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Abstract

Rendering novel view images is highly desirable for
many applications. Despite recent progress, it remains
challenging to render high-fidelity and view-consistent
novel views of large-scale scenes from in-the-wild images
with inevitable artifacts (e.g., motion blur). To this end,
we develop a hybrid neural rendering model that makes
image-based representation and neural 3D representation
join forces to render high-quality, view-consistent images.
Besides, images captured in the wild inevitably contain ar-
tifacts, such as motion blur, which deteriorates the qual-
ity of rendered images. Accordingly, we propose strategies
to simulate blur effects on the rendered images to mitigate
the negative influence of blurriness images and reduce their
importance during training based on precomputed quality-
aware weights. Extensive experiments on real and syn-
thetic data demonstrate our model surpasses state-of-the-
art point-based methods for novel view synthesis. The code
is available at https://daipengwa.github.io/
Hybrid-Rendering-ProjectPage/.

1. Introduction
Novel-view synthesis of a scene is one critical feature re-

quired by various applications, e.g., AR/VR, robotics, and
video games, to name a few. Neural radiance field (NeRF)
[23] and its follow-up works [3, 19, 24, 39, 43, 47] enable
high-quality view synthesis on objects or synthetic data.
However, synthesizing high-fidelity and view-consistent
novel view images of real-world large-scale scenes remains
challenging, especially in the presence of inevitable arti-
facts from the data-capturing process, such as motion blur
(see Figure 1 & supplementary material).

To improve novel view synthesis, mainstream research
can be mainly categorized into two lines. One line of meth-
ods directly resorts to features from training data to synthe-
size novel view images [4,11,29,40], namely image-based
rendering. By directly leveraging rich high-quality fea-
tures from neighboring high-resolution images, these meth-
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Figure 1. Our hybrid neural rendering model generates high-
fidelity novel view images. Please note characters in the book
where the result of Point-Nerf is blurry and the GT is contami-
nated by blur artifacts.

ods have a better chance of generating high-fidelity images
with distinctive details. Nevertheless, the generated im-
ages often lack consistency due to the absence of global
structural regularization, and boundary image pixels often
contain serious artifacts. Another line of work attempts to
equip NeRF with explicit 3D representations in the form of
point cloud [28,43], surface mesh [30,44] or voxel grid fea-
tures [9,19,46], namely neural 3D representation. Thanks to
the global geometric regularization from explicit 3D repre-
sentations, they can efficiently synthesize consistent novel
view images but yet struggle with producing high-fidelity
images in large-scale scenes (see the blurry images from
Point-NeRF [43] in Fig. 1). This may be caused by low-
resolution 3D representations [19], noisy geometries [1, 7],
imperfect camera calibrations [2], or inaccurate rendering
formulas [3], which make encoding a large-scale scene into
a global neural 3D representation non-trivial and inevitably
loses high-frequency information.

Albeit advancing the field, the above work all suffer im-
mediately from low-quality training data, e.g., blurry im-
ages. Recently, Deblur-NeRF [21] aims to address the prob-
lem of blurry training data and proposed a pipeline to simu-
late blurs by querying multiple auxiliary rays, which, how-
ever, is computation and memory inefficient, hindering their
applicability in large-scale scenes.

In this paper, we aim at synthesizing high-fidelity and
view-consistent novel view images in large-scale scenes us-
ing in-the-wild unsatisfactory data, e.g., blurry data. First,
to simultaneously address high fidelity and view consis-
tency, we put forward a hybrid neural rendering approach
that enjoys the merits of both image-based representation
and neural 3D representation. Our fundamental design

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

154



centers around a 3D-guided neural feature fusion module,
which employs view-consistent neural 3D features to in-
tegrate high-fidelity 2D image features, resulting in a hy-
brid feature representation that preserves view consistency
whilst simultaneously upholding quality. Besides, to avoid
the optimization of the hybrid representation being biased
toward one modality, we develop a random feature drop
strategy to ensure that features from different modalities can
all be well optimized.

Second, to effectively train the hybrid model with un-
satisfactory in-the-wild data, we design a blur simulation
and detection approach to alleviate the negative impact of
low-quality data on model training. Specifically, the blur
simulation module injects blur into the rendered image to
mimic the real-world blurry effects. In this way, the blurred
image can be directly compared with the blurry reference
image while providing blur-free supervisory signals to train
the hybrid model. Besides, to further alleviate the influence
of blurry images, we design a content-aware blur detection
approach to robustly assess the blurriness scores of images.
The calculated scores are further used to adjust the impor-
tance of samples during training. In our study, we primarily
focus on the blur artifact due to its prevalence in real-world
data (e.g., ScanNet); however, our “simulate-and-detect”
approach can also be applied to address other artifacts.

While our model is built upon the state-of-the-art 3D-
and image-based neural rendering models, our contribu-
tion falls mainly on studying their combinatorial benefits
and bridging the gap between NeRF and unsatisfactory data
captured in the wild. Our major contributions can be sum-
marized as follows.

• We study a hybrid neural rendering model for synthe-
sizing high-fidelity and consistent novel-view images.

• We design blur simulation and detection strategies that
facilitate offering blur-free training signals for opti-
mizing the hybrid rendering model.

• Extensive experiments on real (i.e., ScanNet [5]) and
synthetic data (i.e., Habitat-sim [22,35]) showcase that
our method outperforms state-of-the-art point-based
methods designed for novel view synthesis.

2. Related Works
Neural Radiance Field NeRF [23] encodes the object or
scene into an MLP and synthesizes novel view images
through volume rendering [15]. Later works extend NeRF
for object manipulation [14, 44, 45, 50] and dynamic scene
modeling [18, 25, 26], etc. Recent work [19, 43, 51] has
started incorporating explicit 3D representations into NeRF
training to support large-scale scenes and improve render-
ing details and speed. For example, Liu et al. [19] enhance

NeRF’s capabilities by storing neural features in a voxel-
based representation, which generates images with rich de-
tails. Similarly, Xu et al. [43] utilize a point-based neural
radiance field in cooperation with point growing and prun-
ing, which substantially speeds up training and improves
the quality of the rendered image. Unlike the methods de-
scribed above, we deliver a hybrid framework leveraging
the advantages of neural 3D representation and image-based
representation to yield high-quality images.

Image-Based Rendering Image-based rendering is a well-
known and long-standing technique [8, 17] for generating
novel view images. A typical pipeline is to identify a few
nearby images, warp them to the target viewpoint, and then
blend them to create the output [11, 12, 29]. Recently,
image-based rendering methods collaborating with volume
rendering have been developed for generalization across
scenes [4, 40, 47]. For instance, IBRNet [40] employs ex-
tracted image features from neighboring images to directly
predict target views without requiring per-scene optimiza-
tion [23]. Since image-based rendering can directly use
the rich textures from images, it typically converges faster.
However, it generally suffers from temporal inconsisten-
cies. Instead, we apply the globally consistent neural 3D
feature to drive the blending process in this work, improv-
ing the consistency of rendered image sequences.

Rendering with Artifacts For the in-the-wild environ-
ments, it is almost impossible to capture artifact-free train-
ing data due to motion blurs, noise, and environmental fac-
tors, which can adversely affect rendering quality. One so-
lution is to restore contaminated images first [6, 33, 34, 38,
41, 42, 48], and then use restored images for training. How-
ever, it is a challenging problem to maintain the view con-
sistency of restored images [13] as a pre-trained network is
used to process each frame independently. Recently, some
works [10, 21, 31] have attempted to simulate the image
degradation process for image restoration during training.
For example, to remove reflections, Guo et al. [10] propose
incorporating an auxiliary MLP to model the reflection ef-
fects, which is removed during inference. Rückert et al. [31]
propose to learn exposure-related parameters and response
functions for synthesizing HDR images from training im-
ages with various exposures. The work most related to us
is Deblur-NeRF [21], which uses auxiliary rays to simu-
late blurs for each training image which, however, sacrifices
computation efficiency. Instead of sampling extra rays, we
propose to down-weight the importance of blurry images
and design a simple and efficient blur simulation method,
resulting in faster training and better results.

3. Method

Given RGB-D image sequences with inevitable in-the-
wild artifacts, our approach aims to render high-quality and
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Figure 2. An overview of our hybrid neural rendering model H. For each query point qi on a ray cast from the target view vt, it has two
modalities of features, i.e., (a) the image-based features {g1i , ..., gni } extracted from the n nearby images {vt1, ..., vtn} and (b) the neural
3D feature ri interpolated from k neighboring point descriptors {p1i , ..., pki }. To generate high-quality and consistent novel view images,
our hybrid neural rendering aggregates and benefits from both features from two modalities. To handle blur artifacts in the reference
images, we simulate blur effects on the rendered image patch C to obtain Ĉ, and then calculate the rendering loss with the ground-truth
image patch Cgt. During training, we also down-weight the importance of images contaminated by artifacts according to the pre-computed
quality-aware weights ωb

t (see Sec. 3.2).

consistent novel view images. In our study, we consider
motion blur as the major artifact due to its ubiquity in data
captured with hand-held devices. An overview of our model
is shown in Fig. 2. First, we put forward a hybrid neural ren-
dering model H that incorporates neural features extracted
from images and a geometry-aware neural radiance field
(e.g., Point-NeRF) for producing high-quality and view-
consistent synthesis results (see Sec. 3.1). Then, to produce
blur-free supervisory signals for training the hybrid model,
we develop a blur simulation module and a content-aware
blur detection strategy to alleviate the negative impacts of
blurry ground-truth reference images (see Sec. 3.2). At last,
we introduce the loss functions and optimization strategies
for training our models (see Sec. 3.3).

3.1. Hybrid Neural Rendering Model

Our hybrid neural rendering model is designed to com-
bine image-based representation and the geometry-based
neural radiance field for faithful and view-consistent syn-
thesis. It consists of a neural feature extraction module to
harvest information from two kinds of representations, and
a neural feature fusion module to aggregate extracted neu-
ral features in a data-driven manner. Given the aggregated
features, our approach renders output images based on vol-
ume rendering. During training, we design a random drop
strategy to avoid the optimization being dominated by one
of the two representations.

Neural Feature Extraction As shown in Fig. 2, for each

query point qi on a ray cast from a target view vt, we ex-
tract two modalities of features – image-based features and
neural 3D features, described as follows.

Image-based features (Fig. 2 (a)): First, we use
a lightweight CNN with down-sampling layers to ex-
tract multiscale image features {F t

1 , F
t
2 , ..., F

t
n} from n

nearby views {vt1, vt2, ...., vtn}. Then, the query point
qi is projected to these nearby views, and features
{F t

1(qi), F
t
2(qi), ..., F

t
n(qi)} at the projected point location

will be used to construct the image-based features for ren-
dering. Following IBRNet [40], we additionally add im-
age color vtj(qi) and deviations of view directions ∆dtj(qi)
to image-based features. As a result, for each query
point qi, its image-based feature representation is gi =
{g1i , g2i , ..., gni } where gji is the combination of F t

j (qi),
vtj(qi), and ∆dtj(qi).

Neural 3D features (Fig. 2 (b)): We adopt a point-based
neural 3D representation [1, 7, 43] due to the wide appli-
cation and high availability of point clouds. Following
Point-NeRF [43], we aggregate features from multi-view
depth maps to obtain point-based 3D representations, i.e.
each point is described by a learnable descriptor. Then the
neural 3D feature ri is obtained by interpolating descrip-
tors from its k-nearest neighborhoods {p1i , p2i , ..., pki }. Note
that the point-based representation can be replaced with
other geometry-based representations, such as voxel-based
or mesh-based representations [19, 44].

Neural Feature Aggregation As shown in Fig. 3, given
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Figure 3. An overview of our feature aggregation module. The
neural 3D feature ri and multiple image-based features gni are ag-
gregated to generate a hybrid neural feature r̂i.

image-based features gi from n nearby views and neural
3D features ri, we design a learnable method to aggregate
them to form a hybrid feature ri for each query point qi,

First, the neural 3D feature ri combined with the view di-
rection di is fed into an MLP to produce a view-dependent
neural 3D feature r′i = MLP(ri, di). Then, as the neu-
ral 3D feature consistently maintains global information
and is free from view occlusions, we use it together with
the image-based features to generate aggregation weights
{ω1

i , ω
2
i , ...ω

n
i } via an MLP layer (i.e., ωj

i = MLP(r′i, g
j
i )).

Further, the aggregation weights are used to combine
{g1i , g2i , ..., gni } to form an aggregated image feature gi fol-
lowing Eq. (1):

gi =

n∑
j=1

(
ωj
i

γi
× gji ), where γi =

n∑
j=1

ωj
i . (1)

Finally, we learn a residual term for r′i to get the final hybrid
neural feature ri. This is achieved by enhancing the neural
3D feature r′i using the aggregated image features gi, which
can be described as:

ri = r′i + MLP(r′i, gi). (2)

Volume Rendering As illustrated in Fig. 2, we use k nearby
geometric-consistent point descriptors {p1i , p2i , ..., pki } to
predict volume density δi considering the view-independent
nature of 3D geometry. The radiance values ci are estimated
through our hybrid neural features ri, which contain rich
details. Then, we apply the volume rendering [23] to get
the output color c of each ray following Eq. 3:

c =

M∑
i=1

τi(1− exp(−δi∆i))ci,

τi = exp(−
i−1∑
t=1

δt∆t).

(3)

Figure 4. Examples of blur kernels. The pre-defined blur kernels
have different moving directions and distances.

Here, M indicates the number of query points on a ray; ∆i

represents the distance between two adjacent query points
along the ray, and the τi means volume transmittance.

Random Drop We develop two random drop strategies that
randomly drop image features during optimization to ensure
both modalities of features can be well-optimized: 1) the
ray-based random drop will drop all image features on ran-
domly selected rays; 2) the query-point-based random drop
will randomly select query points on all rays and then re-
move all image features on them. The motivation behind the
random drop is that we find the optimization of the hybrid
representation can be easily dominated by image features,
leaving neural 3D features poorly trained. This is because
the image features are very similar to the reference images
and are thus more easily optimized. Unless otherwise spec-
ified, we adopt the ray-based random drop during training.
In the experiment part (see Fig. 10), we show the effects of
the two strategies.

3.2. Blur Simulation and Detection

We propose two complementary strategies to address the
negative influence of blurry reference images on optimizing
the hybrid neural rendering model. First, we design a sim-
ulation method that simulates blur effects on the rendered
image patch C to imitate the blur effects of the reference
image patch Cgt. By comparing the blurred image patch Ĉ
with the reference image patch during training, the sharp-
ness of the rendered images can be preserved. Second, we
develop a content-aware detection method to pre-compute
the blurriness scores of reference images and down-weight
the importance of blurry images based on the calculated
scores. The two strategies work collectively to address the
data quality challenge.

Blur Simulation To simulate motion blur, we assume that
the camera moves in one direction through a certain dis-
tance while capturing high frame rate videos. Specifically,
we take into account Nv directions and Nd distances for
creating blur kernels (Bi|i = 0, ..., Nv × Nd) that are
used to simulate blurs, and some examples of blur ker-
nels are shown in Fig. 4. When i = 0, it means no
blur simulation. To determine which blur kernel approxi-
mates the blur effects best, we first apply all blur kernels
to the rendered results to obtain the blurred image patches
Ĉi = Conv(C,Bi), and then choose the blur kernel i that
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yields an output patch Ĉi with the minimum photo-metric
loss w.r.t the reference image patch Cgt. This process is de-
scribed as:

Li = ||Ĉi − Cgt||2,
Lcolor =min{Li|i = 0, ..., Nv ×Nd}.

(4)

Because our blur simulation does not need to render ex-
tra rays as in Deblur-NeRF [21], it runs faster and is more
memory efficient. This blur simulation process is removed
during inference to produce sharp images C.

Content-Aware Blur Detection In addition, we also down-
weight the contribution of blurry images based on the blur-
riness score (a smaller value indicates more severe blur arti-
facts). However, we find that the “variation of the Lapla-
cian” [27] method used to compute blurriness scores is
prone to be influenced by image contents, thus unsuitable
for scoring the reference images directly. As shown in the
left of Fig. 5, the upper image is sharper than the bottom one
but has a lower blurriness score. This is because the upper
image contains more textureless contents (i.e., the floor).

To exclude the influence of image contents, we develop
a content-aware blur detection approach, which outputs ac-
curate blurriness scores by scoring the overlapping regions.
As shown in Fig. 5 right, our method first takes two neigh-
boring images {It, It+1} as inputs and estimates their over-
lapping regions (blue areas in Fig. 5) using optical flow [37].
Then, it returns two images’ blurriness scores {S1

t , S
1
t+1}

calculated from the overlapping regions. Next, to compute
the blurriness score of image It+2, we use another image
pair {It+1, It+2} and repeat the process above to obtain two
new blurriness scores {S2

t+1, S
1
t+2}. Considering different

overlapping regions in an image (e.g., blue and red regions
of It+1 in Fig. 5) will lead to different blurriness scores
S1
t+1 and S2

t+1, we align them by scaling S2
t+1 to S1

t+1.
Correspondingly, the blurriness score of It+2 is scaled fol-
lowing S1

t+2 = S1
t+1/S

2
t+1×S1

t+2. Similarly, the blurriness
scores of other images can be computed. Please refer to the
supplementary file for details. Finally, we convert blurri-
ness scores into quality-aware weights ωb

t following:

ωb
t = (

N × S1
t∑N

t=0 S
1
t

)α, (5)

where N represents the number of images, and α ≥ 0 is a
hyper-parameter used to adjust the distribution of quality-
aware image weights. These weights are further applied to
the training objective in Sec. 3.3 to down-weight the impor-
tance of blurry images. Alternatively, you can use ωb

t as
sampling probabilities to sample training images.

3.3. Optimization

Our training objective consists of a photometric loss
Lcolor in Eq. (4) that requires the rendered image patch C

𝐼! , Blur score: 4.43 

𝐼!"#, Blur score: 5.83
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Figure 5. Content-aware blur detection. Left: the blurriness
score [27] (large is sharper) is highly affected by image contents,
and is usually low when the image contains textureless contents
(e.g., floor). Right: the content-aware blur detection computes
blurriness scores on overlapping regions of two images, thus ob-
taining more accurate scores.

after blur simulation Ĉ to have the same appearance as the
reference image patch Cgt; and a sparsity loss Lsparse [20,43]
that encourages each point to have a confidence of 0 or
1 for the follow-up point pruning and growing operations.
Following Point-NeRF [43], the point growing and pruning
operations are applied every 10k iterations. After incorpo-
rating the quality-aware design (ωb

t in Sec. 3.2), the final
training objective is defined as:

Lt = ωb
t (Lcolor + βLsparse), (6)

where β = 0.002 is used to balance different loss terms and
ωb
i is the estimated blurriness score to down weight blurry

images (see Section 3.2).

4. Experiments
4.1. Implementation Details

Network and Training The 2D CNN (G) used to extract
image features has three down-sampling layers, and the
point-based neural 3D representation is constructed follow-
ing Point-NeRF [5]. We select four neighboring frames
(n = 4) and eight nearest point descriptors (k = 8) to
extract neural features. We train our models using the
Adam [16] optimizer with an initial learning rate of 0.0005.
A total of 200k iterations are used for training.

Blur Simulation We build our blur kernels considering
Nv = 4+8 directions (i.e., ‘left-right’, ‘up-down’, ‘top left-
bottom down’, and ‘bottom left-top right’; both symmetri-
cal and asymmetrical) and three moving distances Nd = 3
(i.e., 1, 2, 4). To apply blur simulation, we sample 8 × 8
patches with dilations [32] during the training, and the α in
Eq. (5) is set as 1.

Dataset We conduct our experiments on ScanNet [5] and
synthetic data generated from Habitat-sim [22]. 1) Scan-
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Net [5] contains RGB-D image sequences captured in large-
scale indoor scenes with handheld sensors. Following
Point-NeRF, we conduct experiments on “Scene0101 04”
and “Scene0241 01” and select every fifth image for train-
ing and the remaining images for testing. Note that images
in the ScanNet are blurry, which is not suitable for quanti-
tatively evaluating the sharpness of rendered images. Thus,
we additionally evaluate our method using synthetic data. 2)
Habitat-sim is a simulator [22,36] that synthesizes blur-free
RGB-D sequences of large-scale scenes (i.e., ’VangoRoom’
and ’LivingRoom’ [35]). We then add motion blurs to the
synthesized training sets. Please see the supplementary file
for details.

Baselines We compare our method with other represen-
tative image-based and neural-radiance-based novel view
synthesis approaches, including: 1) NeRF [23]; 2) IBR-
Net [40] which combines image-based rendering with vol-
ume rendering and generates high-quality novel view im-
ages without using depth; 3) NPBG [1] which renders im-
ages using a U-Net-like design by rasterizing point descrip-
tors onto the image plane 4) Point-NeRF [43], which is the
state-of-the-art point-based method for novel view synthe-
sis combining point-based neural representation and neu-
ral radiance field with volume rendering; and 5) Deblur-
NeRF [21] which improves the sharpness of rendered im-
ages by simulating the blurring process with a deformable
sparse kernel module.

4.2. Results on ScanNet

Quantitative comparisons with other baselines in terms
of PSNR, SSIM, and LPIPS [49] are reported in Table 1.
Our hybrid neural rendering design “Ours (H)” outperforms
previous methods by enhancing the quality of neural 3D
representations. However, the PSNR and SSIM drop in
the full version of our method “Ours”. This is because our
blur-handling modules mimic blurriness effects and down
weight blur images, enabling the model learn from clean
supervision. However, since this differs from the original
training data distribution, the model may not fit the evalu-
ation metric well. Moreover, Deblur-NeRF delivers a low
PSNR because it tends to introduce misalignment between
rendered and reference images.

We show qualitative comparisons in Fig. 6. Our method
can render high-quality novel view images while other base-
lines suffer severely from blurriness and distortions. For
example, the clock on the wall is distorted with IBRNet,
and the book generated by Point-NeRF is blurry. In con-
trast, our model produces results with clear characters in
the book (Fig. 6 “Ours (H)”), validating the efficacy of our
hybrid representation. Further, the rendered images be-
come sharper when using our design to handle blur arti-
facts; please notice the human face on the poster (Fig. 6
“Ours”). To better demonstrate the efficacy of our approach

Scene101 04 Scene241 01
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Point-NeRF [43] 29.88 0.913 0.203 30.54 0.910 0.236
IBRNet [40] 29.55 0.811 0.307 21.49 0.755 0.368
NPBG [1] 26.33 0.871 0.187 27.34 0.841 0.188

Deblur-NeRF [21] 24.55 0.693 0.308 20.66 0.652 0.401
NeRF [23] 27.16 0.730 0.350 21.69 0.610 0.494
Ours (H) 30.33 0.919 0.186 31.25 0.918 0.218

Ours 29.33 0.909 0.181 30.78 0.914 0.206

Table 1. Quantitative comparisons on ScanNet. “Ours (H)”: use
hybrid neural rendering without handling blur artifacts. We use
PSNR, SSIM, and LPIPS to evaluate the rendering quality (↓:
small is better; ↑: large is better). Our method outperforms all
other baselines by a large margin, especially on PSNR. Note that
the full version of our method (“Ours”) is worse on the PSNR and
SSIM, this is because the reference images in ScanNet are blurry.

in rendering consistent results, we provide videos in the
supplementary file: our results are more temporally consis-
tent than the image-based rendering (i.e., IBRNet), thanks
to the globally consistent neural 3D features.

4.3. Results on Synthetic Data

We conduct experiments on the synthetic data to vali-
date our designs to handle blurriness. In particular, we in-
corporate our designs into two different frameworks (i.e.,
NeRF and Point-NeRF) to show its generalization ability.
Here, we remove the image-based rendering branch on the
NeRF-based framework for fair comparisons. Fig. 7 shows
that our method significantly enhances the sharpness of ren-
dered images compared to NeRF and Point-NeRF, which
are also confirmed in Table 2. Notably, images from Deblur-
NeRF contain more details than NeRF but suffer from dis-
torted image structures, such as the blinds and the table leg.
This is because the learning of ray deformation is under-
constrained with too many degrees of freedom and thus
prone to corrupting original structures. Our easy-to-plug-
in method outperforms Deblur-NeRF on PSNR and SSIM
and delivers competitive performance on LPIPS. It is worth
noting that to achieve the above results, NeRF takes 4.5
hours, while our method takes 4.6 hours. Thus, the in-
crease in training time brought by blur simulation is negligi-
ble. However, Deblur-NeRF needs 8.5 hours which incurs
much more overheads. The time is reported with training
the model on a single NVIDIA 3090 GPU.

VangoRoom LivingRoom
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 28.83 0.769 0.339 29.73 0.848 0.215
Deblur-NeRF [21] 29.30 0.793 0.247 31.82 0.895 0.132

Ours+NeRF 30.26 0.805 0.259 32.70 0.912 0.124
Point-NeRF 31.24 0.950 0.152 32.20 0.959 0.109

Ours+Point-NeRF 33.27 0.966 0.097 35.30 0.980 0.051

Table 2. Quantitative comparisons on the synthetic data. We apply
our design used to handle blur artifacts to two different frame-
works, i.e., NeRF and Point-NeRF. With our design, the values of
all three metrics receive significant improvements.
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Figure 6. Qualitative comparisons on ScanNet. The highlighted regions are zoomed-in and placed at the bottom for better comparisons.
From the results, our method can synthesize sharper images than other approaches that are suffering from blurriness, distortions, and jagged
edges. Moreover, the sharpness is further improved after applying our design to handle blur artifacts (i.e., Ours vs. Ours (H)).
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Figure 7. Qualitative comparisons on the synthetic data. We validate our designs to deal with blur artifacts on two different frameworks,
i.e., NeRF and Point-NeRF. By applying our design, the details of rendered images become sharper. Besides, the Deblur-NeRF can also
improve the sharpness, but the structure (e.g., blinds) is distorted.

4.4. Ablation Studies

In this section, we conduct comprehensive ablations of
the proposed designs in our method.

Advantages of Image Features We first assess the con-
tribution of image features in our system by comparing
“Ours (H)” and Point-NeRF (i.e., without using image fea-
tures). As shown in Fig. 6 and Table 1, our method benefits
from image features and outperforms Point-NeRF. More-
over, our hybrid model converges faster. For example, we
achieve PSNR 31.0 after 20k iterations (80 minutes) on
“Scene241 01”, whereas Point-NeRF delivers 29.3 PSNR
after 40k iterations (84 minutes). (Please refer to supple-
mentary material for more results.) This is because com-

pressing all information into a neural 3D representation
is difficult since it requires accurate camera poses, high-
resolution 3D representations, etc. On the contrary, high-
fidelity image features can directly compensate for defec-
tive neural 3D features and enable synthesizing high-quality
results with fewer training iterations.

Advantages of Neural 3D Features We then show the
value of the neural 3D feature by comparing it with IBR-
Net, which uses only image features. From the results in
Fig. 6 and the video in the supplementary material, the ren-
dered images from IBRNet are often distorted and inconsis-
tent due to the lack of global 3D constraints. To further in-
vestigate the efficacy of learned neural 3D representations,
we replace the neural 3D features with the mean and vari-
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Figure 8. Advantages of neural 3D features. Without using the
neural 3D feature, the rendered images will be inconsistent at dif-
ferent times. This can be observed in the example of the chair leg.

ance of image features extracted from nearby frames in the
feature aggregation module (see Fig. 3). The corresponding
results are displayed in Fig. 8, our approach preserves the
shape consistency of the chair leg.

Blur Simulation and Quality-aware Design We further
show the effect of blur simulation and detection by remov-
ing each of them at a time, and the results on “LivingRoom”
are shown in Table 3. According to Table 3, both compo-
nents contribute to the final performance, and the perfor-
mance is improved when they are combined.

NeRF-Based Point-NeRF-Based
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Baseline 29.73 0.848 0.215 32.20 0.959 0.109
+ Blur simulation 32.24 0.905 0.133 34.32 0.974 0.065

+ Quality-aware weight 31.81 0.900 0.148 34.48 0.977 0.065
Full 32.70 0.912 0.124 35.30 0.980 0.051

Table 3. We validate our designs to handle blur artifacts on the
’LivingRoom’. Each component improves the performance and
works better when combined.

Random Drop Methods The random drop strategy is to
avoid the optimization being dominated by image features.
As shown in Fig. 9, without using random drop in the train-
ing process, the results are poor in areas not covered by im-
age features (the right side of the sofa). This region can
only rely on neural 3D representation for rendering; thus,
the poor results imply that the neural 3D representations
are not well optimized. In contrast, our method with the
random drop strategy produces high-quality images. More-
over, we observe that the results are slightly different when
using different variants of the random drop strategy. For
example, the rendered image is automatically enhanced us-
ing query-point-based random drop, as displayed in Fig. 10.
One possible explanation is that, during training, the use of
volume rendering for aggregation automatically enhances
query points with image features to compensate for query
points with low-quality neural 3D features on the same ray.
However, this enhancement tends to change the color tone,
as demonstrated in the bicycle example in Fig. 10. Thus, we
currently adopt the ray-based random drop to render images

Without random drop With random drop

Figure 9. Efficacy of random drop. Without random drop, areas
around image boundary (e.g., the sofa in the left image) not cov-
ered by image features are bad.

Ray-based Query-point-based Reference

Figure 10. Different random drop methods. Query-point-based
random drop automatically enhances the rendered images, but it
tends to change the color tone. Please note the bicycle.

having a closer appearance to the reference images.

5. Conclusion

In this paper, we present an approach to render high-
fidelity and view-consistent images in large-scale scenes
from sources contaminated by motion blurs. We develop a
hybrid neural rendering model that makes use advantages
of both image-based representation and neural 3D repre-
sentation to render high-quality and view-consistent results.
We also propose to efficiently simulate blur effects on the
rendered image and design a quality-aware training strat-
egy to down-weight blurry images, which helps the hybrid
neural rendering model learn from blur-free supervisions
and generate high-fidelity images. We conduct experiments
on both real and synthetic data and obtain superior perfor-
mance over previous methods.

Limitations Our method focuses on dealing with simple
motion blurs in the training data, and defocus blur is not
considered. Moreover, there are many other in-the-wild
challenges, such as images captured under different expo-
sure times and light conditions that require further research.
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