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Figure 1. 3D Highlighter localizes semantic regions on a shape using text as input. Our technique reasons about where to place seemingly
unrelated concepts in semantically meaningful locations on the 3D shape, such as a ‘necklace’ on a horse or ‘shoes’ on an alien.

Abstract

We present 3D Highlighter, a technique for localizing se-
mantic regions on a mesh using text as input. A key feature
of our system is the ability to interpret “out-of-domain”
localizations. Our system demonstrates the ability to rea-
son about where to place non-obviously related concepts
on an input 3D shape, such as adding clothing to a bare
3D animal model. Our method contextualizes the text de-
scription using a neural field and colors the correspond-
ing region of the shape using a probability-weighted blend.
Our neural optimization is guided by a pre-trained CLIP en-
coder, which bypasses the need for any 3D datasets or 3D
annotations. Thus, 3D Highlighter is highly flexible, gen-
eral, and capable of producing localizations on a myriad of
input shapes. Our code is publicly available at https:
//github.com/threedle/3DHighlighter.

1. Introduction
Semantic localization of regions on 3D meshes is an im-

portant problem in computer graphics and vision with broad
applications. One such application is the incorporation of
semantic information into the 3D modeling process. A par-
ticularly challenging aspect of this task emerges when 3D
geometric signals are insufficient for performing segmenta-
tion, e.g. where to add a shirt to a bare 3D human model.

We propose 3D Highlighter, a method for automatically
localizing fine-grained semantic regions on a shape based

on only a text description. Our system contextualizes the
text prompt and highlights the corresponding shape region
using the network-predicted probabilities. Using only text,
users are able to semantically identify regions on a shape.
Our system takes meshes as input, making it compatible
with 3D modeling workflows and tools.

This highlighting task requires both object-level and
part-level understanding. 3D Highlighter demonstrates the
ability to reason about where to place seemingly unrelated
concepts on the 3D shape, such as a hat on a candle (Fig. 1).
Our system localizes attributes that are geometrically ab-
sent from a shape, which we refer to as hallucinated high-
lighting. Understanding a part’s global shape context is
challenging even when relying on salient geometric fea-
tures [17, 27], let alone without them.

We optimize the weights of a neural network to produce
probabilities that are used to color a given 3D shape in ac-
cordance with the specified text. We leverage a pre-trained
vision-language model (CLIP [31]) to guide the neural opti-
mization towards the text-specified region. This neural opti-
mization formulation is flexible, bypassing the need for any
3D datasets, 3D annotations, or 3D pre-training. Our sys-
tem is not bound to a specific set of classes, and, as shown
in Fig. 2, is not limited to object parts defined by salient
geometric features.

We encode the part selection as a neural field [44] over
the mesh surface. Our network learns to map each point on
the surface to a probability of belonging to the text-specified
region. We translate the inferred probabilities to a visual at-
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Figure 2. Hallucinated part highlighting. Our system is able to reason about where to highlight a geometrically-absent region on shapes.
The resulting localizations demonstrate global understanding and localized part-awareness.

tribute on the mesh surface, which can be rendered and visu-
ally understood. The network-predicted probabilities act as
a soft-selection operator which blends the highlighter color
onto the mesh. The network weights are updated by en-
couraging the CLIP [31] embedding of the 2D renders of
the highlighted mesh to adhere to the specified text. As a
result, the network implicitly learns to segment the object
to adhere to the text prompt.

We make several design choices that are key to the suc-
cess of 3D Highlighter. Our network does not directly color
the mesh. Rather, we predict a probability of being inside
the text-specified highlight, which is used to blend colors on
the mesh. The network is initialized such that points have
roughly a 50% probability of being highlighted, resulting
in a mesh with albedo halfway between the highlight and
background color. During optimization, the relative blend
weight of the highlight color directly corresponds to the
highlight probability. This blending enables the network to
naturally and smoothly increase or decrease the segmenta-

tion probability in accordance with the text specification of
the target region.

In summary, we present a method for localizing seman-
tic regions on 3D shapes. The localization is specified by
a textual description, which is intuitive, flexible, and not
limited to a specific training dataset. We demonstrate appli-
cations of our method to shape editing and stylization. Fur-
thermore, our field formulation enables the 3D Highlighter
to work with different mesh resolutions and triangulations.
A key feature of our system is the ability to interpret out-of-
domain localizations. For example, 3D Highlighter is able
to figure out where to place a ‘hat’ on a candle as seen in
Fig. 1, demonstrating the ability to reason about where to
place seemingly unrelated concepts on the 3D shape.

2. Related Work

Geometry-driven segmentation. Traditional works in ge-
ometry processing use low-level geometric features (such
as surface area, curvature, or geodesic distance) in or-
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Figure 3. Our method is able to highlight different parts on the
same object. For target selections that correspond to distinct re-
gions, 3D Highlighter produces selections that are semantically
meaningful and spatially separated without signal from underly-
ing geometry.

der to infer high-level semantic attributes for segment-
ing shapes [35]. In particular, decomposing shapes into
smaller parts or segments often corresponds with physical
3D semantic parts [13, 35]. One approach is to partition
shapes based on convexity, or an approximation of convex-
ity [1, 23]. The medial axis carries topological informa-
tion, which may also be used as a guideline for segmen-
tation [6, 8, 35, 47].

The underlying assumption in these works is that pro-
cessing the local geometry can be used to understand the
semantics for segmentation. By contrast, a key aspect of our
work is the ability to perform hallucinated highlights: seg-
mentations that can not necessarily be inferred by geometry
alone. See example highlights in Fig. 2 (e.g., localizing a
heart on a goat).

Data-driven segmentation. In the deep learning era, the
3D part segmentation task has been widely tackled by neu-
ral network models [11, 15, 20, 26, 36, 45]. Training such a
model is typically done in a fully-supervised manner on a
large dataset of shapes annotated with a given set of part
classes. For example, MeshCNN [11] was trained on a

human-body segmentation dataset [24] for learning seman-
tic part segmentation. To alleviate the need for 3D anno-
tations, unsupervised learning schemes utilize large collec-
tions of unlabelled data [5,7,14,37,49]. For example, Hong
et al. [14] inferred part-segmentation through question an-
swering on rendered images from PartNet [46].

In contrast to existing deep learning approaches for
shape segmentation, we do not rely on any 3D dataset, nor
are we bounded to a specific shape category or set of parts.
Instead, we specify the desired localization using text and a
pre-trained CLIP model which encompasses rich semantic
object understanding. Thus, our 3D Highlighter is capable
of localizing various semantic regions on a wide variety of
3D shapes.
Text-guidance. Recent works have leveraged pre-trained
vision-language embedding spaces, such as CLIP [31], for
analysis, synthesis, and editing. Some techniques leverage
pre-trained image encoders for achieving semantic segmen-
tation in images and neural radiance fields [2, 19, 21]. Such
techniques are capable of segmenting entire objects within
a scene based on text, e.g., a chair inside a room. How-
ever, they may struggle to segment parts within an object;
e.g., failing to distinguish a window (part) from a house (ob-
ject) [21].

Our work is inspired by the emergent analysis in text-
driven synthesis techniques for 3D data [10, 16, 18, 25, 30,
42]. Specifically, Text2Mesh [25] devised a framework
for text-driven stylization of 3D meshes, observing that
the resulting textures consider part-aware semantics. Yet,
since Text2Mesh directly synthesizes stylizations, there is
no obvious way to extract any underlying semantic analy-
sis. To address this, we opt to use a highlighter color only
as a means for visualizing the network-predicted segmenta-
tions.

3. Method
An illustration of our method is shown in Fig. 5. The

inputs to our system are a mesh M , represented by vertices
V 2 Rn⇥3 and faces F 2 {1, ..., n}m⇥3, and a text de-
scription T . Our neural network, referred to as neural high-
lighter, is optimized to map vertex positions v 2 V to a

Flower Poncho Laces
Figure 4. Localized editing. We incorporate textures and dis-
placements to a region highlighted with 3D Highlighter. Used
styles: Brick (left), Colorful Crochet (middle), Cactus (right).
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Figure 5. Overview of 3D Highlighter. The Neural Highlighter maps each point on the input mesh to a probability. The mesh is colored
using a probability-weighted blend and then rendered from multiple views. The neural highlighter weights are guided by the similarity
between the CLIP embeddings of the 2D augmented images and the input text.

probability p of belonging to the text-specified region. Each
vertex on the mesh is colored according to a probability-
weighted blend between the highlighter color and a gray
background color. The resulting highlighted mesh M

0 is
rendered from multiple views, and we apply 2D augmenta-
tions to obtain a set of images. We supervise the network
optimization by comparing the CLIP-embedded images to
the CLIP embedding of the desired text.

3.1. Neural Highlighter

Our neural highlighter is a neural field [44] mapping co-
ordinates x 2 R3 to p 2 [0, 1], where p is the probability
that x belongs to the text-specified region. The neural high-
lighter is represented as a multi-layer perceptron (MLP) F✓
that takes an input vertex v in the form of a 3D coordi-
nate xv = (x, y, z) and predicts a highlight probability pv ,
F✓(xv) = pv . This formulation allows us to query the neu-
ral field to obtain meaningful highlight probabilities for any
3D point on (or near) the mesh surface. Thus, once op-
timized, the network weights conveniently transfer the lo-
calization to different meshings of the same object without
requiring further optimization (Fig. 9).

Representing our neural highlighter as an MLP produces
contiguous localizations and reduces artifacts. MLPs have
been shown to exhibit a spectral bias towards smooth so-
lutions [32], especially on low-dimensional inputs such as
3D coordinates [38]. The bias towards low-frequency out-
puts encourages our 3D Highlighter to predict contiguous
localizations with sharp boundaries and discourages noisy
highlights (Fig. 7). For this reason, our approach does not
utilize positional encoding. See supplemental material for

0� 90� �90�

Figure 6. Viewpoint robustness. Our system produces consistent
results even when using different primary viewpoints. Results for
three different primary viewpoints for the target text ‘necklace’.

additional details.

3.2. Mesh Color Blending
We leverage the per-point highlight probability to color

the mesh in a continuous, differentiable manner, generating
semantically meaningful renders for CLIP supervision. We
use a probability-weighted blend, where each vertex color
Cv is a linear combination of the highlight color H and gray
color G weighted by the network-predicted highlight prob-
ability Cv = pv ·H + (1� pv) ·G.

At the start of the optimization process, all vertex prob-
abilities are initialized near 0.5 and thus the entire mesh
is half-highlighted. As the optimization progresses, ver-
tices smoothly transition towards gray or highlighter color
(based on the network predictions) such that vertices pre-
dicted to be highlighted adhere to the text-specified region.
This formulation translates each step of the optimization to
a colored mesh that is semantically meaningful to CLIP. Our
method provides continuous gradients, in contrast to color-
ing vertices according to the argmax of the highlight proba-
bility. Our blending scheme results in a smoother optimiza-
tion landscape and reduces highlight artifacts (Fig. 7).

This formulation is also important for downstream ap-
plications that wish to use the localizations, e.g. editing and
stylization. Predicting per-point highlight probabilities pro-
vides an explicit representation of the highlight region on
the mesh surface. An alternative approach, optimizing the
surface color directly, would only provide a visual result
without explicit information about which vertices belong to
the localization.

3.3. Unsupervised Guidance
We guide our neural optimization using the joint vision-

language embedding space of CLIP [31]. We formulate the
desired highlight by describing the association between the
input mesh [object] and target localization [region]. Specifi-
cally, we design our target text T to be: “a gray [object] with
highlighted [region].” We render the highlighted geometry
from multiple views using differentiable rendering [4]. At
each optimization step, we randomly sample n views from a
Gaussian distribution centered around a primary view. This
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ensures that the underlying object is recognizable in the ma-
jority of views shown to CLIP.

In a preliminary viewpoint prediction stage, we render
360� views of the mesh and measure the CLIP similarity
to the target text prompt. We select the primary view to be
the render with the highest CLIP similarity. We found that
there exist many possible viewpoints which produce desir-
able highlighter results (see Fig. 6). More details about how
the primary view is selected can be found in the supplemen-
tal material.

For each view  , we render a 2D image I and apply a
random perspective 2D augmentation �, as done in previous
works [9, 25]. We then encode each of the augmented im-
ages into the CLIP embedding space (in R768) using CLIP’s
image encoder, denoted as EI . Our final aggregate im-
age representation eI is the average CLIP encoding over all
views:

eI =
1

n

X

 

EI(�(I )) 2 R768
. (1)

Similarly, we encode the target selection text T with CLIP’s
text encoder ET to get the encoded target representation
eT = ET (T ) 2 R768. Our loss L for optimizing the neu-
ral highlighter parameters ✓ is formulated as the negative
cosine similarity between the aggregate image embedding
and the text embedding:

argmin
✓

L(✓) = � eI · eT
|eI | · |eT |

. (2)

When the loss is minimized, the CLIP embedding of the
rendered highlighted mesh becomes similar to the target text
embedding. Thus, the localized region will reflect the target
text region.

4. Experiments
In this section we examine various capabilities of 3D

Highlighter. First, we demonstrate the fidelity of our high-
lighter localization in Sec. 4.1, including qualitative and
quantitative evaluations. As far as we can ascertain, our
method is the first technique to perform text-driven localiza-
tion on 3D shapes without pre-training on 3D data. Thus,
we adapt an existing language-guided segmentation tech-
nique for 2D images to serve as a baseline [21]. More-
over, we demonstrate the robustness of 3D Highlighter in
Sec. 4.2. Then we explore several applications of our
method in Sec. 4.3, such as selective editing, localized ma-
nipulation, and segmentation. Finally, in Sec. 4.4 we evalu-
ate the influence of key components of 3D Highlighter and
discuss its limitations in Sec. 4.5.

We apply our method to a large variety of meshes
from different sources: COSEG [41], Turbo Squid [40],
Thingi10K [48], Toys4k [34], ModelNet [43], and

ShapeNet [3]. 3D Highlighter does not impose any restric-
tions on the mesh quality; many of the meshes used con-
tain artifacts, such as elements that are non-manifold, un-
oriented, and contain boundaries or self-intersections. Our
PyTorch [29] implementation optimization takes around 5
minutes to run on an Nvidia A40 GPU. In our experiments,
we used CLIP ViT-L/14 at 224⇥ 224 resolution.

4.1. Generality and Fidelity of 3D Highlighter
Highlight generality. 3D Highlighter is not restricted to
any particular category for either the input mesh or the text-
specified localization, since it does not rely on a 3D dataset
or 3D pre-training. In Fig. 2, we see our method achieves
accurate localization for a diverse collection of meshes from
various domains such as humanoids, animals, and manu-
factured objects. 3D Highlighter is capable of localizing
a wide variety of diverse attributes even when the context
of these target attributes is entirely unrelated to the input
mesh. Moreover, 3D Highlighter demonstrates that it can
perform hallucinated highlighting, where it selects regions
on meshes with no underlying geometric signal (such as a
bow tie on a camel or a hat on a pig).
Highlight specificity. In Fig. 3, we observe that semantic
differences are reflected in the network-predicted highlight.
3D Highlighter is able to successfully localize different text-
specified regions on the same mesh. Our framework demon-
strates the nuanced understanding required to disambiguate
different target regions, such as headphones and hat on the
rabbit. Finally, the ability to identify many different regions
on a single mesh allows users intuitive, comprehensive, and
fine-grained control over part localization.
Quantitative evaluation. 3D Highlighter is the first system
to select semantic regions on 3D shapes using text guidance,
without any 3D datasets. Since there are no quantitative
benchmarks to evaluate the quality of our highlights, we do
so with a perceptual user study.

Moreover, since there are no existing approaches for
text-based segmentation in 3D, we create two baselines by

full direct no blend no augs
0.332 0.319 0.297 0.287

Figure 7. Ablation experiments. We present ablation results for
target text ‘shoes’ using our system (full), direct optimization (di-
rect), without probability-weighted blending (no blend), and with-
out 2D augmentations (no augs). Resulting CLIP scores shown
below each image.
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Method Control LSeg Text2LIVE Ours

Average Score " 1.00 1.26 2.23 4.38

Table 1. Perceptual study. We extend two image-based ap-
proaches LSeg [21] (segmentation) and Text2LIVE [2] (localized
editing) to the highlighting task and report mean user rating.

extending two different 2D image-based approaches. The
first baseline extends LSeg [21] which directly predicts
a segmentation in 2D, while the second baseline extends
Text2LIVE [2] which infers an edit mask for 2D image ma-
nipulation. To evaluate these baselines, we render a bare
mesh from a view where the target localization region is
clearly visible. We extract the 2D segmentation produced
by the image baselines and use it to color the rendered im-
age. Then we ask users to rate the highlight quality of both
baselines and our 3D Highlighter result rendered from the
same view in our perceptual study.

Our perceptual study reports quantitative results on the
quality of highlights from both 3D Highlighter and base-
lines. Users were asked to rate each result from 1-5 on how
effectively the highlight represents “an [object] with a re-
gion corresponding to a [region] highlighted.” Visual exam-
ples from our study are shown in the supplemental material
(Fig. 21). In total, 33 users evaluated each method on 5
mesh and region combinations.

Our 3D Highlighter achieved the highest ratings com-
pared to the baselines (Tab. 1). LSeg is built for text-
driven semantic segmentation and excels at segmenting
entire objects within a scene. However, LSeg struggles
to identify parts within a single object, leading to sub-
par performance on our highlighting task. Text2LIVE was
not explicitly built for segmentation, however it does rely
on inferring a continuously-valued edit mask (i.e. a soft-
segmentation) when performing localized image editing.
The edit mask is designed to produce high-quality image
manipulations; however, it is not directly suitable for iden-
tifying the sharp segmentation boundaries required for our
highlighting task. Qualitative comparisons and an addi-
tional quantitative comparison using a modified CLIP R-
Precision metric are discussed in the supplemental material.

4.2. Robustness of 3D Highlighter

Localization transfer. An important benefit of formulating
3D Highlighter as a neural field optimization is the abil-
ity to trivially transfer localization results between different
meshings. This ability is useful for many tasks in geome-
try processing which require an object to be re-triangulated,
simplified, subdivided, or otherwise remeshed. Localiza-
tion transfer is possible since our neural highlighter is rep-
resented as a field over the shape and is independent of any

Base Head Legs Ours Text2Mesh
Figure 8. Controlled stylization. Given three different styliza-
tions of the same object, we use 3D Highlighter to select different
regions and combine them together (Ours). Attempting to achieve
this composition with a holistic approach leads to an undesirable
result (Text2Mesh [25]).

specific meshing. Although the neural highlighter is trained
on mesh vertices, the resulting network encodes a smooth
field and produces meaningful outputs for any 3D point on
(or near) the mesh surface.

In Fig. 9, we show an optimization of the 3D Highlighter
on a single mesh triangulation (original) for the prompt
‘shoes’. We then apply the already-optimized neural high-
lighter to remeshed (middle) and subdivided (right) versions
of the original mesh, showing the transferability of the se-
lected region to different triangulations. This result demon-
strates how 3D Highlighter is independent of the input mesh
and that, once we have a localization for one mesh, we can
trivially transfer it to any other meshing of the same object.
Viewpoint robustness. Our method is robust to the primary
view choice. This property is important for our localization
task, as we may not know a priori which view is ideal. In
Fig. 6, we perform our optimization using three different
primary viewpoints: 0�, 90�, and �90� (viewpoints shown
in blue). We then present predicted localizations, showing
that for all three views, 3D Highlighter is able to accurately
identify the target localization region, regardless of whether
that region is visible from the primary view.

From the �90� primary view, the target region (the neck)
is not visible. However, is is still visible with a low prob-
ability for views sampled from the Gaussian distribution

Original Remeshed Subdivided
Figure 9. Localization transfer. We optimize our neural high-
lighter on one mesh (original) for the prompt ‘shoes’. Once op-
timized, the network weights transfer the localization to different
meshings of the same object (remeshed and subdivided).
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around the primary view. This means that over the course
of optimization, regions other than the neck are mostly seen
while the target region is rarely visible. Nonetheless, our
method manages to highlight the desired region, which im-
plies its robustness to how frequently the target region for
localization is seen. Furthermore, it shows that oversam-
pling views where the target region is not visible does not
negatively influence the optimization.

4.3. Applications of 3D Highlighter
Selective editing. In Fig. 4, we show that it is possible to
use 3D Highlighter to selectively edit a 3D object within
a semantic region. This is applicable to techniques which
incorporate global texture or material properties over the
entire shape, such as in Text2Mesh [25] or MatCap [39].
Starting with different bare input meshes, we edit the entire
shape using a global stylization technique [25]. Then, we
use 3D Highlighter to select a text-specified region and in-
corporate the modifications only in the selected area. Thus
3D Highlighter provides direct control over where to stylize
shapes, enabling users to obtain localized stylizations based
on semantic cues.
Controlled stylization via composition. Achieving
compositionality with language models is a challenging
task [33]. For example, starting with a human mesh and
using Text2Mesh [25] to stylize ‘Iron Man with the head
of Steve Jobs and Yeti legs’, leads to muddled and unde-
sirable results (Fig. 8, rightmost). Our method enables
compositionality between different shape modifications by
chaining simple concepts together (Fig. 8). Specifically,
we decompose the desired modification into three separate
attainable targets (‘Iron Man’, ‘Steve Jobs’, and ‘Yeti’),
which we stylize individually with Text2Mesh. We then
utilize our 3D Highlighter to localize the text-specified re-
gions. We achieve the desired composition by combining
the highlighted regions together, obtaining clear boundaries
between stylizations.
Semantic segmentation. In Fig. 10, we show that our tech-
nique is not restricted to hallucinated highlighting and is
capable of localizing semantically-specified geometric re-
gions. These text-driven localizations identify unique geo-
metric parts without utilizing any 3D datasets or part labels.

4.4. Components of 3D Highlighter
Ablation study. Several components are key for facilitat-
ing 3D Highlighter. We provide ablation results in Fig. 7
to demonstrate the effect of our design choices. First, us-
ing a direct optimization of the vertex color (direct) instead
of optimizing a neural field results in splotchy highlight ar-
tifacts. Since the neural field has a spectral bias towards
smooth solutions [32], omitting it leads to an undesired
noisy output. Second, removing the probability weighted
blending (no blend) and instead coloring vertices using only

Arm Slide Propeller
Figure 10. Semantic Segmentation. 3D Highlighter produces
semantic segmentations for unique geometric parts without any 3D
dataset or annotations.

two distinct values also produces a noisy highlight pattern.
Without a continuous color blend, the gradients become ill-
conditioned and unstable, leading to highlight artifacts and
irregular localization boundaries. Lastly, similar to previous
works [9, 25], we observe that without 2D perspective aug-
mentations (no augs), 3D Highlighter outputs degenerate
solutions. The ablation study emphasizes the importance
of our key design choices in 3D Highlighter for its ability to
highlight a coherent and localized region on the input shape.
Prompt formulation and CLIP understanding. Our
prompt formulation combined with our coloring scheme re-
sults in the correct association between objects and their
properties, a known challenge when using CLIP [33]. In
Fig. 12, we analyze the CLIP score for two different
prompts: ‘gray chair with highlighted back’ (left) and ‘blue
chair with red back’ (right). For each prompt, we measure
the CLIP similarity to renders of both the correct assign-
ment and flipped assignment.

We observe that our prompt formulation (‘gray chair
with highlighted back’) results in a higher average CLIP
score for the correct assignment. In contrast, when speci-
fying colors in the prompt (‘blue chair with red back’) and
styling the mesh accordingly, we see higher CLIP scores
for the flipped association. Using the same gray and yellow
renders (left), we also compare to a prompt specifying col-
ors (‘gray chair with yellow back’) and find that the higher

0 0.5 1
Figure 11. Network initialization. We optimize 3D Highlighter
for the text prompt ‘belt’ using different initialization methods:
using a default initialization where all output probabilities are near
0.5 (middle) or altering the final layer so that all outputs are 0 (left)
or 1 (right). Initializing with 0 or 1 leads to an undesirable result.

20936



Correct Flipped Correct Flipped
0.313 0.311 0.315 0.318

‘highlighted back’ ‘red back’

Figure 12. CLIP understanding. We examine CLIP similarity
scores for several prompt formulations targeting the ‘back’ of the
chair while using the correct color assignment and where the col-
oring is flipped. For the prompt ‘gray chair with highlighted back’
(left) we observe that the CLIP score is higher for the correct as-
signment. For the the prompt ‘blue chair with red back’ (right) the
CLIP score is higher for the flipped (incorrect) assignment.

CLIP score corresponds to the flipped selection (data not
shown).

We also measure the CLIP scores for our standard
prompt formulation: ‘gray chair with highlighted back’, re-
placing the yellow color in the rendering with other colors,
such as red and blue, and find that the correct selection has
a higher CLIP score (data not shown). To conclude, our
prompt formulation (i.e., the use of the term ‘highlighted’)
coincides with CLIP’s understanding and 3D Highlighter is
robust to the highlight color.
Network initialization. Initializing the network such that
the object is partially highlighted (i.e., with highlight prob-
ability equal to 0.5) is important for obtaining desirable re-
sults. In Fig. 11, we show the optimization of our method
for the target text prompt ‘belt’ using three different initial-
izations. Our method (middle) initializes all output proba-
bilities near 0.5 by random weight initialization of the net-
work. We compare to initializing the output probabilities to
0 (left) or 1 (right), in which we set the weights of the last
layer to 0, and the bias to 0 or 1, respectively.

For the initialization to both 0.5 and 1, a highlight color
is uniformly present on the styled mesh, whereas with 0, the
mesh is gray with no highlight. Consequently, we hypoth-
esize that the presence of highlight color at initialization is
important for CLIP’s supervision.

4.5. Limitations
3D Highlighter is robust to variations of the object spec-

ification in the target prompt. However, there should still be
a logical connection between the 3D shape and its descrip-
tion. Fig. 13 shows results for a camel mesh and the tar-
get highlight ‘shinguards’. For each optimization, we use a
slightly different target prompt by varying the object spec-
ification. The prompts are of the form “[object] with high-
lighted shinguards”, where [object] is replaced with camel,
pig, animal, or chair.

In Fig. 13, we observe that with object specifications

that resemble the geometry of camel, such as pig and
animal, 3D Highlighter accurately localizes the desired
region. However, for a description that is incompatible
with the object’s geometry (i.e., referring to a camel
as a chair), our method does not produce meaningful
results. This result sheds light on 3D Highlighter’s
robustness to text descriptions: 3D Highlighter is able
to reason about a mesh even when its description is not
perfectly accurate, provided that it is sufficiently similar to
the true description (i.e., referring to a camel mesh as a pig).

5. Conclusions
We present a technique for highlighting semantic regions

on meshes using text as input, without any 3D datasets or
3D pre-training. 3D Highlighter can reason about where to
place a non-obviously related part on a 3D object (i.e. a hat
on a candle). The ability to combine unconnected parts and
objects together is reminiscent of ideas from image analo-
gies [12, 22]. In this work, we show that we can identify
part-concepts that are geometrically absent from a shape,
giving rise to our hallucinated highlighting capability.

During neural optimization, our neural network infers a
probability which we use to blend the highlight color onto
the mesh. The network-predicted probabilities are general,
and provide a soft-segmentation which we show can be used
for a variety of different applications (Figs. 4 and 8). In
the future, we are interested in extending our framework to
obtain part correspondence between shapes that differ topo-
logically but are semantically related.
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Camel Pig Animal Chair

Figure 13. Prompt generality. Our system is robust to certain
variations in object specifications. We achieve desirable results
for the text input ‘camel with highlighted shinguards’ (left), as
well as for other variations (‘pig’ and ‘animal’). If the object spec-
ification, such as ‘chair’, is incompatible with the input geometry,
3D Highlighter no longer produces meaningful results.
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