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Abstract

Self-training approaches recently achieved promising re-
sults in cross-domain object detection, where people it-
eratively generate pseudo labels for unlabeled target do-
main samples with a model, and select high-confidence
samples to refine the model. In this work, we reveal that
the consistency of classification and localization predic-
tions are crucial to measure the quality of pseudo labels,
and propose a new Harmonious Teacher approach to im-
prove the self-training for cross-domain object detection.
In particular, we first propose to enhance the quality of
pseudo labels by regularizing the consistency of the clas-
sification and localization scores when training the detec-
tion model. The consistency losses are defined for both
labeled source samples and the unlabeled target samples.
Then, we further remold the traditional sample selection
method by a sample reweighing strategy based on the con-
sistency of classification and localization scores to improve
the ranking of predictions. This allows us to fully ex-
ploit all instance predictions from the target domain with-
out abandoning valuable hard examples. Without bells
and whistles, our method shows superior performance in
various cross-domain scenarios compared with the state-
of-the-art baselines, which validates the effectiveness of
our Harmonious Teacher. Our codes will be available at
https://github.com/kinredon/Harmonious-Teacher.

1. Introduction

Object detection aims to recognize and localize objects
in images simultaneously. As one of the fundamental tasks
in computer vision, it plays an important role in many
downstream vision tasks, including face recognition [33],
person re-identification [42], instance segmentation [11],
action recognition [8] and so on. With the development of
deep convolution neural network (DCNN) [12,32], we have
witnessed a performance breakthrough of object detection
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Figure 1. Comparison of pseudo labels selection using classifi-
cation score and our proposed harmony measure. Object detec-
tion models often produce inconsistent predictions, e.g., bound-
ing boxes with low classification score but high localization IoU
(blue box) or with high classification score but low localization
IoU (red box) with ground truth box (green box). Existing self-
training methods [6, 13, 22] usually adopt classification scores to
rank the predictions and are easily biased to low-quality predic-
tion. In contrast, we use the harmony measure to consider the
consistency of the classification and localization scores and prefer
the accurate bounding box.

in recent years [1, 11, 27, 28, 36]. One important driving
force for such an advance is the availability of large-scale
annotated training data. However, collecting and annotating
those data are often extremely expensive in both time and
fund, which even has been a major challenge for many real-
world applications, for example, face authentication [39],
autonomous driving [4], etc.

Cross-domain Object Detection (CDOD) [4, 6, 7, 13, 17–
19,22,30] has been proposed to address this problem, where
the goal is to adapt an object detector from a labeled source
domain to a novel unlabeled target domain. In this way,
great efforts can be saved from annotating training data in
the target domain. Recently, researchers have reported that
the self-training strategy achieves promising results in the
CDOD task. Generally, in the self-training framework, peo-
ple use an existing object detection model to predict the ob-
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ject category labels and bounding boxes for the target do-
main images, and select confident predictions as pseudo la-
bels to continuously train the object detection model. These
two steps are repeated alternatively for a certain times, and
the final model is found to perform quite well in the target
domain in many scenarios [6, 13, 22, 26, 43], as the infor-
mation of the target domain is effectively exploited through
training model with pseudo labels.

Nevertheless, existing methods are mainly motivated by
self-training classification works, which may have draw-
backs for the object detection task. One major issue is
that existing methods usually adopt the classification score
to select pseudo labels. However, since the classification
and localization branches are separately trained, inconsis-
tency between classification and localization scores may
happen when predicting the target domain images. For ex-
ample, the bounding boxes with high classification scores
could considerably deviate from the ground-truth position
(see example in Fig. 1). Such noise in pseudo labels in-
evitably introduces bias in the learnt object detection model,
leading to degradation in performance. Another issue is
the hard thresholding for selecting confident pseudo-labeled
instances. Despite how sophisticated it is for determin-
ing such a threshold, simply abandoning low-confidence
pseudo boxes is definitely undesirable, since valuable hard
examples cannot be fully exploited, which is actually cru-
cial for training the object detection model.

In this work, we propose a novel approach called Har-
monious Teacher (HT) to improve the self-training frame-
work for the CDOD task. On the one hand, to generate
high-quality pseudo labels, we first propose to regularize
the consistency of the classification prediction and the lo-
calization score when training the detection model. For
this purpose, a supervised harmonious loss and an unsu-
pervised harmonious loss are respectively designed for the
labeled source domain and the unlabeled target domain. On
the other hand, to simultaneously alleviate the damage of
low-quality predictions while fully exploiting hard exam-
ples, we design a harmony measure to estimate the quality
of pseudo-labeled samples based on the consistency of the
classification prediction and the localization score. Then,
we take all predicted instances into consideration and use
the harmony measure to reweigh these instances for self-
training, thus avoiding simply abandoning those valuable
hard examples.

The contributions of this paper are listed as follows:

• We improve the self-training framework for CDOD
and reveal that existing methods neglect the inconsis-
tency between classification and localization, which
hinders the performance of self-training.

• We propose a simple yet effective approach named
Harmonious Teacher (HT). We first propose harmo-

nious model learning to regularize the consistency of
the classification and localization predictions for both
source and target domains. Then, we design a har-
mony measure to estimate the quality of predictions
and leverage the harmony measure to reweigh all the
predictions in self-training without abounding valuable
hard examples.

• We have conducted extensive experiments on four
widely used CDOD benchmarks. The experimen-
tal results show that our method clearly outper-
forms the state-of-the-art baselines by a large mar-
gin. For example, our method reaches 50.4% mAP
on Cityscapes→FoggyCityscapes, which exceeds the
state-of-the-art method OADA [43] by 5% mAP.

2. Related Work
Object detection. With the prosperity of deep convolution
network [12, 32], the performance of object detection has
been greatly improved. Object detection can be divided into
two directions: single-stage [23,27,36] and two-stage detec-
tors [1, 28]. The single-stage methods directly regress the
positions and categories of objects from an image [27]. The
two-stage detectors first generate some candidate regions
through a region proposal network (RPN) [28] and then re-
fine these candidates to give the final bounding boxes and
categories. Due to the independent task of classification and
object detection, the detectors usually present misaligned
classification and localization accuracy [9,15,21,36,38,45].
This misalignment hurts the Non-Maximum Suppression
(NMS) procedure as the NMS usually utilizes the classi-
fication score as the metric to rank the proposals, leading to
inaccurate proposal suppression, e.g., the proposals with a
high localization IoU but a low classification score will be
falsely suppressed. To eliminate this issue, previous works
attempt to enforce the predictions to be consistent by metric
reformulation [15, 36], harmony learning [21, 45] and con-
sistency regularization [9, 38]. However, these works rely
on a large number of labeled data to train the model and
suffer from performance degradation when deploying the
trained model to a novel domain. In this work, we explore
the cross-domain generalization of one-stage detector [36]
following [14, 18, 19, 25, 35, 43] for considering the great
potential in real-world applications.
Cross-domain object detection. Cross-domain object de-
tection (CDOD) aims to adapt the detector trained on a la-
beled source domain to an unlabeled target domain. The
previous works can be categorized into domain alignment
and self-training. As one of the main streams, domain align-
ment minimizes the domain discrepancy to bridge the do-
main gap by style transfer [6,17], adversarial training [4,14,
30,43,49,50] and graph matching [18,19,35], etc. Although
effective, they are challenging to balance the transferability

23830



Framework V1

Harmonious Model Learning

Target

Student

Teacher

Weak Aug.

Strong Aug.

Target Image

Source Image

!ℒ#

EMA

ℒ$

Harmonious Sample Reweighting

Harmony Measure

IoU

······

Classification branch

p

······
······

······
Prediction

Harmonious Learning

Teacher Prediction

!ℒ%

Student Prediction

Figure 2. The overview of the proposed Harmonious Teacher framework for CDOD. The source images are fed into the student model and
calculate the detection loss L̂s with supervised harmonious loss. An unsupervised harmonious loss Lu is proposed to improve harmony
prediction on the target domain. The teacher model adopts the target images with weak augmentation and the outputs of the teacher
model are used to formulate harmony measure (HM) to guide the learning of the student by optimizing L̂t. Our method does not need
thresholding for filtering the low-confidence predictions. Instead, we exploit all the predicted instances in the target domain by assigning
different weights according to the harmony measure.

and discriminability and do not fully exploit the domain-
specific knowledge information in the target domain. How-
ever, the self-training methods [3, 6, 13, 22, 25] focus on
leveraging the domain-specific information in the target do-
main and have achieved promising results. UMT [3] feeds
the source-like images to the teacher model and gener-
ates pseudo labels based on an out-of-distribution detection
module. AT [22] combines self-training with adversarial
training to improve the quality of pseudo labels. PT [3]
develops a probabilistic teacher that leverages uncertainty-
guided consistency training to promote classification and lo-
calization adaptation. In this work, we reveal that inconsis-
tency between classification and localization will harm self-
training approaches. To address this issue, we propose a
novel method referred to as Harmonious Teacher (HT) that
improves the self-training framework by harmonious model
learning and harmonious sample reweighting.

3. Harmonious Teacher

In this section, we present our new self-training ap-
proach called Harmonious Teacher (HT). In the follow-
ing, we first briefly introduce the mean teacher based self-
training framework for CDOD in Sec. 3.1, and analyze the
problems in Sec. 3.2. Then, we elaborate on the design of
our Harmonious Teacher model in Sec. 3.3 and 3.4.

3.1. Self-training Framework in Object Detection

Existing self-training methods [3, 13, 22, 43] generally
follow the popular mean teacher (MT) framework [34],
where a teacher model is used to produce pseudo labels
to supervise the student model. In particular, the teacher
and student models are two detection models with iden-
tity architecture. The student model is trained with both

the labeled source samples and pseudo-labeled target sam-
ples, where the labels of the pseudo-labeled target samples
are generated by the teacher model. On the other hand, the
teacher model is updated by using the exponential moving
average (EMA) of the weights of the student model.

Usually, when training the MT models, the labeled
source samples are directly fed into the student model to
calculate the detection loss by leveraging the ground truth
of the source domain. For the target samples, two differ-
ent types of augmentation are used: weak augmentation
and strong augmentation. The teacher model adopts weakly
augmented images to generate reliable pseudo labels, which
are used to guide the learning of the student model with the
input of strongly augmented images. The overall optimiza-
tion objective can be written as follows:

L = Ls + Lt, (1)

where Ls and Lt are the losses for the source domain and
the target domain pseudo-labeled samples, respectively.

In particular, Ls usually is the object detection loss,
which often consists of a classification loss and a localiza-
tion loss. For example, in FCOS [36], the loss is formulated
as follows:

Ls = Lcls + Lreg, (2)

where Lcls is the focal loss for classification, and Lreg is
the localization loss which contains an IoU loss for boxes
regression and a binary cross entropy loss for localization
quality estimation branch (e.g., centerness or IoU branch).

Accordingly, Lt can also be similarly defined with
pseudo labels (bounding boxes and their corresponding cat-
egory labels), i.e.,

Lt = Lt
cls + Lt

reg, (3)
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Figure 3. Left: The distribution of classification score and IoU
with ground truth of predictions from the source model on the val-
idation set of Foggy Cityscapes. Right: Illustration of bounding
boxes with inconsistent prediction between classification and lo-
calization.

where Lt
cls and Lt

reg are the classification and localization
loss using the pseudo labels.

3.2. Analysis on the Self-training Framework

Generating the pseudo labels for target images is the
most crucial part for self-training. To generate the pseudo
labels for the target domain, existing approaches [6,22] rank
the predicted bounding boxes according to their classifica-
tion scores, and then select high-confidence samples based
on a certain threshold for training the student model1.

However, due to the classification and localization
branches being independently trained (see Eq. (2)), the in-
consistency between classification and localization scores
often occurs in CDOD (see Fig. 1). In other words, the
bounding boxes with high classification scores may devi-
ate from the ground truth bounding box, and vice versa.
Existing self-training CDOD works usually deploy a sim-
ple quality estimation strategy (e.g., classification score) to
rank the predictions [6, 22]. While this might be natural for
the classification task, due to the inconsistency issue, it may
introduce significant noise for the object detection task.

We further illustrate this problem in Fig. 3, where we
take the Foggy Cityscapes dataset as an example and plot
the distribution of classification score and intersection-of-
union (IoU) score with ground truth of the predictions from
a pre-trained source model. Inaccurate bounding boxes with
high classification scores (points at the upper-left part) are
often ranked ahead of good bounding boxes (points at the
right part). This will inevitably introduce bias to the model
training when taking those inaccurate bounding boxes as
pseudo labels.

Moreover, hard examples are also crucial for training ob-
ject detection models, which are often predicted with low
classification scores and fairly good bounding boxes (i.e.,
the points at the lower-right part of Fig. 3). However, to
prevent the model degradation caused by the low-quality
instances, existing self-training works [3,6,22,24,48] often
manually set a fixed threshold in a subtle way to select only

1Some works may firstly exploit Non-Maximum Suppression (NMS)
to filter redundant bounding boxes before the ranking process

high-confidence samples. Despite how subtle it is to deter-
mine a suitable threshold, hard examples are unfortunately
ignored, which could be valuable to the model training.

Our contributions: To address these issues, on the one
hand, we first propose to improve the prediction quality
by regularizing the consistency of the classification predic-
tion and the localization score when training the detection
model. Thus, noise predictions with inconsistent classifica-
tion and localization scores can be reduced. On the other
hand, we design a harmony measure to estimate the quality
of predictions and use it to reweigh the pseudo-labeled sam-
ples in self-training. In this way, all pseudo-labeled samples
can contribute to the model training based on their predic-
tion qualities, and the hard threshold is not needed anymore.

3.3. Harmonious Model Learning

We first consider how to improve the mean teacher
model to produce high-quality predictions that the classifi-
cation score and the localization score are more consistent.
In the following, we discuss how to achieve this in both a
supervised manner (for the source domain) and an unsuper-
vised manner (for the target domain), respectively.
Supervised Harmonious Loss: Motivated by [21, 45], we
enforce the classification branch to predict a score that is
consistent with the localization quality. In particular, we
leverage the IoU between the predicted box and its ground
truth box (referred to as GT-IoU) to represent the localiza-
tion quality and use it as the learning target of the classifica-
tion branch. Let us denote by y as the learning target where
y is set to GT-IoU for its ground-truth classes, otherwise 0.
The loss is formulated as follows:

Lh(y, p) =

{
−y (y log(p) + (1− y) log(1− p)) y > 0
−αpγ log(1− p) y = 0

(4)

where p is the predicted probability from the classification
branch. α is a weight coefficient and γ is a focusing pa-
rameter. To this end, the supervised harmonious loss that
is used to replace the classification loss in Eq. (3) can be
written as:

L̂cls =
∑
i

∑
c

Lh (yi,c, pi,c) , (5)

where yi,c and pi,c denote GT-IoU and the predicted classi-
fication score for the class c at the location i in the feature
map, respectively. As shown in the right part of Fig. 2, the
one-hot style target at the ground-truth class label position
is replaced by the GT-IoU. In this way, the original classi-
fication score evolves to be a consistent prediction that can
represent the quality of predictions for both classification
and localization.
Unsupervised Harmonious Loss: Although we have en-
forced the model to give consistent predictions to measure
the quality of the model predictions on the source domain,
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Figure 4. (a) The harmony measure is obtained from the classifi-
cation branch and the IoU branch, and can be used to evaluate the
quality of pseudo labels. (b) Positive boxes often closely surround
the ground truth box (solid red line) with a large overlap, while the
negative boxes (dotted purple line) generally deviate from each
other with only a small overlap.

however, we cannot guarantee this property can generalize
well on the target domain because of the domain gap be-
tween the source and target domain. We expect the teacher
model also predict consistent predictions on the target do-
main. Because of the lack of annotations, we cannot directly
obtain IoUs between the predicted boxes and the ground
truth boxes. We propose a heuristic approach to find a
proper IoU for the target samples. Specifically, for each
box predicted by the student model, we calculate the IoU
with other predicted boxes and pick the maximum IoU û as
a substitute of GT-IoU. We remold the Eq. (5) to formulate
the unsupervised harmonious loss:

Lu =
∑
i

∑
c

Lh (ûi,c, qi,c) , (6)

The insight behind this is positive boxes often closely sur-
round the ground truth box with a large overlap, while the
negative boxes generally deviate from each other with only
a small overlap as shown in Fig. 4 (b). While the negative
boxes usually are not grouped together like positive bound-
ing boxes. Thus, the maximum IoU with other boxes can be
used as a substitute for GT-IoU. By conducting the unsuper-
vised harmonious model learning, the model can produce
more harmonious predictions on the target domain.

3.4. Harmonious Sample Reweighting

After having learned a harmonious model, we are ready
to generate pseudo labels for the target domain images. In-
tuitively, for an instance predicted in the target image, the
more consistent between classification score and IoU score
is, the more reliable the instance could be as an object.
We therefore design a harmony measure to characterize the
quality of pseudo labels. Furthermore, with this harmony
measure, we are able to fully exploit all the predicted in-
stances in the target domain by assigning different weights
according to their harmony measure. Namely, we do not

need to manually set a fixed threshold to filter out low-
confidence instances as in existing works [3, 6, 22, 24, 48],
and the hard examples can be retained to contribute to the
model training for improving the detection performance on
the target domain.
Harmony Measure: Through harmonious model learning,
we enforce the model predictions to be consistent between
classification and localization scores. When inferencing the
images in the target domain, the deviation between the pre-
dictions of classification and localization branches could
measure the quality of pseudo labels. To this end, we pro-
pose a harmony measure that explicitly encodes the clas-
sification prediction and localization score into a unified
metric to estimate the quality of pseudo labels as shown in
Fig. 4 (a). We define the harmony measure as follows:

h = pβu(1−β), (7)

where p denotes the classification score in harmonious
model learning. u is the localization score (i.e., IoU) pre-
dicted from the IoU branch. β is a trade-off parameter that
balances the contribution between the harmonious model
prediction score and localization score to harmony measure.
The range of harmony measure is 0−1. This harmony mea-
sure has two essential properties. First, it considers the joint
quality from classification and localization branches, h = 1
is achieved when p = u = 1. Second, it stands for the
harmony between scores from classification and localiza-
tion branches, where h = 0 means they are totally adverse
qualities for classification and localization.
Harmonious Weighting: With this harmony measure, we
are able to fully exploit all the predicted instances in the
target domain by assigning different weights to an unsu-
pervised loss for all predictions according to their harmony
measure. In other words, we do not need to manually set
a fixed threshold to filter low-confidence instances, which
may be the hard examples and are useful information for
improving self-training performance. Specifically, we apply
Quality Focal Loss [21] instead of the cross entropy loss for
unsupervised classification loss due to we use the soft labels
with a continuous value. It can be formulated as follows:

L̂t
cls(ŷ, p) = −|ŷ − p|η((1− ŷ) log(1− p) + ŷ log(p)), (8)

where η is the suppression factor. p and ŷ are class prob-
abilities predicted from the student and teacher models, re-
spectively. In summary, the harmonious weighting (HW)
loss can be represented as follows:

L̂t =
∑
i

e(1−hi)(
∑
c

L̂t
cls (ŷi,c, pi,c) + Li

reg), (9)

where hi is the harmony measure at the position i in the
feature map. ŷi,c and pi,c denote the predicted classification
scores from the teacher and student models for the class c
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Table 1. Quantitative results on adaptation from Cityscapes to Foggy Cityscapes with VGG16 backbone network.
Method Reference Detector person rider car truck bus train mcycle bicycle mAP

SWDA [30] CVPR’19 Faster RCNN 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
CFDA [47] CVPR’20 Faster RCNN 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6
HTCN [2] CVPR’20 Faster RCNN 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
UMT [6] CVPR’21 Faster RCNN 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7

MeGA [37] CVPR’21 Faster RCNN 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
ICCR-VDD [40] ICCV’21 Faster RCNN 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0

TIA [46] CVPR’22 Faster RCNN 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
TDD [13] CVPR’22 Faster RCNN 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
MGA [49] CVPR’22 Faster RCNN 45.7 47.5 60.6 31.0 52.9 44.5 29.0 38.0 43.6

PT [3] ICML’22 Faster RCNN 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
EPM [14] ECCV’20 FCOS 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0

SCAN [18] AAAI’22 FCOS 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
KTNet [35] ICCV’21 FCOS 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
SSAL [25] NeurIPS’21 FCOS 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6

SIGMA [19] CVPR’22 FCOS 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
OADA [43] ECCV’22 FCOS 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4

HT - FCOS 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4

at the location i in the feature map, respectively. Our har-
monious weighting loss has two advantages. First, it does
not introduce any extra hyper-parameters. Second, it fully
leverages all the predicted instances to provide richer infor-
mation to the student model.
Overall Optimization Objective: We illustrate the over-
all architecture of our Harmonious Teacher in Fig. 2. The
model is trained jointly by optimizing all losses in an end-
to-end manner. The overall optimization objective of our
Harmonious Teacher can be written as follows:

L = L̂s + λLu + λ1L̂t, (10)

where the L̂s is the detection loss where we replace the Lcls

in Eq. (2) with supervised harmonious loss L̂cls. Lu is
unsupervised harmonious loss which enhances the consis-
tent predictions on the target domain. L̂t is the harmonious
weighting loss on the unlabeled target domain to make all
the predictions that can reasonably contribute to the unsu-
pervised loss. λ and λ1 are the trade-off parameters.

4. Experiments
4.1. Dataset

We conduct extensive experiments on four widely used
adaptation scenarios following the standard CDOD setting
in previous works [3, 4, 6].
Cityscapes→Foggy Cityscapes: Cityscapes [5] is col-
lected from street scenes in different cities and captured
with an on-board camera under a clean weather condition.
It contains a train set (2, 975 images) and a validation set
(500 images) with eight categories of annotated bounding
boxes. Following previous works [3, 4, 6], we convert the
instance mask to bounding boxes for training object detec-
tion model. Foggy Cityscapes [31] is a foggy version of
Cityscapes and is rendered from Cityscapes by using the

depth information to synthesize foggy weather. It utilizes
the same annotations as Cityscapes. In this scenario, we ex-
plore the domain discrepancy under inverse weather adap-
tation. Note that we choose the worst foggy level (i.e., 0.02)
from the Foggy Cityscapes as the target domain.
Cityscapes→BDD100K: BDD100K [44] is a large-scale
driving dataset consisting of 100k images. Following
[20, 41], we extract the daytime subset of BDD100K as
the target domain, resulting in 36, 728 training images and
5, 258 validation images. The Cityscapes and BDD100K
have different scene layouts and share seven categories.
Sim10K→Cityscapes: Sim10K [16] is a synthesized
dataset based on the computer game Grand Theft Auto V
(GTA V) yielding the domain gap with the real-world scene
(i.e., Cityscapes). It consists of 10k images with 58, 071
bounding boxes of the car. We use all the images of Sim10K
as the source domain and report the performance of the car
category following the existing works [14, 19, 43].
KITTI→Cityscapes: KITTI [10] is collected from a dif-
ferent camera (vehicle-mounted) with Cityscapes (on-board
camera), resulting in cross-camera domain shift. This
dataset includes 7, 481 labeled images with the car category.
We use all the images of KITTI as the source domain and
report the performance of the car category.

4.2. Implemental Details

Following [14, 18, 19], we take FCOS [36] with the
IoU branch as the base detector for experiments. The
VGG16 [32] pre-trained on ImageNet [29] is adopted as the
backbone. We use batch-size 8 for both source and target
images and 4 RTX 3090 GPUs. The learning rate is set to
0.005 without any decay. We pre-train the model 10k iter-
ations with labeled source samples to initialize the teacher
and student models and continuously train the model 30k it-
erations for both the source and target domain. The shorter
side of the images is resized at most 800 following [14].
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Table 2. Quantitative results on adaptation from Cityscapes to BDD100K with the VGG16 backbone network.
Methods Reference Detector person rider car truck bus mcycle bicycle mAP

DA-Faster [4] CVPR’18 Faster RCNN 28.9 27.4 44.2 19.1 18.0 14.2 22.4 24.9
SWDA [30] CVPR’19 Faster RCNN 29.5 29.9 44.8 20.2 20.7 15.2 23.1 26.2
SCDA [50] CVPR’19 Faster RCNN 29.3 29.2 44.4 20.3 19.6 14.8 23.2 25.8
ECR [41] CVPR’20 Faster RCNN 32.8 29.3 45.8 22.7 20.6 14.9 25.5 27.4
SED [20] AAAI’21 Faster RCNN 32.4 32.6 50.4 20.6 23.4 18.9 25.0 29.0
TDD [13] CVPR’22 Faster RCNN 39.6 38.9 53.9 24.1 25.5 24.5 28.8 33.6

PT [3] ICML’22 Faster RCNN 40.5 39.9 52.7 25.8 33.8 23.0 28.8 34.9
Source Only [36] - FCOS 36.9 22.4 49.7 16.1 16.3 13.0 22.1 25.2

EPM [14] ECCV’20 FCOS 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8
SIGMA [19] CVPR’22 FCOS 46.9 29.6 64.1 20.2 23.6 17.9 26.3 32.7
HT (Ours) - FCOS 53.4 40.4 63.5 27.4 30.6 28.2 38.0 40.2

Table 3. Quantitative results on adaptation from Sim10K to
Cityscapes with the VGG16 backbone network.

Method Reference Detector AP of car
SCDA [50] CVPR’19 Faster RCNN 43.0
HTCN [2] CVPR’20 Faster RCNN 42.5
UMT [6] CVPR’21 Faster RCNN 43.1
SED [20] AAAI’21 Faster RCNN 42.5
TDD [13] CVPR’22 Faster RCNN 53.4
MGA [49] CVPR’22 Faster RCNN 54.6

PT [3] ICML’22 Faster RCNN 55.1
Source Only - FCOS 39.8

EPM [14] ECCV’20 FCOS 49.0
KTNet [35] ICCV’21 FCOS 50.7
SSAL [25] NeurIPS’21 FCOS 51.8
SCAN [18] AAAI’22 FCOS 52.6

SIGMA [19] CVPR’22 FCOS 53.7
OADA [43] ECCV’22 FCOS 59.2

Ours - FCOS 65.5

Table 4. Quantitative results on adaptation from KITTI to
Cityscapes with the VGG16 backbone network.

Method Reference Detector AP of car
SCDA [50] CVPR’19 Faster RCNN 42.5
HTCN [2] CVPR’20 Faster RCNN 42.1
SED [20] AAAI’21 Faster RCNN 43.7
TDD [13] CVPR’22 Faster RCNN 47.4
MGA [49] CVPR’22 Faster RCNN 48.5

PT [3] ICML’22 Faster RCNN 60.2
Source Only - FCOS 34.4

EPM [14] ECCV’20 FCOS 43.2
KTNet [35] ICCV’21 FCOS 45.6
SSAL [25] NeurIPS’21 FCOS 45.6
SCAN [18] AAAI’22 FCOS 45.8

SIGMA [19] CVPR’22 FCOS 45.8
OADA [43] ECCV’22 FCOS 47.8

Ours - FCOS 60.3

The data augmentation is the same with [24]. The weights
λ and λ1 are set to 1.0. The parameter β is set to 0.5. For α
and γ in Eq. (4) are set to 0.75 and 2 for all the experiments,
respectively. And the η in Eq. (8) is set to 2.0. For the ab-
lation studies that need to select pseudo labels, we set the
selective ratio ρ% to 1% following [48]. We provide more
implemental details in Supplementary.

4.3. Comparison with State-of-the-arts

Cityscapes→Foggy Cityscapes. The adaptation results of
Cityscapes to Foggy Cityscapes are shown in Table 1. The
proposed HT significantly outperforms all state-of-the-art
works by an absolute margin of 6.8% mAP for two-stage
Faster RCNN detector MGA [49] and 5.0% mAP for one-
stage FCOS detector OADA [43], respectively. The com-
pelling results clearly demonstrate that HT can provide ac-
curate guidance to the student model by harmonious model
learning and harmonious sample weighting.
Cityscapes→BDD100K. Table 2 shows the results of adap-
tation from Cityscapes to BDD100K. Our HT achieves
40.2% mAP, outperforming all the baselines by a notable
margin of 5.3% mAP over top-performing two-stage adap-
tive detector PT [3] and 7.5% mAP over one-stage CDOD
approach SIGMA [19]. This clearly verifies the robustness
of HT in different cross-domain scenarios.
Sim10K→Cityscapes. Collecting and labeling a large-
scale dataset is a challenge for object detection. An alterna-
tive way is to capture the data from the synthetic platform.
However, there is a domain discrepancy between the syn-
thetic and real samples. We study the synthetic to real adap-
tation scenario, and the results of Sim10K to Cityscapes are
shown in Table 3. Our HT achieves 65.5% mAP, which
exceeds all the other works by a large margin. This fur-
ther verifies the effectiveness of our methods for improving
self-training methods by considering the inconsistency is-
sue between classification and localization.
KITTI→Cityscapes. The cross-camera scenario widely
exists in real-world applications. The results of adaptation
from KITTI to Cityscapes are shown in Table 4. We also
achieve state-of-the-art results over the compared baselines.
This again demonstrates the effectiveness of our method.

4.4. Further Empirical Analysis

Ablation Studies: We conduct ablation studies by adding
each component of our method. The results are shown in
Table 5. First, we can observe the effectiveness of harmo-
nious model learning. In particular, SHL improves 1.8%
mAP compared with the baseline that utilizes the original
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Figure 5. Qualitative results on the target domain of Cityscapes to Foggy Cityscapes for Source Only [36] (top row), SIGMA [19]
(middle row) and Ours (bottom row). Green, red and orange boxes indicate true positive (TP), false negative (FN) and false positive (FP),
respectively. We set the score threshold to 0.7 for better visualization. Best appreciated when viewed in color and zoomed up.

Table 5. Ablation studies of HT on Cityscapes → FoggyCi-
tyscapes. SHL and UHL denote supervised harmonious and un-
supervised harmonious loss. HM-Rank indicates that we use the
HM to select pseudo labels. HW is the harmonious weighting.

Method SHL UHL HM-Rank HW mAP (%)
Baseline - - - - 37.3

Proposed

✓ 39.1
✓ ✓ 40.5
✓ ✓ ✓ 45.2
✓ ✓ ✓ 50.4

Table 6. The effect of β on Cityscapes → FoggyCityscapes.
β 0 0.25 0.5 0.75 1.0

mAP 48.7 49.0 50.4 50.0 49.8

classification score to select pseudo labels. And the UHL
further improve the mAP to 40.5%. These improvements
support the claim that harmonious predictions better evalu-
ate the quality of pseudo labels than the classification score.
We also show the effect of the harmony measure. The
harmony measure can be used in two manners. One is to
provide a more accurate ranking of predictions to help se-
lect the pseudo labels. We can observe that using the har-
mony measure to rank the candidate pseudo labels improves
the performance by 4.9% in terms of mAP. On the other
hand, we integrate the harmony measure into the unsuper-
vised optimization objective to fully exploit all the pre-
dicted instances by harmonious sample reweighting. The
HW achieves 50.4%, which is a large improvement com-
pared with HM-Rank. This shows that our threshold-free
approach has significant advantages and provides effective
supervision in the target domain.
Qualitative Results: Fig. 5 illustrates the qualitative re-
sults of our method on adaptation scenarios of Cityscapes to
Foggy Cityscapes with different approaches. The proposed
HT produces more accurate predictions than both Source
Only [36] and the state-of-the-art SIGMA [19] model,
which shows that HT can significantly improve the detec-

tion ability on the target domain, i.e., reducing the false
negative (FN) and false positive (FP) and detecting more
true positive (TP) objects.
The Effect of Balance Factor β: Table 6 shows the re-
sults of different β in Eq. (7) that balances the contribu-
tion of harmonious prediction and localization IoU score on
Cityscapes →Foggy Cityscapes. The results show that only
relying on the prediction from the classification or local-
ization branches will hurt the performance. Moreover, the
β = 0.5 achieve the best results.

5. Conclusion
In this work, we study cross-domain object detection

(CDOD), which aims to adapt a source detector from a
labeled source domain to an unlabeled target domain and
reveal that previous self-training methods overlook the in-
consistency between classification and localization. There-
fore, we propose Harmonious Teacher to improve the self-
training for CDOD. We first propose a harmonious model
learning for both labeled source and unlabeled target do-
mains to make the model predicts consistent predictions.
Then, we design a harmony measure to evaluate the qual-
ity of pseudo labels and use it to reweigh the unsupervised
loss to alleviate the damage of low-quality predictions and
exploit hard examples. The results demonstrate the effec-
tiveness of our method.
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