
Learning Expressive Prompting With Residuals for Vision Transformers

Rajshekhar Das1,2∗, Yonatan Dukler2, Avinash Ravichandran2∗∗, Ashwin Swaminathan2

Carnegie Mellon University1 AWS AI Labs2

rajshekd@andrew.cmu.edu, dukler@amazon.com, swashwin@amazon.com

Abstract

Prompt learning is an efficient approach to adapt trans-
formers by inserting learnable set of parameters into the
input and intermediate representations of a pre-trained
model. In this work, we present Expressive Prompts with
Residuals (EXPRES) which modifies the prompt learn-
ing paradigm specifically for effective adaptation of vi-
sion transformers (ViT). Our method constructs down-
stream representations via learnable “output” tokens (shal-
low prompts), that are akin to the learned class tokens of the
ViT. Further for better steering of the downstream repre-
sentation processed by the frozen transformer, we introduce
residual learnable tokens that are added to the output of
various computations. We apply EXPRES for image classi-
fication and few-shot semantic segmentation, and show our
method is capable of achieving state of the art prompt tun-
ing on 3/3 categories of the VTAB benchmark. In addition
to strong performance, we observe that our approach is an
order of magnitude more prompt efficient than existing vi-
sual prompting baselines. We analytically show the compu-
tational benefits of our approach over weight space adap-
tation techniques like finetuning. Lastly we systematically
corroborate the architectural design of our method via a
series of ablation experiments.

1. Introduction
Scaling up of neural nets in the past few years has steadily
improved performance on wide variety of downstream vi-
sual tasks. However, model adaptation is often necessary
to achieve the best performance in downstream tasks like
fine-grained recognition [89], semantic segmentation [8] or
object recognition [34]. While traditional techniques like
full-model finetuning have become the de-facto approach
to adaptation, they are not well suited for many scenarios.
For example, finetuning is susceptible to catastrophic for-
getting [37] as it modifies model parameters without the
knowledge of future domains, and potentially losing prior
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Figure 1. Adapting large vision models is crucial to solving down-
stream tasks with wide variety of semantics (e.g., image classifica-
tion, semantic segmentation etc.) as well as dataset sizes (few-shot,
low-shot, full-shot). In this work, we propose a novel adaptation
technique for large vision models that is capable of achieving the
desired goal.

knowledge of current adaptation. Moreover, finetuning all
of the model parameters of a large vision model with just a
few training examples can lead to poor generalization. This
is in contrast to human intelligence that is capable of solv-
ing wide variety of downstream tasks with extremely few
exemplars.
Motivated by the need for better adaptation, parameter effi-
cient techniques like partial-finetuning or adapters [64,101]
have been developed to constructively adapt large models
without significant parameter overhead. While serving as
effective alternatives to finetuning, most parameter efficient
techniques have been designed with convolutional architec-
tures in mind. In light of recent works [15] that demonstrate
that Vision Transformers are more suitable for scaling up
than CNNs, designing adaptation techniques that exploit the
Transformer architecture can be extremely useful. To that
end, visual prompt tuning (VPT) [32] has been proposed as
a way to constructively adapt transformers by introducing
learnable tokens at every layer that interact with the patch
and class tokens and are optimized together with a classi-
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fier head. While being effective in practice, VPT allows
only partial interactions between prompts and the remain-
ing tokens, thus, leveraging only a part of the prompt capac-
ity. Moreover, it often requires a large number of inserted
prompts to achieve optimal performance but that signifi-
cantly increases the computation costs due to the quadratic
computational complexity of the self-attention layer.
In this work, we explore an alternate design to prompting
motivated by the potential for greater prompt capacity. We
propose ExPRes, an expressive prompt tuning method with
residual tokens that inherits the strengths of parameter effi-
cient adaptation while significantly improving downstream
performance. Our prompt design is inspired by the two key
observations - propagation of prompts by multilayered in-
teraction with other tokens is crucial for strong capacity
and learnable residual tokens can modulate the propagated
prompts to favour task-specific relations (unlike in [32]).
We first propagate shallow prompts through the encoder
that are average pooled at the last layer to yield seman-
tic image-level representations. Shallow prompts by them-
selves have limited capacity since they cannot specifically
modulate token-token relations at higher layers. Therefore
to harness the prompts, we add residual tokens to prop-
agated prompts at various layerwise computations of the
Transformer encoder including LayerNorm, self-attention
and multi-head projection to facilitate layerwise modulation
without increasing the number of prompts per layer. This
results in enhanced prompt capacity at almost no additional
computational cost.
We empirically validate the effectiveness of our method on
a variety of downstream tasks including fine-grained recog-
nition and semantic segmentation. Our use of additional
learnable parameters in the form of residual and shallow
prompts allows the retention of prior knowledge in the form
of frozen encoder weights while being extremely parameter
efficient (prompts are ≤ 1% of the total parameters). Thus,
our method is highly suited for real world adaptation that
requires information retention at low memory and computa-
tional overheads. Additionally, we show that in most cases
we require fewer prompts than VPT to achieve the same or
better performance, making it more suitable for limited data
settings. Our main contributions can be summarized as fol-
lows:

• We propose a novel prompting technique: EXPRES,
that uses a combination of shallow and deep residual
prompts to facilitate constructive adaptation to down-
stream tasks with limited labelled datasets.

• Our method significantly outperforms full-finetuning
based adaptation by 4.6% on VTAB-1k. Moreover,
our method outperforms state-of-the-art prompting ap-
proach [32] on the same benchmarks with significantly
fewer prompts, suggesting that prompt design is cru-

cial to extracting more capacity at a given parame-
ter/computational budget.

• To the best of our knowledge, we are the first to
demonstrate the effectiveness of prompting for diverse
applications such as few-shot semantic segmentation.
Our method outperforms strong adaptation baselines
by 25% and achieves competitive performance with
respect to language-assisted segmentation [40] despite
training on significantly less data with dense annota-
tions.

2. Related work
Large Vision Models: With the advent of Transformer
models [80] and adoption to various computer vision tasks,
including image classification [15, 51], object detection [7,
44], semantic and panoptic segmentation [76,85,102], video
understanding [18, 25, 87] and few-shot learning [13], the
scale of vision models have increased by orders of magni-
tude. Typically trained using large labelled data, either uni-
modal like ImageNet-21K [65] or multimodal, these mod-
els demonstrate superior performance on wide variety of
visual tasks. Given their superior performance and much
larger scale compared to ConvNets, the question of adaptat-
ing such models efficiently becomes crucial. Motivated by
the need, our work is primarily focussed on adaptation of
Vision Transformers.
Transfer Learning has been extensively studied for vision
tasks in the context of ConvNets [105] and many tech-
niques have been introduced including side tuning [101],
residual adapter [63], bias tuning [6], etc. However, Trans-
former specific adaptation for visual tasks has received rel-
atively less attention. At the same time, in the NLP domain,
the dominance of large-scale pre-trained Transformer-based
Large Language Models (LLM) [4, 11, 61], has paved way
for many approaches [26, 29, 31] that efficiently fine-tune
LLMs for different downstream NLP tasks [82, 83]. In
this work we compare with the most representative meth-
ods for fair benchmarking. For example, Adapters [30]
insert extra lightweight modules inside each Transformer
layer. One adapter module generally consists of a linear
down-projection, followed by a nonlinear activation func-
tion, and a linear up-projection, together with a residual
connection [58, 59]. Instead of inserting new modules, [6]
proposed to update the bias term and freeze the rest of back-
bone parameters when fine-tuning ConvNets. BitFit [3] ap-
plied this technique to Transformers and verified its effec-
tiveness on LLM tuning. Through our experiments that we
demonstrate that our method, EXPRES provides a more ef-
fective way of adapting Transformers compared to prior ap-
proaches.
Prompting: An alternative to traditional adaptation meth-
ods is prompting [48] - originally proposed as a way of
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Figure 2. EXPRES Architecture in detail: EXPRES optimizes two types of prompts, shallow prompts (e.g., pi) and residual prompts
(e.g., ∇LN,i), to construct task specific representation without updating the pretrained encoder weights. Each residual prompt is a learnable
vector that is added to the output of various computations such as Layer Norm, Query-Key-Value projections, and linear projection after
the MSA operation.

prepending language instruction to the input text so that
a pre-trained LLM can “understand” the task. Through
trial and error selection of appropriate prompts, GPT-3
shows strong generalization to downstream transfer learn-
ing tasks even in the few-shot or zero-shot settings [4].
This was followed up by other works on better prompt con-
struction [33, 71]. Recent works [39, 43, 50] propose to
treat the prompts as task-specific continuous vectors and
directly optimize them via gradients during fine-tuning.
Such approaches, named “Prompt Tuning” achieve perfor-
mance comparable to finetuning but with 1000× less pa-
rameters in some cases. Following the success in LLMs,
prompt have also been adopted for vision-language mod-
els [22, 35, 60, 96, 103]. Nonetheless, all the above meth-
ods prompt the text encoders and hence are tied to lan-
guage as input. However, many realistic visual tasks such as
dense prediction may not be well aligned with the language
modality. Thus, it becomes imperative to develop prompt-
ing approaches that can work in the visual modality. To that
end, recent work on visual prompting [2,10,32,66,88] pro-
vides encouraging results. In particular, [32] demonstrate
that even in the visual domain, adaptation based on contin-
uous prompting can outperform finetuning, especially when
the training datasets are small. Our work however shows
that current prompting methods do not fully exploit the ca-
pacity of prompting for a vision transformer. Through a
principled approach to prompting, we derive a more effec-
tive prompting technique that achieves state-of-the-art per-

formance at much smaller computational overhead.

Few-Shot Classification: Few-shot classification has re-
ceived a lot of attention in recent years. While a variety
of approaches [75] have been proposed, the most successful
ones seek to transfer positive knowledge either by finetun-
ing [1,12,79] or meta-learning [17,19,21,24,38,62,74,77,
81]. Finetuning based few-shot learners can be viewed as
specialists that perform well on the target domain [9,27,79],
but suffer from catastrophic forgetting [70] on the base do-
main. Meta-learning approaches, on the other hand, can be
seen as generalists that enjoy complete immunity against
forgetting but at the cost of somewhat lower performance in
the target domain. In this work, we propose EXPRES as a
constructive adaptation technique that is immune to forget-
ting but at the same time benefits from task specific param-
eter tuning, thus, leveraging the best of both worlds. One of
our key contribution is to demonstrate the transferability of
Transformers from classification to dense prediction tasks
(semantic segmentation) when adapted with EXPRES.

Few-Shot Semantic Segmentation: This task was origi-
nally proposed in [68]. Most works after that follow the
metric learning paradigm [14] with various novelties from
improved support-query matching [47,72,95] to better opti-
mization [46, 104], memory modules [90, 93], graph neural
networks [84, 92, 99], and more [28, 42, 45, 52, 53, 78, 98,
106]. Some methods generate representative support pro-
totypes with attention mechanism [20,100], adaptive proto-
type learning [41, 57, 73], or various prototype generation
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techniques [49, 54, 86, 94]. In contrast, our approach di-
rectly adapts a model pretrained on image classification to
few-shot semantic segmentation without intermediate pre-
training on densely-annotated datasets.

3. Approach

3.1. Preliminaries

Consider an input space X and a categorical label set Y
where each class is represented via a one-hot encoding. A
representation R ⊂ Rd of the input is defined by the com-
position of an augmentation function A : X → X and an
encoder model Eθ : X → R, parameterized by θ. The
augmentation function is a composition of standard image
transformations such as random cropping, horizontal flip-
ping etc. A general recognition task T can be defined in
terms of a finite training set, {(xi, yi)}i∈Dtrain and Nc cate-
gories such that, yi ∈ [Nc]. The goal, is to leverage a pre-
trained encoder, Eθ∗ and the training set to obtain a classi-
fier for the task T .

3.2. Overview of Vision Transformers (ViT)

In a typical ViT, the image, x ∈ Rh×w×3 is uniformly di-
vided into N fixed-sized patches, each of which are pro-
jected to a d-dimensional embedding and are added a po-
sitional embedding, resulting in a patch token zn ∈ Rd.
Additionally, a class token zcls ∈ Rd is concatenated to
the sequence of the patch tokens to form the input, Z0 ∈
R(N+1)×d. Starting from layer l = 0, the incoming acti-
vations at each layer, zl−1 are first normalized using Lay-
erNorm (LN), and then processed by a multi-headed self-
attention block (MSA) followed by an MLP block. At the
last layer, the resulting class token is normalized to yield
the final representation. The overall computations in a ViT
encoder can be summarised as

Z0 = [zcls, z0, . . . , zN−1]

H l−1 = MSA(LN(Zl−1)) + Zl−1 l = 0, ..., L− 1

Zl = MLP(LN(H l−1)) +H l−1 l = 0, ..., L− 1

y = LN(ZL
cls)

where L represents the number of encoder layers. The
multi-headed self-attention mechanism (MSA) abstracts
patchwise representation by aggregating the right context
at each layer. The context aggregation is facilitated by soft-
max attention that relies on patch-to-patch similarities and
its parameters are governed by the pre-training task objec-
tive. During adaptation, however, the representations for
downstream task might benefit from aggregating a slightly
different context at each layer. Our prompt tuning approach
facilitates task specific modulation of this context by aug-
menting and learning layerwise patch tokens.

3.3. Expressive Prompt Tuning

At the input layer of the ViT, we introduce prompt to-
kens, P 0 ∈ RM×d which are M parameterized vectors of
dimension d concatenated to the input token sequence, Z0,
of the ViT. Input-level prompts, also referred to as shal-
low prompts, are propagated through the encoder together
with the class and patch tokens such that at every layer,
each token interacts with every other token through the self-
attention layers. The propagated prompts at the last layer
are average-pooled to obtain the final representation. The
insertion and propagation of the prompts described above
can be expressed as

Z̃0 = [Z0||P 0] (1)

H̃ l−1 = MSA(LN(Z̃l−1)) + Z̃l−1 l = 0, ..., L− 1

Z̃l = MLP(LN(H̃ l−1)) + H̃ l−1 l = 0, ..., L− 1

ZL,PL = chunk(Z̃l)

ỹ = AvgPool(PL)

y = LN(ỹ)

we use || to denote the concatenation along the sequence
axis and chunk to denote the splitting of the propagated
sequence of length N+M+1 into the N+1 tokens and M
prompts. Shallow prompts are capable of modeling some of
the desired token relations for a task. However, they have
limited capacity due to the inability to alter for specific per-
layer interactions with the class and image tokens.

To enhance the prompt capacity, we introduce layer-wise
residual prompts, ∆l ∈ RM×d that are added to the prop-
agated prompts at various computations within the MSA
block for an intermediate layer l. This includes the output of
attention LayerNorm, query-key-value projections and lin-
ear multi-head projection. We summarise the MSA compu-
tations at layer l with Nh heads and input Z

Z ′ = LN(Z)

Qh = Z ′WQ
h ; Kh = Z ′WK

h ; Vh = Z ′WV
h

gh = Att(Qh,Kh, Vh) i = 1, ..., Nh (2)

O = [g1|| . . . ||gNh
]W proj

above h is used to represent the head index of
WQ,WK ,WV and W proj denotes the projection matrix of
the MSA block. The residually prompted computations can
then be expressed as

Z ′ = LN(Z) + [0̄||∆LN]

Q̃h = Qh + [0̄||∆Q]

K̃h = Kh + [0̄||∆K]

Ṽh = Vh + [0̄||∆V]

Õ = O + [0̄||∆proj]
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where the concatenation of (N + 1) × d dimensional zero
matrix, 0̄ with the residual-prompts, signifies that the resid-
uals ∆ are added only at the propagated prompt positions
and not to the image patch or class token positions. The
above residual computations occur at every layer with inde-
pendently learned residual prompts, and we drop the layer
indices in the equations for brevity. The overall EXPRES
architecture is visualized in Figure 2.

3.4. Interpreting Residual Prompting

We take a closer look at residual prompting for self-
attention and interpret it’s functionality. The Att opera-
tion in Eq. (2) facilitates weighted aggregation over all
“value” tokens where the weights are computed using the

“query” and a “key” tokens as wij ∝ exp
(

qTi kj√
d/Nh

)
.

When prompted with residual tokens, the expression for the
weights that aggregate information for a patch token qi can
be factored as,

w̃ij ∝ exp

(
qTi (kj +∆K,j)√

d/Nh

)

= exp

(
qTi ki√
d/Nh

)
exp

(
qTi ∆K,j√

d/Nh

)
(3)

= wij ∗ αij .

Based on Eq. (3), residual prompts facilitate task-specific
reweighting of the attention weights independently at ev-
ery layer, allowing the modulation of context aggregated per
patch token. Such layerwise modulation can lead to better
adaptation of the final representation compared to shallow
prompting that restricts the modulation to the input layer.
Moreover, the two-way interaction between prompts and
patch tokens leads to greater flexibility than other forms of
multilayered prompting [32, 67] that allow for only partial
interaction. For instance, [32] restrict the prompts to act
only as keys and never as queries.

Residual prompt based attention reweighting is also in-
teresting from parameter efficiency perspective as it circum-
vents the need for updating the attention weight matrices
(done in finetuning approaches) to achieve the same goal
of task specific adaptation. Specifically, each layer of a
ViT consists of three attention weight matrices, each with
d× d dimensions, resulting in O(d2) learnable parameters.
In contrast, each prompt is d dimensional so, only O(d) pa-
rameters need to be adapted even with M prompts, where
M << d. We empirically validate that the high capacity as
well as parameter efficiency of our prompting approach is
crucial for achieving good adaptation performance in lim-
ited labelled data settings.

3.5. Learning the Prompts

In this work, we are mainly interested in two types of
downstream tasks - image classification and semantic seg-
mentation. To train the prompts for classification, we opti-
mize a standard cross entropy loss with respect to the repre-
sentation, y in Eq. (1) and the corresponding ground-truth
label, y∗. In the case of semantic segmentation, we adapt
the model as well as the objective to perform dense predic-
tions. At the final layer of the encoder, we extract the keys
corresponding to the patch tokens and pass them through the
classifier. The sequence outputs are then reshaped into a 2d
map and resized to original image resolution using bilinear
interpolation, resulting in a pixel wise prediction. Finally,
to optimize the prompts with the classifier head, we use a
dense cross entropy loss as follows

{p∗m}, {∆∗} = argmin
{pm},{∆},C

∑
j∈Ictxt

∑
h,w

LCE(yjhw, y
∗
jhw)

where, h,w are used to index the spatial positions at the
resolution, H ×W of the input image.

4. Experiments
We validate the effectiveness of EXPRES on a variety of

benchmarks consisting of wide variety of tasks and dataset
sizes. We also analyse the importance of various model
components and design decisions.
Datasets: To evaluate EXPRES, we use two different
benchmarks, VTAB-1k [97] and FGVC [32]. The VTAB-
1k benchmark consists of 19 different visual classification
tasks categorized under three groups: Natural - tasks with
natural images captured with standard cameras; Special-
ized - tasks with images captured under specialized settings
(medical and satellite imagery); and Structured - tasks that
requires understanding scene geometry, like object distance.
Each task-specific dataset contains 1000 training examples
with varying number of samples per class, depending on
the number of classes. For validation purposes and hyper-
parameter selection, we use a 800 − 200 split of the train-
ing set and then train on all 1000 examples for final re-
sults, which are based on evaluation on the entire test set.
The FGVC benchmark consists of the finegrained datasets
including CUB [89], Oxford Flowers [55], Stanford Dogs
[36] and Stanford Cars [23]. In conjunction with VTAB-1k,
we use the FGVC datasets to conduct key ablation studies
for EXPRES. A random 90 − 10 split of each dataset is
used for hyperparameter selection. For few shot segmen-
tation, we use the standard PASCAL − 5i [69] benchmark
that was created from PASCAL VOC 2012 [16] with extra
mask annotations for 20 object classes, evenly divided into
4 folds: {5i : i ∈ {0, 1, 2, 3}}. Following prior works for
evaluation scheme, we randomly sample 1000 episodes per
fold and report the average performance over all episodes
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Linear 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93 78.5 87.5 68.6 74.0 77.16 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.84
MLP-2 63.2 84.8 60.5 97.6 85.9 34.1 47.8 67.70 74.3 88.8 67.1 73.2 75.86 45.2 31.6 31.8 55.7 30.9 24.6 16.6 23.3 32.47
MLP-3 63.8 84.7 62.3 97.4 84.7 32.5 49.2 67.80 77.0 88.0 70.2 56.1 72.83 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 30.62
MLP-5 59.3 84.4 59.9 96.1 84.4 30.9 46.8 65.98 73.7 87.2 64.8 71.5 74.31 50.8 32.3 31.5 56.4 7.5 20.8 14.4 20.4 29.23
MLP-9 53.1 80.5 53.9 95.1 82.6 24.4 43.7 61.90 78.5 83.0 60.2 72.3 73.49 47.5 27.9 28.9 54.0 6.2 17.7 10.8 16.2 26.15

Sidetune [101] 60.7 60.8 53.6 95.5 66.7 34.9 35.3 58.21 58.5 87.7 65.2 61.0 68.12 27.6 22.6 31.3 51.7 8.2 14.4 9.8 21.8 23.41
Biastune [6] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.30 78.7 91.6 72.9 69.8 78.25 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.09
Adapter-256 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50 76.3 88.0 73.1 70.5 76.98 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 32.39
Adapter-64 74.2 85.8 62.7 97.6 87.2 36.3 50.9 70.65 76.3 87.5 73.7 70.9 77.10 42.9 39.9 30.4 54.5 31.9 25.6 13.5 21.4 32.51
Adapter-8 74.2 85.7 62.7 97.8 87.2 36.4 50.7 70.67 76.9 89.2 73.5 71.6 77.80 45.2 41.8 31.1 56.4 30.4 24.6 13.2 22.0 33.09
Partial-1 66.8 85.9 62.5 97.3 85.5 37.6 50.6 69.44 78.6 89.8 72.5 73.3 78.53 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 34.17

FT-all 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.88 79.7 95.7 84.2 73.9 83.36 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.64

VPT-shallow [32] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.81 78.2 92.0 75.6 72.9 79.66 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98
VPT-deep [32] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.48 81.8 96.1 83.4 68.4 82.43 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 54.98

EXPRES (ours) 78.0 89.6 68.8 98.7 88.9 81.9 51.9 79.7 84.8 96.2 80.9 74.2 84.0 66.5 60.4 46.5 77.6 78.0 49.5 26.1 35.3 55.0

Table 1. VTAB-1k benchmark: Per task adaptation results with ViT-B/16 model pretrained on ImageNet-21k..

Method Im-Pre Dense-Pre Backbone 50 51 52 53

SPNET [91] In-1k ✓ ResNet-101 23.8 17.0 14.1 18.3
ZS3Net [5] In-1k ✓ ResNet-101 40.8 39.4 39.3 33.6
LSEG [40] In-1k ✓ ViT-L/16 61.3 63.6 43.1 41.0

Linear In-21k - ViT-B/16 5.1 43.9 28.1 29.1
FT-all In-21k - ViT-B/16 18.3 31.9 27.9 23.2

Biastune In-21k - ViT-B/16 2.4 39.2 13.9 20.1

VPT-deep [32] In-21k - ViT-B/16 33.4 56.2 49.8 47.7
EXPRES (Ours) In-21k - ViT-B/16 41.8 60.2 52.4 51.4

Table 2. Five-Shot Semantic Segmentation on PASCAL − 5i: Per fold adaptation results with ViT-B/16 model pretrained on ImageNet-
21k.

of the corresponding fold. However, unlike prior works,
we tune our EXPRES model on few-shot training exam-
ples and cross-validate the hyperparameters (e.g. number of
prompts, M ) on a validation set with fold-exclusive cate-
gories. In all our experiments, we use a reasonably small
budget for hyperparameters (see supplementary) following
recent studies [56] that highlight the likelihood of overopti-
mistic results in limited-labelled data settings due to exces-
sive hyperparameter tuning on large validation sets.
Implementation Details: In all our experiments, we use a
fixed encoder, ViT-B/16 pretrained on ImageNet-22K [65].
This model is effective on wide variety of tasks and allows
direct comparison with prior works. For each downstream
task, we train for a total 100 epochs with an initial warmup
of 10 epochs. We use AdamW as our default optimizer with
a suitable learning rate and fixed weight decay of 1e−4. For
VTAB-1k and FGVC experiments, we use a fixed batch size
of 64. For segmentation experiments, since overall training
set sizes are extremely small (≤ 10 images in total, we use
the entire training set per batch. We use input image reso-

lution of 224 × 224 for classification tasks and 384 × 384
for semantic segmentation tasks as dense prediction usu-
ally benefits from larger resolution. Since, ViT-B/16 is pre-
trained on standard 224 × 224 resolution images, we use
interpolated positional embeddings to accommodate larger
resolutions in the case of segmentation. Finally, we use
standard data augmentations for classification benchmarks
i.e., Resize→ Random-Crop→ Horizontal-Flip
during training and Resize → Center-Crop during
evaluation while for segmentation we only use Resize.
Evaluation Metrics For classification experiments, we
use accuracy as our performance metric. For evaluat-
ing segmentation masks, we use mean intersection over
union (mIoU) that averages over the intersection over union
curves per class.

4.1. Main Results

We compare EXPRES with a number of commonly used
adaptation techniques on VTAB-1k. The adaptation meth-
ods can be categorized as head-oriented, backbone-oriented
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and prompt-based. Under the first category, Linear only
optimizes a linear classifier for the downstream task while
MLP-k uses a k-layer multilayer perceptron (MLP) as the
classifier head. As an example of the second category, Side-
tune [101] uses features that are linearly interpolated be-
tween pretrained features and features from a “side” net-
work trained on downstream data. While Biastune [6]
adapts only the bias terms of an otherwise frozen backbone.
Adapter-d [30, 58, 59] introduces lightweight MLP mod-
ules inserted between Transformer layers. Partial-k fine-
tunes the last k layers while keeping the rest of the back-
bone frozen, finally FT-all finetunes all the layers. VPT-
shallow [32] additionally optimizes a linear classifier with
the learnable input prompts propagated through the encoder.
VPT-deep [32] introduces more capacity by replacing the
propagated prompts with a new set of learnable prompts at
each layer.
VTAB-1k Results (Table 1): Across all three splits of
VTAB-1k, our method significantly outperforms the best
head-oriented techniques: + 11% (natural), + 7% (spe-
cialized) and +23% (structured). Similar trends hold even
when comparing with the more powerful class of backbone-
oriented techniques. While FT-all has been widely adopted
as an effective technique for most adaptation scenarios, our
method consistently outperforms it by a significant margin
of +4% (natural), +1% (specialized) and +7% (struc-
tured). Most interestingly our method even outperforms
other powerful prompting techniques like VPT-deep on 12
(out of 19) datasets by a margin of about + 1% (natu-
ral), + 2% (specialized) and + 0.02% (structured). The
performance gains are particularly impressive when consid-
ered from the perspective of computation vs performance
tradeoff. Compared to VPT-deep that uses 53 prompts for
natural and 108 prompts for structures, our method only re-
quires 10 and 29 prompts for the respective splits. A more
detailed summary is provided in the supplementary.

4.2. Few-Shot Semantic Segmentation Without
Dense Pretraining

We test the efficacy of EXPRES on a novel adaptation
setup where the backbone, pretrained on classification
tasks, is directly adapted for few-shot semantic segmen-
tation task without additional training on large densely-
annotated datasets. This is in contrast with most works
that follow a two-stage pretraining procedure i.e., training
on ImageNet-1k with image level labels followed by meta-
learning on densely annotated datasets constructed from the
train folds of PASCAL − 5i. In contrast, we only perform
the first stage pretraining on a sufficiently diverse dataset
(ImageNet-21k in our case) with no meta-learning stage.
During evaluation, each few-shot episode randomly sam-
ples a target image with a segmentation mask that assigns a
label 1 to the pixels corresponding to one of the object cate-

Figure 3. Prompt Propagation: Effect of propagating prompts
with modulation upto a layer, l = {2, . . . , 12} of the ViT-B/16
encoder with total 12 layers. The datasets are sampled from the
FGVC benchmark.

gories in that image and a label 0 to remaining pixels (back-
ground). From the same object category, a set of five images
are randomly sampled to form the training set where the
mask of each image is annotated in the same way as the tar-
get. Our method as well as all baselines that perform meta-
learning are optimized given a context set to yield a binary
classifier for the target image. For dense representations,
we use the last layer keys of the MSA-block as we found
them to be more accurate than the typical MLP-block out-
put. We observe that our method consistently outperforms
the baselines (by 25%) as well as other prompt techniques
such as VPT-deep (by 5%). Surprisingly, our method even
outperforms [40] that leverages densely annotated datasets
(training data per fold) with large language models for a
second stage of pretraining. Specifically, on 2/4 folds, EX-
PRES outperforms [40] by 10% despite training on a sig-
nificantly smaller densely-annotated dataset (five images).
These results are particularly significant as they suggest that
highly competitive results can be achieved with models pre-
trained on image classification. Consequently, results may
be further improved by scaling up the image-level annotated
datasets which are cheaper to scale than the densely anno-
tated datasets. In the supplementary, we provide visualiza-
tions of the segmentation mask predictions by our method
as well as Linear, FT-all and VPT-deep methods.

4.3. Ablation Studies

We conduct extensive ablations to evaluate key design
decisions used to develop EXPRES such as feature con-
struction, residual prompting, number of prompts etc. For
all ablations, we use the same ViT-B/16 backbone. When
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Figure 4. Residual Prompt Types: Evaluating the importance of different type of residual prompts on FGVC datasets.

Figure 5. Computational Efficency Plots: Comparing Accuracy
vs Number of Prompts for VPT and EXPRES

using FGVC datasets, we use only 10% of each dataset with
official splits provided in [32].
Prompt Propagation: We evaluate the importance of prop-
agating prompts through the ViT-B/16 encoder with layer-
wise modulation. Specifically, upto a layer l, we allow all
tokens (patch, class and prompt) to attend to each other at
every layer. Beyond l, prompts are not allowed to inter-
act with other tokens at all; they are simply projected by
the value heads of MSA-block followed by MLP process-
ing at every layer. In our experiments, we fix the number
of prompts to 10 irrespective of the dataset. From Figure 3,
we observe that downstream performance depends directly
on the extent of prompt propagation with modulation: ac-
curacy improves as more layers allow prompts to interact
with other tokens. These results motivate our method, EX-
PRES, that facilitates finegrained layerwise modulation via
residual tokens.
Residual Prompt Type: In Figure 4 we evaluate the im-
portance of different residual prompt types (one-at-a-time)
including attention, LayerNorm (LN), query-key-value pro-
jections (QKV) and linear multi-head projection (Proj). We
also evaluate residual prompting in the MLP block: after
LayerNorm (LN,mlp), first linear projection (L1,mlp) and
second linear projection (L2,mlp). We evaluate the com-
posite effect of multiple prompt types within a computa-
tional block i.e., Att (MSA block) and MLP (MLP block)
As a baseline, we provide the per-dataset results for shallow

prompting, referred to as None in the figure. The number
of prompts at each layer are fixed at 10. We observe that,
within the MSA block, adding residual prompts to Layer-
Norm and query-key-value projections yields the most im-
provements (3.5% and 2.8% on an average respectively)
over None. Moreover, LayerNorm prompts in the MLP
block are also more effective than prompting the two lin-
ear layers. Comparing blockwise performance, prompting
the MSA block (Att) yields significantly better performance
(by 1.6%) than prompting the MLP block (MLP). The per-
formance gap between Att and MLP highlights the impor-
tance of directly modulating layerwise interaction between
tokens for better adaptation. Consequently, we use Att as
our default setting for all experiments.
Computational Efficiency of Prompting: In prompting
techniques, the primary computational overhead arises from
the quadratic complexity (in number of tokens) of the trans-
former encoder. So to evaluate computation efficiency of
prompting, we investigate the rate at which performance
improves with number of prompts and provide compar-
isons between our method and VPT in Figure 5. We eval-
uate on two different datasets sampled from different cate-
gories of VTAB-1k. For a given accuracy, e.g. 58.5% on
Clevr-Distance, EXPRES requires an order less prompts
than VPT, resulting in 2 orders less computations. Over-
all EXPRES achieves higher optimal performance with far
fewer prompts than VPT.

5. Conclusion

In this work we propose a novel prompting technique
for adapting large vision models. Our method demonstrates
strong performance across variety of downstream tasks with
varying dataset sizes. Further, our method outperforms
commonly used finetuning approach as well as the recently
proposed VPT method on standard benchmarks. We also
demonstrate diverse adaptation ability of our method from
classification to semantic segmentation tasks in the few-shot
setting. Lastly, our method is more parameter efficient that
existing weight-space and prompt based adaptation tech-
niques. In the future, we plan to extend our method to addi-
tional settings including vision-language learning.
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