further boosts model performance across
all evaluation metrics, suggesting that the extracted styles
are complementary. Moreover, the order in which the two
style features are input into the Transformer decoder has no
significant impact on Style Score (93.72% vs. 94.50%).
Qualitative comparison between two style representa-
tions. To further analyze the differences between the
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Wri.

Char.

Figure 7. Spectrum analysis of two style representations. We provide frequency magnitude visualizations belonging to 7 writers, where
the top row shows the writer-wise style while the bottom represents the character-wise one. Each spectrum map is averaged over 100
character samples written by the same person. The brighter the color, the larger the magnitude. A pixel farther from the center means a
higher frequency [26]. We find that the writer-wise style representations capture more low-frequency information, while character-wise
style representations capture more high-frequency information.

Figure 8. The heat map of the DTW matrix. The dark diagonal
indicates that the generated characters still own a higher similarity
even using different Xs belonging to the same writer.

two styles, we resize the output patch tokens representing
the two styles to feature maps, respectively, and visual-
ize their frequency magnitudes in Figure 7. We find that
character-wise style features capture more high-frequency
information, whereas writer-wise features mainly focus on
low-frequency information. According to [6], the high-
frequency information in an image usually captures fine de-
tails while the low frequencies contain the overall part of
objects. This finding supports our motivation that the writer
head helps to imitate the overall style (e.g., glyph slant),
while the glyph head captures the detailed style (e.g., stroke
curvature), as shown in Table 2.
Effect of using different style inputs. As mentioned in
[30], given different style inputs Xs belonging to the same
writer ws, the imitation model may generate inconsistent
characters. To evaluate the effect of different style inputs,
we conduct two independent experiments using different
Xs based on the same model. Following [30], we use the
model to generate 200 characters for each writer in the test
set. We then calculate the DTW distance between corre-

Table 3. Quantitative evaluations of our SDT and competitors on
Japanese, Indic, and English datasets.

Datasets Methods Content Score↑ DTW ↓

Japanese

Drawing [40] 50.74 1.4657
DeepImitator [44] 53.20 1.2564

WriteLikeYou-v2 [30] 85.61 1.2066
SDT(Ours) 91.31 1.1289

Indic

Drawing [40] 2.34 9.8230
DeepImitator [44] 4.13 6.7421

WriteLikeYou-v2 [30] 13.19 4.5130
SDT(Ours) 97.22 0.7075

English

Drawing [40] 79.14 1.8519
DeepImitator [44] 76.53 1.6460

WriteLikeYou-v2 [30] 84.41 1.6215
SDT(Ours) 85.52 1.6048

sponding characters individually and average them accord-
ing to the writer index (see Appendix A.1.4 for more de-
tails) to get a DTW square matrix. The resulting DTW
square matrix is visualized in Figure 8. The dark diagonal
in Figure 8 suggests that the generated characters maintain
a high degree of similarity even when using different Xs

belonging to the same writer, demonstrating that our SDT
can generate consistent results from various style inputs.

4.3. Applications to Other Languages

Japanese handwriting generation. For the Japanese hand-
writing generation task, we conduct experiments on TUAT
HANDS [25] database (see more details in Appendix A.1.5)
to evaluate the effectiveness of our method. Figure 9 (a) and
Table 3 verify the effectiveness of SDT for Japanese hand-
writing generation. Specifically, from Table 3, we observe
that our SDT outperforms all compared methods in terms of
two quantitative metrics, indicating that SDT performs well
in multiple languages. Furthermore, we provide additional
evaluation metrics in Appendix A.8.
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Ours
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(a) Japanese Script (b) Indic Script (c) English Script

Figure 9. Comparisons with the competitors for online handwriting generation on various scripts. WriteLi. indicates WriteLikeYou-v2.

Indic handwriting generation. We evaluate our method on
the Indic handwriting generation task based on the Tamil2

dataset. It is worth noting that Indic handwriting genera-
tion presents a more significant challenge, as Indic charac-
ters contain more trajectory points than Chinese, Japanese,
and English scripts (i.e., 88 vs. 68, 50, 30 on average; see
Appendix A.1.5 for more dataset information). We com-
pare our method with other approaches on the official test
set in terms of Content Score and Dynamic Time Warping
(DTW). As shown in Table 3, we find that our SDT signif-
icantly outperforms the second-best method in terms of the
two quantitative metrics, achieving an 84.03% higher Con-
tent Score and a 3.8055 lower DTW. This indicates that our
SDT can handle handwritten characters with a large num-
ber of points (averaging 88) and ensure the quality of syn-
thetic samples, as illustrated in Figure 9 (b). The potential
advantages of our SDT are: (1) The improved style rep-
resentations extracted by our SDT prevent the collapse of
generated characters. (2) Our Transformer decoder facil-
itates long-distance dependence between trajectory points.
We provide more experimental analysis in Appendix A.9.

English handwriting generation. To evaluate our method
in generating English handwritings, we collect all of
the English samples from the symbol part of CASIA-
OLHWDB(1.0-1.2) [22] and ICDAR-2013 competition
database [38] (see more details in Appendix A.1.5). Simi-
larly, we use Content Score and DTW as evaluation metrics.
As shown in Figure 9 (c), we find that all methods achieve
sound and comparable performance. One reason for this is
that the English script contains fewer character classes and a
smaller number of trajectory points (averaging 30), making

2http : / / lipitk . sourceforge . net / datasets /
tamilchardata.htm

their imitation easier compared to other scripts. Neverthe-
less, our SDT still outperforms other methods by a small
margin in terms of both Content Score and DTW, as shown
in Table 3. Moreover, we observe that corresponding upper-
case and lowercase letters sometimes exhibit subtle inter-
class differences (e.g., O vs. o), which leads our SDT to
achieve a relatively low Content Score.

5. Conclusion
In this paper, we have proposed a novel method, named

style-disentangled Transformer (SDT), to synthesize real-
istic and diverse online handwritings. SDT enhances im-
itation performance by disentangling the writer-wise and
character-wise style representations from individual hand-
writing samples. For the writer-wise style, we group charac-
ters from the same writer and separate those from different
writers, promoting SDT’s ability to learn uniformity in indi-
vidual handwritings. For the character-wise style, we max-
imize the mutual information between the distinct views of
a character. Moreover, we extend SDT and introduce an
offline-to-offline framework for improving the generation
quality of offline Chinese handwritings. Promising results
on various language scripts verify the effectiveness of our
SDT. Although primarily designed for handwriting gener-
ation, SDT still holds the potential for extension to other
generative tasks, such as font generation.
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