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Figure 1. Successfully deploying agents trained in simulation to the real world has generally proved fraught - we present PHONE2PROC, a

simple approach that uses a cellphone to scan an environment and procedurally generate targeted training scene variations of that location,

whose usage results in successful and robust agents in the real environment.

Abstract

Training embodied agents in simulation has become

mainstream for the embodied AI community. However,

these agents often struggle when deployed in the physical

world due to their inability to generalize to real-world envi-

ronments. In this paper, we present Phone2Proc, a method

that uses a 10-minute phone scan and conditional proce-

dural generation to create a distribution of training scenes

that are semantically similar to the target environment. The

generated scenes are conditioned on the wall layout and

arrangement of large objects from the scan, while also

sampling lighting, clutter, surface textures, and instances

of smaller objects with randomized placement and materi-

als. Leveraging just a simple RGB camera, training with

Phone2Proc shows massive improvements from 34.7% to

70.7% success rate in sim-to-real ObjectNav performance

∗ Equal contribution.

across a test suite of over 200 trials in diverse real-world

environments, including homes, offices, and RoboTHOR.

Furthermore, Phone2Proc’s diverse distribution of gener-

ated scenes makes agents remarkably robust to changes in

the real world, such as human movement, object rearrange-

ment, lighting changes, or clutter.

1. Introduction

The embodied AI research community has increasingly

relied on visual simulators [30, 49, 61] to train embodied

agents, with the expectation that the resulting policies can

be transferred onto robots in the physical world. While

agents trained within simulated environments have shown

increased capabilities, progress in successfully deploying

these policies onto physical robots has been limited.

Robots trained in simulation must overcome daunting

challenges if they are to work effectively in a real space such

as our home. First, they must overcome the generalization
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9665



gap between the limited set of simulated environments they

are trained on and the test scene of interest. In practice, poli-

cies trained to perform complex visual tasks with reinforce-

ment learning struggle to perform well in novel scenes with

novel layouts and object instances. Second, they must work

in realistic environments where we live and work, which

are often full of clutter, with objects that keep being moved

around, with people in and out of the scene and with light-

ing changes. In short, we expect our agents to learn from a

small set of training data points and generalize not just to a

single test data point, but to a distribution of test data that

is often semantically distant from the training data. Today’s

methods are a ways away from delivering such performant,

robust, and resilient robots [9, 12].

In this work, we present PHONE2PROC, which repre-

sents a significant advancement towards the goal of creating

performant, robust, and resilient robots. Instead of train-

ing policies in simulated environments that may be seman-

tically distant from the target physical scene, PHONE2PROC

efficiently generates a distribution of training environments

that are semantically similar to the target environment. This

significantly reduces the generalization gap between the

training and target distributions, resulting in more capable

robots.

PHONE2PROC utilizes a freely available mobile appli-

cation to quickly scan a target environment and create a

template of the surroundings, including the scene layout

and 3D placements of large furniture. This template is

then used to conditionally generate a fully interactive sim-

ulated world using ProcTHOR [13], closely mirroring the

real-world space. Importantly, this single simulated envi-

ronment is then transformed into a distribution of simulated

worlds by randomizing objects, their placements, materi-

als, textures, scene lighting, and clutter. This allows for the

creation of arbitrary large training datasets that are seman-

tically similar to the desired real-world scene.

We produce policies for object goal navigation using

PHONE2PROC and deploy them onto a LoCoBot robot in

the physical world. We conduct extensive evaluations with

234 episodes in five diverse physical environments: a 3-

room and 6-room apartment, a test scene from RoboTHOR-

real, a conference room, and a cafeteria. This represents

one of the largest and most diverse studies of sim-to-real

indoor navigation agents to date. Across all environments,

PHONE2PROC significantly outperforms the state-of-the-art

embodied AI model built with ProcTHOR, with an average

improvement in success rate from 34.7% to 70.7%. Our

robot is able to explore the scene efficiently and effectively

navigate to objects of interest, even in the presence of clut-

ter, lighting changes, shifts in furniture, and human move-

ment. These strong navigation results are achieved using

an RGB-only camera, no depth sensors, no localization

sensors, and no explicit mapping components.

In summary, we present: (1) PHONE2PROC, a simple

and highly effective method for reducing the generalization

gap between datasets of simulated environments and a tar-

get environment in the real world, (2) large-scale real-world

robotics experiments with 234 trials showing significant im-

provements for PHONE2PROC compared to state-of-the-art

models, and (3) experiments demonstrating the robustness

of PHONE2PROC in the face of variations such as changes

in lighting, clutter, and human presence.

2. Related Works

Navigation in Simulated Environments. Visual naviga-

tion [1, 4] is a popular task in the embodied AI commu-

nity with benchmarks in several simulators [30, 44, 49, 61].

An effective approach is to use semantic mapping to ex-

plore environments efficiently [6±8, 20]. Kumar et al. [32]

adapts mapping methods to condition the policy on the tar-

get. These works utilize agent pose and depth sensors to

build their maps and localize the agent. In contrast, our

method only relies on RGB information without any ad-

ditional sensor. Other methods for navigation use scene

priors [64], meta-learning [60], paired grid world environ-

ments [25], scene memory transformers [18], passive videos

of roaming in a scene as a training cue [23] and expert hu-

man trajectories for imitation learning [45].

The community has also made progress in training em-

bodied agents for navigation exclusively using RGB obser-

vations and barebones neural architectures. These include

using frozen ImageNet trained visual encoders [65], learn-

ing visual encoders from scratch [12], and using CLIP [33]

based encoders [29]. Gadre et al. [19] and [35] use an off-

the-shelf exploration method and clip-based object local-

ization to accomplish 0-shot object navigation. Deitke et

al. [13] show the benefits of procedural generation for nav-

igation and manipulation.

While the above works show promising results in simu-

lation, most are not deployed and tested on real robots. We

provide comparisons to the current state-of-the-art method,

ProcTHOR [13], via large-scale real-world evaluations.

Sim-to-Real Transfer. While most models are evalu-

ated only in simulation, for practical applications, policies

learned in simulation must function in real life. Often, poli-

cies trained only in simulation can prove brittle or nonfunc-

tional in transfer [26]. Chatopadhyay et al. [9] find that

standard embodied agents significantly underperform (or

fail) in the presence of realistic noise in the system. Truong

et al. [55] compare the correlation of the performance of

4-legged robots navigating in simulation against the real

world. They find that adding fidelity to the simulation does

not help with the performance in the real world.

An alternate approach to higher fidelity is to add ran-

domization to sensing or dynamics in simulation. This does

help [46,53], but too much randomization can degrade train-
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6-Room Apartment 3-Room Apartment Cafeteria RoboTHOR-Real Conference Room

Figure 2. Examples of environment templates for our five target test environments. These are produced by an iPhone scanning each

environment using our iOS app that leverages Apple’s RoomPlan API. These environment templates contain the room layouts and some

3D locations for large furniture objects. They do not contain small objects, textures, lighting, etc.

ing efficacy [36], and hand-tuning appropriate randomiza-

tion requires expert knowledge and does not scale. Some

address this pitfall by leveraging real-world rollouts or in-

puts at train time to tune simulation randomization [10,14].

However, these works are randomizing a subset of a well-

parameterized dynamical system for a narrow task (swing-

peg-in-hole or cabinet opening), as opposed to a more open-

ended task or randomizing the entire visual appearance and

object instances of the environment.

Recent works have deployed and measured policies on

real robots [5, 15, 28, 47, 54] for the task of point goal nav-

igation. In contrast to most, we use no mapping, explicit

localization, or depth, as well as targeting a more complex

task. We also test more extensively and in a wider variety of

environments. Anderson et al. [2] study the sim-to-real gap

for vision and language navigation and discover a crucial

need for an oracle occupancy map and navigation graph.

Our method does not require a manually annotated map and

is robust to moving obstacles without the necessity for an

additional dataset.

Real-to-Sim Transfer. Transferring observations from the

real world to simulation can open up further capacities for

training agents. This has been studied in the domain of ob-

ject manipulation [34, 57]. [17] replicate an observed ma-

nipulation trajectory by predicting contact points and the

forces. [27,40] generate a 3D mesh of an object with articu-

lation from observed interactions. [3, 52] infer simulation

parameters for deformable object manipulation. [56, 63]

learn cloth material recovery from videos. Our focus is

on conditioning our procedural generation on the real scene

rather than perfectly replicating the observation. [42] use a

self-supervised technique to utilize unlabeled images for ac-

quiring data for training scene graph models. We focus on

generating 3D interactable environments for training em-

bodied agents.

Navigation in Robotics. The robotics community has made

progress in navigating robots with different embodiments in

a diverse set of environments. Gupta et al. [22] combine a

differentiable planner module with mapping to train a visual

navigation agent end-to-end. In contrast to our work, their

method assumes perfect odometry. Different methods have

been used to build agents that follow demonstrated paths

and trajectories or navigate [24, 31, 37, 38, 48, 62]. Shah et

al. [50, 51] build models for open world navigation. The

main focus of these works is on the low-level control sys-

tems of the robots, whereas our focus is on building end-to-

end models for embodied visual reasoning.

3. Approach

We now present PHONE2PROC which generates a distri-

bution of training environments that closely match the real

world physical space we are interested in. We begin with

a phone scan of a target scene (Sec 3.1), then condition on

this scan to procedurally generate variations of the scene

for training agents (Sec 3.2), and finally transfer onto a Lo-

Cobot robot that navigates in the physical world (Sec 3.3).

3.1. Scanning

PHONE2PROC is designed to optimize a robot’s perfor-

mance within a desired real world environment. The first

step in this process is to scan the target environment. This

is accomplished using an iOS app that we built and will

release using Apple’s freely available RoomPlan API [11].

Scanning a large apartment with several rooms only takes

a few minutes, can be done using an iPhone or iPad and it

outputs the environment template as a USDZ file.

The RoomPlan API provides us with a high-level bound-

ing box template of the environment, which contains the

room layouts and 3D placement of large objects that are vis-

ible to the camera. While scanning an environment, the app

provides detailed real-time feedback about the construction

of the scene to help the user capture a more accurate scan.

The resulting environment template includes the 3D lo-

cations and poses of walls, large objects, windows, and

doors. Each object in the scan is assigned to one of 16 object

types, including storage, sofa, table, chair, bed, refrigerator,

oven, stove, dishwasher, washer or dryer, fireplace, sink,

bathtub, toilet, stairs, and TV. Smaller objects, such as those

typically on surfaces, are ignored. The metadata produced

for each object includes the size, position, and rotation of

its 3D bounding box, along with the forward-facing orien-

tation. Doors and windows are provided as cutouts in the

walls. Figure 2 presents examples of scanned environments
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Figure 3. Examples of Procedurally Generated Houses. The

procedural generation of the houses is conditioned on the target

environment scanned using a phone. We are able to sample a rich

and diverse set of scenes from this distribution with varying light-

ing, textures, objects and placements.

showcasing the diversity of the layouts in our test set.

3.2. Environment-Conditioned Procedural
Generation

Procedural generation of simulation environments al-

lows for a vast diversity of scenes for agents to train on.

Deitke et al. [13] begin with a high-level room specification

(e.g. 2 bedroom house with a kitchen and living area) and

create an environment that matches it. In contrast, our ap-

proach uses a scan of the target real-world environment to

condition the generation and create variations of that scene.

This process involves (a) parsing the environment template,

(b) generating the scene layout, (c) sampling objects from

the asset library to match scanned semantic categories, (d)

accounting for object collisions in Unity, (e) populating the

scene with small objects not captured by the scan, and (f)

assigning materials and lighting elements.

PHONE2PROC parses the USDZ environment template

produced by the iOS app and extracts wall, door and win-

dow positions and 3D large object bounding boxes. It then

leverages ProcTHOR to generate a fully rendered scene in

Unity and finally populates this scene using ProcTHOR’s

asset database of 1,633 assets across 108 object types. The

generation process is very fast and can generate 1000 pro-

cedural scene variants in around an hour with an 8 Quadro

RTX 8000 GPU machine. We now provide further details

on each of these steps.

Layout. The environment specification file contains the

placement of walls in each room. Unlike walls generated

in ProcTHOR-10K [12], which are only aligned to orthog-

onal axes, PHONE2PROC allows for a more diverse wall

generation that can accommodate any scanned layout. Each

wall’s specification comes from its 3D bounding box, width,

height and a constant depth (e.g. 16cm for all walls) ± which

are used to produce a wall asset within the simulated envi-

ronment. Placing walls produces the external boundary of

the environment as well as its internal layout.

Rooms. We partition the space located within the external

boundary walls into distinct rooms. A room is formed if the

walls formed from the top-down 2D plane fully enclose a

polygon. This is followed by floor and ceiling generation.

Windows and doors. The environment template specifies

if each wall has cutouts for windows and doors. Our USDZ

parser extracts the size and position of the holes along the

wall. If the hole includes a cutout at the bottom of the floor,

we place a door there; otherwise, we place a window. Here,

we uniformly sample a door or window asset from the asset

database and scale it appropriately.

For doors between connecting rooms, the sampled door

may either include just a frame or both a frame with an

openable door and a degree of openness sampled uniformly

between 0.8 and 1.0. The room that the door opens into is

randomly sampled. If the door is connected to the outside of

the environment, we sample a door frame with an openable

door component and fully close the door (to prevent agents

from getting out of the scene).

Semantic objects. For each object in the template, we wish

to sample an appropriate asset matching its semantic cate-

gory. For each semantically similar ProcTHOR object can-

didate, we compute its 3D bounding box IoU with the ob-

ject it may represent in the environment template and reject

candidates with an IoU less than 75%. We then uniformly

sample from the rest. The sampled asset’s position on the

floor and its forward-facing direction come from the envi-

ronment template’s corresponding object. We compute the

vertical position of the object based on if it is on a surface

(e.g. a couch on the floor or a television on top of a table) or

attached to a wall (e.g. a wall television).

This procedure to find a matching asset can sometimes

lead to large variations. For example, a table object may

match a ProcTHOR coffee table, side table, or dining ta-

ble and a TV may match a flat-screen TV or a vintage box

television. Randomly sampling different asset instances in

the library of a particular semantic object type makes agents

more robust as they must learn to generalize to many visu-

ally distinct instances for each type.

Object collisions. We check to make sure that none of the

placed objects collide with one another or the walls in the

scene to avoid unrealistic configurations.

Small objects. After placing the large objects that match

the scan, we generate smaller objects to be placed on top of

them. Here, for instance, we might populate a bed with pil-

lows or place fruits and plates on the counter. Unlike what

happens in a 3D reconstruction, where all the objects are

static, we are able to randomize the placement of small and

target objects to produce many scene variations and prevent

overfitting (See experiments in Sec 4).
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Figure 4. Our architecture is a simple GRU operating on the CLIP

encoding of solely RGB input.

Lighting. Scene lighting is randomized such that each room

is guaranteed one light, and then additional lights are uni-

formly sampled throughout the scene scaled to the number

of rooms. Each light is then randomized in its intensity,

RGB values, shadow bias, and strength.

Materials. We randomize materials following ProcTHOR’s

material randomization by sampling from sets of structure

materials (i.e. wall, floor, and ceiling) and object materials.

Clutter. After all the semantic objects from the scan have

been sampled and smaller objects have been sampled to be

placed on top of them, we also sample additional clutter

objects (such as boxes, dumbbells, pillows, and plants) that

are placed on the floor of each room ± similar to how a

real house may have objects like kids toys thrown around.

These objects prevent overfitting to particular paths in the

environment and helps teach agents to avoid obstacles.

3.3. Transfer to Real World

We first detail our model architecture and training regime

then discuss our robot and physical scenes.

Model and Training Details. Our goals are to: a) design

models that do not depend on unrealistic sensory data in

real indoor environments like agent or target localization, b)

use only RGB observations since real world depth cameras

offer few choices, generally come with small FOV and are

fairly noisy, and c) create agents that are robust to clutter

and changes in the environment.

PHONE2PROC provides a distribution of simulated

worlds that are sampled to produce a large training set.

These scenes differ in the placement of small objects, ma-

terials, lighting, clutter, etc. This allows us to train policies

that do not overfit to a single scene configuration, but in-

stead generalize to realistic scene variations.

In terms of the model design, we adopt a simple archi-

tecture introduced in [29] and also used in [13]. The model

uses a CLIP encoder to embed the visual observation (ego-

centric RGB frame) followed by a GRU to capture tem-

poral information (Fig 4). We pre-train our model on the

ProcTHOR-10k dataset using the same training regime pre-

sented in [13] and then finetune on the Phone2Proc envi-

ronments for the task of object navigation on 16 object cat-

egories. We use AllenAct [59] to train our models. More

details on the training pipeline are provided in the appendix.

In principle, it is fairly straightforward to adopt a more

complex model architecture, but we found this simple de-

sign to be highly performant not just in simulation but also

in our real world experiments. Similarly, it is also easy to

train agents for other tasks, including one involving object

manipulation using an arm, since PHONE2PROC produces

scenes that are fully interactive with support for all agents

in AI2-THOR [30] including the arm-based agent [16].

During fine-tuning, we lower the learning rate to 0.00003
to avoid catastrophic forgetting of the skills learned in pre-

training. We add a failed action penalty (0.05) in the reward

shaping to encourage the agent to avoid hitting the obstacles

in the environment. This is especially important as we de-

ploy these models in the real world and would like to avoid

damage to the environment or the robot. Instead of hand-

tuning the camera parameters to match perfectly with the

real world, the FOV of the camera in simulation is randomly

sampled from a distribution approximating the real world.

Real-World Experiments. Models trained on

procedurally-generated variants of the scene scans are then

directly evaluated in real environments. We use 5 envi-

ronments: a 3-room apartment, a large 6-room apartment,

a real world test scene from RoboTHOR [12], a large re-

configurable office conference room, and a cafeteria. Mod-

els are evaluated against 5 different target objects from 3

different starting locations in the environment. No training

or calibration is performed in the real world.

No particular effort was made to arrange for ease of

robotic experimentation. The goal was to use real environ-

ments in their most natural setting. The lighting, object in-

stances, textures, and window views are not recognized by

the PHONE2PROC scan and are thus unseen by the agent at

training time. As there are many objects in the real-world

scenes that are not present in ProcTHOR’s asset library (e.g.

whiteboards, bicycle), there are several object categories in

each environment that are novel to the agent. No additional

information is used in the preparation/scanning step besides

the output of the RoomPlan API.

Experiments are run on LoCoBot [21], a low-cost, plat-

form about 60cm tall using the PyRobot API [39]. The

agent’s discrete action space is look up/down, turn right/left

(each 30o), move ahead 25cm, and a ªdoneº action to in-

dicate reaching the target. Actions are sampled using Py-

Torch’s categorical distribution. FPS in real is ≈0.25, and

for practical reasons, physical trajectories were limited to

250 or 500 steps depending on the size of the environment.

4. Experiments

We provide extensive real-world evaluations of

PHONE2PROC. In Sec. 4.1 we compare PHONE2PROC to

PROCTHOR in 5 diverse real environments. In Sec. 4.2 we

show that PHONE2PROC performs as well as a privileged
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upper bound setting that utilizes a simulated counterpart

of the real-world environment, painstakingly modeled

by a digital artist. Sec. 4.3 illustrates the robustness of

PHONE2PROC to various realistic changes in the envi-

ronment, showing how PHONE2PROC hugely improves

over using static reconstructions. Finally, we statistically

analyze the significance of our results (Sec 4.4).

Scale of real-world evaluations. In aggregate we conduct

234 episodic evaluations in 5 diverse real-world environ-

ments. Our environments are large and challenging and

each episode takes between 5 and 20 minutes to run. This

represents one of the largest and most diverse real-world

evaluation studies of sim-to-real indoor navigation agents.

We put this number in the context of related works that

provide 20 trials (1 scene) [6], 1 qualitative example [7],

36 trials (1 scene) [12] and 9 episodes (1 scene) [41]. A

recent study for PointNav for studying Sim-vs-Real corre-

lation [28] conducts 405 real trials but only uses a single

laboratory setting.

Training models and baselines. All models use the

same architecture and begin from a checkpoint trained on

ProcTHOR-10k train set for the task of object navigation.

This checkpoint is state of the art on 6 benchmark Embod-

ied AI tasks [13]. This checkpoint is then fine-tuned for 5M

steps on ProcTHOR-10K train with modifications detailed

in section 3.3, and is henceforth referred to as PROCTHOR

or ªbaselineº. The PHONE2PROC models are environment-

specific and are fine-tuned on 1K procedurally generated

variants of scans of the relevant environment. Results for

these are presented in Figure 5.

4.1. How Well Does Phone2Proc Work?

We evaluate PHONE2PROC in 5 diverse real-world en-

vironments: a 3-room apartment, a 6-room apartment, 1

RoboTHOR-Real apartment, a conference room, and a

cafeteria. In each space, our model and the baseline are

each evaluated for 15 trials (5 object categories with 3 agent

initial locations per category). The 5 categories (apple,

bed, sofa, television, and vase) were chosen to showcase

both fixed objects whose locations can be learned (e.g. tele-

vision) and small objects that must be searched for (e.g.

apple). Where necessary (e.g. conference rooms do not

usually contain beds), the bed and sofa are substituted for

environment-appropriate objects such as chairs or garbage

cans. Starting locations are geographically distributed and

we avoid ones that would achieve trivial success.

Fig. 5 shows that in every real-world scene,

PHONE2PROC performs remarkably well and signif-

icantly outperforms the PROCTHOR baseline. In

aggregate, PHONE2PROC achieves a Success Rate of

70.68% compared to 34.68% for PROCTHOR. Overall,

we find that the bigger environments with multiple rooms

(Robothor, 3 room apartment and 6 room apartment) are

26.7 26.7

20

53.3

46.7

73.3

66.7 66.7

86.7

60

0

10

20

30

40

50

60

70

80

90

100

RoboTHOR-Real 6-Room Apartment 3-Room Apartment Conference Room Cafeteria

S
u

c
c
e

s
s
 R

a
t
e

ProcTHOR Phone2Proc

Figure 5. Results for PHONE2PROC vs ProcTHOR baseline in

a variety of real environments. Each number represents fifteen

trajectories - five objects from three starting locations.

quite challenging for the baseline. PHONE2PROC on the

other hand, performs very effectively in these scenes, that

require it to perform long range exploration.

Model Success Rate Episode Length

Habitat [44] 33.3 204.8

PROCTHOR [13] 33.3 92.5

PHONE2PROC (ours) 77.8 82.6

Table 1. Results of 9 trajectories evaluated in RoboTHOR-Real.

Table 1 compares PHONE2PROC with the same model

architecture trained on Habitat [44] (implementation details

on baseline training in the appendix). These results are pre-

sented on RoboTHOR-Real for 9 (instead of 15) episodes

since Habitat only covers 3 of the 5 objects in our target set

(bed, sofa, and television).

4.2. How Does Phone2Proc Compare To A
Privileged Upper Bound?

RoboTHOR test scenes come with a carefully and manu-

ally reconstructed simulation counterpart. This allows us to

train a privileged model on this perfect replica. Producing

this replica for a real scene took 5 days and is intractable

practically but represents a theoretical upper bound, in

terms of quality and correctness, for static 3D reconstruc-

tion methods that may employ sensors such as LiDAR. The

model, referred to as Reconstructed Simulation or RECON,

is only finetuned in this 1 scene. In simulation, RECON

achieves 100% success since it overfits that scene easily.

We evaluate PHONE2PROC and RECON for 15 episodes

in the RoboTHOR-real apartment (Fig. 6). PHONE2PROC

is able to match the performance of this privileged baseline

both in terms of Success and Episode length, which shows

the effectiveness of our proposed approach to scan the target

environment and train within its variations. In Sec 4.3, we

show the pitfalls of this privileged model.
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Figure 6. Comparison with the reconstructed simulation. We compare PHONE2PROC with the privileged reconstruction baseline among

15 different tasks (each task represents a different pair of agent’s initial location and target object). Each square shows the episode length

of the corresponding model for each task. The red squares represent failed episodes and the blue ones indicate successful ones. Despite the

baseline’s privileges, PHONE2PROC achieves a similar success rate and episode lengths.

Model No Variance Change in 

Lighting

Change in Target 

Location

Furniture 

Rearrangement

Clutter People Moving 

Around

Change in Camera 

Parameters

ProcTHOR 20.0%

Recon 26.7%

Phone2Proc 66.7%

Variance in FOV

Simulation Real World

Figure 7. Illustration of the scene disturbances used to comparatively evaluate models, along with their performances over each episode.

The third column showcases the performance of models navigating to a vase when the object’s location is changed. For the last column, a

full set of 15 trajectories is evaluated for each model. For other disturbances, we evaluated models for the target of Television.

4.3. How Robust is Phone2Proc to Chaos?

In reality, our homes and offices aren’t static and picture-

perfect. Objects move around, furniture gets shifted, kids

leave their toys on the floor, people keep moving around in

the scene, lighting keeps changing throughout the day, and

more! We evaluate the baseline model PROCTHOR, the

privileged model RECON and our model PHONE2PROC in

these settings (Fig. 7).

First, PROCTHOR does poorly in all settings, unsurpris-

ing given that it also fails on the episode with no variation.

RECON performs well with no variations (consistent with

Fig. 6). However, it performs very poorly when variations

are introduced in the scene. When objects are moved around

by just 1.5m, RECON fails, as it has memorized the location

of every target object. Clutter and chair position adjustment

confuses it, and the agent is simply unable to move around

the scene and explore effectively. Moving the dining room

furniture closer to the wall, as one might in a real house,

produces interesting behavior. RECON calls the Done ac-

tion for the television target when it sees the lamp. This is

because in the original scan, the lamp was next to the televi-

sion, and this is what the model likely memorized. RECON

also fails when people move around during an episode. In

stark contrast, PHONE2PROC is robust to every variation

we tested, showing that procedurally generating variations

of the scan helps train robust agents.

Finally, we tested all three models for robustness towards

a change in camera parameters between simulation and the

real robot. A full 15 trajectories were evaluated for each

model trained with a wide vertical FOV and evaluated with

a narrow one. PHONE2PROC is robust to this change, while

RECON’s performance drops drastically.

4.4. Statistical Analysis

As described above, we have jointly evaluated

PHONE2PROC and PROCTHOR models across 3 starting

positions in 5 real environments with 5 target objects per

environment (chosen from 7 unique types). Together this

amounts to (2 model types) × (3 positions) × (5 environ-

ments) × (5 targets) = 150 datapoints. In order to validate

the statistical significance of our results, we follow a similar

analysis as in [58] and model agent success using a logistic

regression model in R [43]. In particular, here we model

all exogenous variables as fixed effects and, as starting

positions are inherently nested within environments, we

include all environment and starting position interactions.

When fitting this model, we obtain the coefficient estimates

(Intercept) Phone2Proc Bed Chair GarbageCan Sofa TV Vase

Coef. 0.17 0.33 0.00 0.41 -0.12 0.2 -0.03 0.13

p-value 0.31 <0.0001 0.97 0.02 0.59 0.13 0.78 0.27

where, for space, we have excluded coefficients correspond-

ing to environments and locations, as none of these coeffi-

cients were statistically significant at a 0.05 level. As the
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above shows, the coefficient of interest (PHONE2PROC) is

statistically significant even at a 0.0001 level. Interpret-

ing these results, we see that when holding other factors

constant, the use of a PHONE2PROC model is associated

with exp(0.33) = 1.39 times greater odds of success (95%

confidence interval: [1.2, 1.62]) than when using a PROC-

THOR model. Of all object categories, only the coefficient

associated with chair was found to be statistically signifi-

cant at a 0.05 level suggesting that chairs were associated

with higher levels of success (i.e. may be generally eas-

ier to find). Altogether, we find strong statistical evidence

suggesting that, across tested environments and object cat-

egories, PHONE2PROC was associated with higher success

rates and that the estimated effect size was substantial.
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Figure 8. Qualitative results. These demonstrate the ability of

PHONE2PROC models to navigate to their desired object. The top-

down map is for visualization purposes only and is an approxima-

tion of the path taken by the agent.

4.5. Qualitative Analysis

Fig. 8 illustrates exemplary trajectories from each test

environment with a few ego-centric RGB images that is the

agent’s only input. The trajectories show meaningfully dif-

ferent behavior for large vs. small objects (bed, sofa, and

TV vs. apple and vase).

For large objects that don’t change location drastically

(e.g. row 1), the agent seems to initially localize itself using

known landmarks that appear in the scan (similar object cat-

egories, for instance) and then demonstrate efficient motion

towards the room which contains the target object. We ob-

served during our trials that often, when an agent navigating

toward a large target loses its way, it would double back to

a familiar large object and then restart direct progress. Note

that the agent has no ground truth localization and must rely

Environment Area Longest # Rooms # Objects # Scanned

(m2) Path (m) Objects

RoboTHOR-Real 34.5 8.1 4 51 14

6-Room Apartment 104.4 21.8 6 189 57

3-Room Apartment 65.4 8.2 3 105 26

Conference Room 98.3 10.0 1 48 32

Cafeteria 133.2 18.8 1 252 67

Table 2. The test real environments have a wide variety of layouts,

usages, space, and object density. For visual layouts, see Fig. 2.

on its observations and its recollection of environment lay-

out and object presence.

In contrast to big objects, for smaller items, the agent

needs to explore efficiently to find the target. For instance,

in the fourth row of Fig. 8, the agent searches for a small ob-

ject that does not appear in the scan but is placed randomly

in training rooms. Though again, it has no map, ground

truth localization, or additional memory support, it demon-

strates true exploration and high coverage of the possible

area, ultimately achieving success (more qualitative results

are provided in the supplementary videos).

4.6. Quantitative Analysis of The Environments

Results presented in Fig. 5 span a wide range of space us-

age, layout, and complexity as quantified in Table 2 to better

demonstrate the power of PHONE2PROC. The conference

room and cafeteria are large open spaces. The three living

spaces require moving from room to room to locate objects.

The 6-room apartment for instance, while most comparable

in floor area to the conference room, is a long and narrow

layout that requires hallway traversal for nearly every room

transition. PHONE2PROC is most helpful in these environ-

ments over the baseline but makes a significant improve-

ment in all layouts and semantic types of space.

5. Conclusion

In this paper, we introduced PHONE2PROC, a simple yet

effective approach for training performant agents that are

robust to the unpredictable nature of the real world. We

demonstrated the capabilities of PHONE2PROC in five di-

verse environments and showed significant improvements

in sim-to-real performance. Our environment-conditioned

procedurally generated scenes are fully interactable, and we

believe that future work will continue to explore its capabil-

ities.
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