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Figure 1. Novel view synthesis results by our method. It can generate novel views of a portrait image with high-fidelity and strong 3D-
consistency via single forward pass (e.g., see the bangs and wrinkles). Best viewed with zoom-in and see the video for animations.

Abstract

A key challenge for novel view synthesis of monocular
portrait images is 3D consistency under continuous pose
variations. Most existing methods rely on 2D generative
models which often leads to obvious 3D inconsistency ar-
tifacts. We present a 3D-consistent novel view synthesis
approach for monocular portrait images based on a re-
cent proposed 3D-aware GAN, namely Generative Radi-
ance Manifolds (GRAM) [13], which has shown strong
3D consistency at multiview image generation of virtual
subjects via the radiance manifolds representation. How-
ever, simply learning an encoder to map a real image into
the latent space of GRAM can only reconstruct coarse ra-
diance manifolds without faithful fine details, while im-
proving the reconstruction fidelity via instance-specific op-
timization is time-consuming. We introduce a novel de-
tail manifolds reconstructor to learn 3D-consistent fine de-
tails on the radiance manifolds from monocular images,
and combine them with the coarse radiance manifolds for
high-fidelity reconstruction. The 3D priors derived from
the coarse radiance manifolds are used to regulate the
learned details to ensure reasonable synthesized results

at novel views. Trained on in-the-wild 2D images, our
method achieves high-fidelity and 3D-consistent portrait
synthesis largely outperforming the prior art. Project page:
https://yudeng.github.io/GRAMInverter/

1. Introduction

Synthesizing photorealistic portrait images of a per-
son from an arbitrary viewpoint is an important task that
can benefit diverse downstream applications such as vir-
tual avatar creation and immersive online communication.
Thanks to the thriving of 2D Generative Adversarial Net-
works (GANs) [18, 25, 26], people can now generate high-
quality portraits at desired views given only monocular im-
ages as input, via a simple invert-then-edit strategy by con-
ducting GAN inversion [1, 38, 52] and latent space edit-
ing [12,20,41,50]. However, existing 2D GAN-based meth-
ods still have deficiencies when applied to applications that
require more strict 3D consistency (e.g. VR&AR). Due to
the non-physical rendering process of the 2D CNN-based
generators, their synthesized images under pose changes
usually bear certain kinds of multiview inconsistency, such
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as geometry distortions [3,5] and texture sticking or flicker-
ing [24, 55]. These artifacts may not be significant enough
when inspecting each static image but can be easily cap-
tured by human eyes under continuous image variations.

Recently, there are an emerging group of 3D-aware
GANs [9, 10, 13, 19, 39, 40] targeting at image generation
with 3D pose disentanglement. By incorporating Neural
Radiance Field (NeRF) [29] and its variants into the ad-
versarial learning process of GANs, they can produce re-
alistic images with strong 3D-consistency across different
views, given only a set of monocular images as training
data. As a result, 3D-aware GANs have shown greater po-
tential than 2D GANs for pose manipulations of portraits.
However, even though 3D-aware GANs are capable of gen-
erating 3D-consistent portraits of virtual subjects, leverag-
ing them for real image pose editing is still a challenging
task. To obtain faithful reconstructions of real images, most
existing methods [9, 10, 13, 27, 46, 47, 67] turn to a time-
consuming and instance-specific optimization to invert the
given images into the latent space of a pre-trained 3D-aware
GAN, which is hard to scale-up. And simply enforcing an
encoder-based 3D-aware GAN inversion [7, 46] often fails
to preserve fine details in the original image.

In this paper, we propose a novel approach GRAMIn-
verter, for high-fidelity and 3D-consistent novel view syn-
thesis of monocular portraits via single forward pass. Our
method is built upon the recent GRAM [13] that can syn-
thesize high-quality virtual images with strong 3D consis-
tency via the radiance manifolds representation [13]. Never-
theless, GRAM suffers from the same lack-of-fidelity issue
when combined with a general encoder-based GAN inver-
sion approach [52]. The main reason is that the obtained
semantically-meaningful low-dimensional latent code can-
not well record detail information of the input, as also indi-
cated by some recent 2D GAN inversion methods [52, 55].

To tackle this problem, our motivation is to further learn
3D-space high-frequency details and combine them with
the coarse radiance manifolds obtained from the general
encoder-based inversion of GRAM, to achieve faithful re-
construction and 3D-consistent view synthesis. A straight-
forward way to achieve this is to extract a high-resolution
3D voxel from the input image and combine it with the
coarse radiance manifolds. However, this is prohibited by
modern GPUs due to the high memory cost of the 3D voxel.
To tackle this problem, we turn to learn a high resolu-
tion detail manifolds, taking the advantage of the radiance
manifolds representation of GRAM, instead of learning the
memory-consuming 3D voxel. We introduce a novel detail
manifolds reconstructor to extract detail manifolds from the
input images. It leverages manifold super-resolution [60] to
predict high-resolution detail manifolds from a low resolu-
tion feature voxel. This can be effectively achieved by a set
of memory-efficient 2D convolution blocks. The obtained

high resolution detail manifolds can still maintain strict 3D
consistency due to lying in the 3D space. We also propose
dedicated losses to regulate the detail manifolds via 3D pri-
ors derived from the coarse radiance manifolds, to ensure
reasonable novel view results.

Another contribution of our method is an improvement
upon the memory and time-consuming GRAM, without
which it is difficult to be integrated into our GAN inversion
framework. We replace the original MLP-based radiance
generator [13] in GRAM with a StyleGAN2 [26]-based tri-
plane generator proposed by [9]. The efficient GRAM re-
quires only 1/4 memory cost with 7× speed up, without
sacrificing the image generation quality and 3D consistency.

We train our method on FFHQ dataset [25] and conduct
multiple experiments to demonstrate its advantages on pose
control of portrait images. Once trained, GRAMInverter
takes a monocular image as input and predicts its radiance
manifolds representation for novel view synthesis at 3 FPS
on a single GPU. The generated novel views well preserve
fine details in the original image with strong 3D consistency,
outperforming prior art by a large margin. We believe our
method takes a solid step towards efficient 3D-aware con-
tent creation for real applications.

2. Related Work

3D-aware generative model. Learned with monocular
2D images, 3D-aware GANs [9,10,13,17,19,30,31,34,39,
40,45,60,62] achieve an explicit disentanglement of camera
pose by introducing underlying 3D representations. Earlier
works [30, 42, 48] utilize voxel or mesh as the intermediate
representation. Later works [9,10,13,34,39,62,69] leverage
NeRF [29] and its variants [13, 33, 54, 64] to achieve more
strict 3D consistency. Among them, methods that directly
render their 3D representations for image synthesis achieve
the best multiview consistency [10, 13, 17, 40, 45]. We pro-
pose a novel approach for high-quality pose editing of given
portraits based on GRAM [13], which is a recent 3D-aware
GAN with state-of-the-art multiview consistency.

GAN inversion. GAN inversion aims to map a given real
image into the latent space of a pre-trained generator for
image reconstruction and manipulation. Numerous meth-
ods [1,4,6,26,37,38,52,55,63,72,73] try to find a latent code
which can faithfully reconstruct the given image meanwhile
falls inside a semantically meaningful latent space that sup-
ports reasonable editing. They either adopt optimization-
based approach [1, 2, 26, 73], introduce an extra image en-
coder [4, 37, 52], or utilize a hybrid version of the former
two [6, 72]. Nevertheless, recent studies [38, 52, 55, 74] re-
veal that it is difficult to achieve high-fidelity reconstruction
and artifacts-free editing at once given only low-bitrate la-
tent code as representation. As a result, several methods
propose to further fine-tune the pre-trained generator [38]
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Figure 2. Overview of the GRAMInverter. An input portrait image goes through two stages to obtain the final radiance manifolds for novel
view synthesis. The first general inversion stage maps the input image to the latent space of a pre-trained efficient GRAM to obtain coarse
radiance manifolds. The second detail-specific stage then extracts detail feature manifolds from the input image and combines them with
the coarse results for high-fidelity image synthesis. See the text for more details.

or allow more detailed features from the input images to
leak into the generator during inversion [55, 63].

While the above methods target at the inversion of 2D
GANs, inverting a given image with 3D-aware GANs shares
a similar spirit. An advantage of 3D-aware GAN inver-
sion compare to its 2D counterpart is a natural disentan-
glement of the 3D pose. Once inverted, novel view syn-
thesis can be easily achieved without further latent space
exploration [20, 41]. The majority of existing 3D-aware
GAN inversion methods [9,10,13,27,46,47,51,57] leverage
optimization-based or a hybrid approach for faithful recon-
struction, which are time-consuming and hard to scale-up.
A recent method [7] explores GAN inversion with a single
forward of an encoder, yet it struggles to preserve fine image
details. Our proposed method is also an encoder-based in-
version approach which yields high-quality reconstruction
and novel view synthesis thanks to our novel design.

Pose editing of monocular portraits. Editing the camera
pose of a monocular portrait for novel view synthesis is a
longstanding task and has witnessed the emergence of di-
verse methods. Some of them [8, 35, 59, 61, 75, 76] achieve
pose editing by first conducting 3D reconstruction and then
rendering the obtained mesh at novel views. Due to the
imperfect reconstruction results, they often have difficul-
ties handling non-face regions and unseen parts at the input
view. Others [15, 16, 32, 36, 43, 44, 56, 58, 66, 70] generate
novel views in a face-reenactment paradigm, where warp-
ing flows are often learned from video data to transform a
source image to a target viewpoint. These methods may
encounter geometry distortions at novel views due to the
lack of an explicit 3D constraint. More recently, plenty of
works [3,7,12,22,28,41,46,47,50] have studied pose editing
of an image by inverting it into a prior model such as GAN.
With the strong prior bearing in a pre-trained generator, syn-
thesizing novel views of a given portrait can be achieved

without any 3D or video data during training. Among them,
methods using 3D-aware GANs [7,9,13,46,47] have shown
better 3D consistency under pose variations. Our method is
also based on 3D-aware GAN and largely improves the ef-
ficiency, reconstruction quality, as well as 3D consistency.

3. Approach
Given a monocular portrait image Î , we aim to synthe-

size its novel views at some arbitrary camera viewpoints by
leveraging the prior knowledge of a pre-trained 3D-aware
GAN, as shown in Fig. 2. To guarantee high-quality and
3D-consistent novel view synthesis, we adopt GRAM [13]
as our underlying image generator and design an efficient
version of it that requires much less computation and mem-
ory cost so as to incorporate it into our whole framework
(Sec. 3.1). With the efficient GRAM, we first utilize a gen-
eral encoder-based GAN inversion to reconstruct the coarse
radiance manifolds from the input image (Sec. 3.2). We
then introduce a detail-specific reconstruction stage to learn
high-resolution detail manifolds that cannot be well cap-
tured by the coarse result, via our proposed novel detail
manifolds reconstructor (Sec. 3.3). Multiple losses are en-
forced to regulate the predicted detail manifolds to ensure
reasonable synthesized results at novel views, by leveraging
the 3D priors derived from the coarse radiance manifolds
(Sec. 3.4). We describe each part in details below.

3.1. Efficient Generative Radiance Manifolds

We start with a brief review of the original GRAM pro-
posed in [13]. The core of GRAM is its underlying ra-
diance manifolds representation, which regulates radiance
field learning on a set of surface manifolds in the 3D space
instead of predicting it in the whole volumetric space as
done by [29]. The surface manifolds are defined as a set
of iso-surfaces {Si} in a 3D scalar field represented by a
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light-weight MLP called the manifold predictor M:

M : x ∈ R3 → s ∈ R, Si = {x|M(x) = li}, (1)

where {li} are N predefined scalar levels. During image
generation, only intersections {xi} between a viewing ray
r and the surface manifolds will be sent into an MLP-based
radiance generator Φ for radiance prediction:

Φ : (z,xi) ∈ Rdz × R3 → (c, α) ∈ R4, (2)

where z is a latent code determining the radiance, c is the
color, and α is the occupancy. The final color of each ray
can be computed via manifold rendering [13, 71]:

C(r) =

N∑
i=1

∏
j<i

(1− α(xj))α(xi)c(xi). (3)

The high momery cost of GRAM lies in its MLP-based
radiance generator Φ, which requires millions of forward
steps to generate a single image. Inspired by the recent
EG3D [9], we substitute the original radiance generator
with a tri-plane generator [9] based on StyleGAN2 struc-
ture [26]. Its efficient coarse-to-fine structure helps to re-
duce memory and computation costs by a large margin.
Given the new radiance generator, the color and occupancy
for points on the surface manifolds can be obtained by first
generating tri-plane features by a 2D CNN Ψ, and then con-
ducting tri-plane sampling and sending the sampled features
into a small MLP-based decoder m as done in [9]. Note
that although we take the tri-plane generator from EG3D
to improve efficiency, we do not use its 2D super-resolution
module but keep strictly to the radiance manifolds represen-
tation. This helps us to maintain the strong 3D consistency
brought by the manifold rendering. In addition, we calcu-
late ray-manifold intersections at 1/4 resolution of the final
image to further speed up our image generation process (de-
tails in the suppl. material).

The efficient GRAM serves as a strong prior for gen-
erating realistic multiview images of virtual subjects. By
combining it with our two-stage manifolds reconstruction
method, we achieve high-quality novel view synthesis of
real portraits, as described in the following sections.

3.2. General Inversion Stage

Given a pre-trained efficient GRAM following a typ-
ical 3D-aware GAN training paradigm [13], we first in-
troduce an image inverter Ew that maps a given image
to the latent space of the efficient GRAM, as shown in
Fig. 2. Inspired by previous StyleGAN-based inversion
methods [1, 52, 55], we invert the given image into a la-
tent code w+ = [w1,w2, ...,wL] in W+ space [1] of the
tri-plane generator Ψ for a proper trade-off between inver-
sion fidelity and pose editing quality, where L is the num-
ber of layers in Ψ’s synthesis sub-network. We leverage

Edetail

y

x
z

Camera space coordinates

Figure 3. The detail encoder Edetail extracts a camera space fea-
ture voxel from an input image. The voxel corresponds to a quad-
rangular frustum in the 3D space bounded by the near and far
planes of the camera and the outermost viewing rays.

the e4e encoder [52] as the backbone of Ew. Given w+,
we can obtain a coarse radiance manifolds Φ(w+, {Si}) =
m ◦ Ψ(w+, {Si}) via Eq. (1) and (2), and further obtain a
coarse inversion image Iw by rendering the radiance mani-
folds at input viewpoint θ̂ via Eq. (3), where θ̂ can be ob-
tained by off-the-shelf 3D face reconstruction method [14].

We fixed the pre-trained efficient GRAM and learn the
image inverter Ew following the training process of [52],
except that we replaced the adversarial loss in [52] with a
naive L2 loss between predicted w+ and the average latent
code of the W+ space. To further improve the reconstruc-
tion fidelity, we fixed the trained Ew and finetuned the ef-
ficient GRAM via the pivot tuning strategy [38] using all
training images. Details for the above training processes
can be found in the suppl. material.

After training, the general inversion stage can already
synthesize reasonable multiview images of the input, yet it
cannot faithfully preserve the fine details, making the in-
verted result looks less like the original image (see Fig. 6).
Therefore, we introduce a detail-specific stage for faithful
detail reconstruction, as described below.

3.3. Detail-Specific Reconstruction Stage

The detail-specific stage aims to extract fine details from
the input image that cannot be well described by the coarse
radiance manifolds to improve the reconstruction fidelity.
The intuition is to learn high-resolution details in 3D space
so that their combination with the coarse radiance manifolds
still remains strong 3D consistency under pose variations.
To achieve this goal, we design a detail manifolds recon-
structor consisting of two modules: a detail encoder Edetail

that extracts low-resolution feature voxel from the input
image, and a super-resolution module U to predict high-
resolution detail manifolds from the low-resolution voxel.

Specifically, Edetail takes an image Î as input1 and pre-
dicts a camera space feature voxel as shown in Fig. 3:

Edetail : Î ∈ RH×W×3 → V ∈ RHlr×Wlr×Dlr×dV , (4)

1In practice, we find that concatenating Î with an extra difference map
∆ = Î − Iw as input yields better reconstruction quality, where Iw is the
inversion image obtained by the general inversion stage.
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where dV is the feature dimension. We implement Edetail

as a 3D U-Net with skip connections to extract both global
geometry structures as well as local fine textures from the
input image. We refer the readers to the suppl. material for
detailed network structure.

The feature voxel is defined in camera space instead
of world space (i.e. space where tri-plane features of effi-
cient GRAM are defined) as it is easier for Edetail to ex-
tract image-aligned features than to learn transformed world
space features (see Sec. 4.3). Given the feature voxel V , we
can obtain the corresponding feature f lr ∈ RdV for a point
x ∈ R3 in the world space via:

f lr = grid sample(V,world2cam(x)), (5)

where grid sample is a tri-linear interpolation function, and
world2cam is a rigid transformation function between the
world space and the camera space.

Nevertheless, since V is a low-resolution voxel, directly
combining it with the feature manifolds obtained from the
general inversion stage leads to a blurry inversion result,
while predicting a high-resolution voxel (e.g. 2563) instead
causes unaffordable memory cost. Inspired by [60], we
take the advantage of our radiance manifolds representa-
tion to obtain high-resolution detail manifolds from the low-
resolution voxel via manifold super-resolution. Specifically,
we first obtain low-resolution detail manifolds f lr({Si})
by querying features from V via Eq. (5) for low-resolution
points grid on the surface manifolds {Si}. We then flat-
ten each manifold to a low-resolution feature map F lr

i and
send it to the super-resolution module U to obtain a high-
resolution feature map Fhr

i = U(F lr
i ), where U is a sim-

ple 2D CNN of 4 convolution blocks and 2 bilinear upsam-
pling blocks. Finally, we obtain the high-resolution detail
manifolds fhr({Si}) by re-projecting each flattened fea-
ture map Fhr

i to the surface manifolds. Since we conduct
super-resolution for 3D space surface manifolds, 3D con-
sistency across different views can be naturally maintained
during this process. Note that although the manifold super-
resolution strategy is proposed in [60], it does not leverage
it in a reconstruction scenario but to generate random fine
details. By contrast, we utilize it for faithful reconstruction
of high-frequency details in the original image.

Given fhr({Si}) from the detail-specific stage, we add
it to the coarse feature manifolds Ψ(w+, {Si}) from the
general inversion stage, and send each feature point on the
manifolds to the MLP-based decoder m to obtain the final
radiance manifolds, as shown in Fig. 2. The final inversion
image I can then be obtained similarly via manifold render-
ing at input view θ̂. Novel views can also be easily gener-
ated given an arbitrary camera pose θ during rendering.

Î Iw(θ) Nw(θ) M

Figure 4. Visualization of the novel view regularization.

3.4. Detail Manifolds Learning

We fix the image inverter Ew and the efficient GRAM
from the general inversion stage, and learn the detail mani-
folds reconstructor with the following losses.
Image reconstruction loss. A multi-level reconstruction
loss is applied between the final inversion image I and the
input image Î:

Lr = ||I − Î||2 + LPIPS(I, Î) + (1− ⟨fid(I), fid(Î)⟩), (6)

where LPIPS(·, ·) is the perceptual loss defined by [68],
and fid is a pre-trained face recognition network [11].
Novel view regularization. The reconstruction loss guar-
antees a faithful inversion result at the input viewpoint, yet
artifacts can still occur when rendering the radiance mani-
folds at other views. We, therefore, design a regularization
term to ensure reasonable novel view synthesis results:

Lnv = LPIPS(M ⊙ I(θ),M ⊙ Iw(θ)), (7)

where I(θ) and Iw(θ) are final and coarse inversion image
rendered at novel view θ respectively, ⊙ is element-wise
multiplication, and M is a binary mask:

M(u, v) = I(−r(θ̂) ·Nw(θ)(u, v) < τ). (8)

Here (u, v) is the image space coordinate, I is the indica-
tor function, r(θ̂) is the camera lookat direction of the in-
put image Î , Nw(θ) is the surface normal map of Iw(θ),
and τ is a scalar threshold. The intuition behind this reg-
ularization is that the details for regions unobserved in the
input image should stay close to the coarse inversion result
at novel views, as the coarse inversion image is more rea-
sonable at new views due to leveraging the priors from the
pre-trained GRAM. The normal map Nw(θ) in Eq. (8) can
be effectively calculated via the following equation:

Nw(θ)(u, v) = −1

η

N∑
i=1

T (α(xi))α(xi)
∂α(xi)

∂xi
, (9)

where xi are intersections along the ray that (u, v) corre-
sponds to, T (α(xi)) =

∏
j<i(1 − α(xj)) is the accumu-

lated transparency, and η is a normalizing scalar. The partial
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gradient ∂α(xi)/∂xi can be easily computed via backprop-
agating the MLP-based decoder m. Visualizations of the
normal map Nw(θ) and the binary mask M are in Fig. 4.

Depth regularization. We further enforce a depth regu-
larization to the HR detail manifolds fhr({Si}) to ensure
that details are predicted near the geometry surface:

Ldepth =

{
λ∥fhr(xi)∥2 |z(xi)− zsurf | > ϵ

0 |z(xi)− zsurf | ≤ ϵ
, (10)

where xi are intersections along the viewing rays at in-
put viewpoint θ̂, z(xi) is the depth of xi, zsurf =∑N

i=1 T (α(xi))α(xi)z(xi) is the depth of the approxi-
mated surface, and ϵ is a threshold. This regularization en-
sures correct parallax for the learned details (see Sec. 4.3).

4. Experiments
Implementation details. We train our method on the
FFHQ [25] dataset at 2562 resolution and test it on the
CelebA-HQ [23] dataset. All images are pre-processed fol-
lowing the procedure in [13]. The camera pose of input im-
ages is estimated by the face reconstruction method of [14].
We train our models on 4 Tesla V100 GPUs with 32GB
memory. The whole training process takes around 6 days,
where training the efficient GRAM takes 2 days, training
the image inverter and finetuning the efficient GRAM takes
2 days and 1 day respectively, and training the detail mani-
folds reconstructor takes 1 day. More in the suppl. material.

4.1. Novel View Synthesis Results

Figure 1 shows the novel view synthesis results of our
method given different portrait images. Our method well
preserves fine details (e.g. hair bangs, wrinkles, moles) of
the input images and produces their 3D consistent novel
views. The whole inversion and novel view synthesis pro-
cess runs at 3 FPS on a V100 GPU without specialized ac-
celeration, which largely improves the efficiency upon pre-
vious optimization-based 3D-aware GAN inversions. With
the manifold caching technique in [13], we can further in-
crease the free view rendering speed to 180FPS. More ex-
amples and video results are in the suppl. material.

4.2. Comparison with Prior Arts

Comparison with GRAM. We first compare our efficient
version of GRAM with the original one [13]. We mea-
sure the image generation quality by the Fréchet Inception
Distances (FID) [21] between 20K randomly generated im-
ages and 20K sampled real images. The 3D consistency is
measured by the reconstruction quality of NeuS [54] (i.e.
PSNRmv and SSIMmv) on multiview images of 50 gener-
ated instances following [60]. As shown in Tab. 1, our effi-
cient GRAM largely reduces the memory cost and increases

Table 1. Comparison between efficient GRAM and GRAM [13].
*: Inference on a Tesla V100 GPU with a batchsize of 1.

Methods Memory* ↓ FPS* ↑ FID ↓ PSNRmv ↑ SSIMmv ↑
EG3D 2.8G 20 6.02 34.0 0.928
GRAM 12G 2 15.0 38.0 0.966
Ours 3.3G 14 14.2 37.6 0.969

the inference speed upon the original one without sacrific-
ing image generation quality or 3D consistency, by intro-
ducing the StyleGAN2-based radiance generator and the ef-
ficient intersection calculation strategy. This improvement
enables our following GRAMinverter method, otherwise,
it is difficult, if not impossible, to leverage the memory-
consuming GRAM for encoder-based GAN inversion. We
also list the performance of the state-of-the-art EG3D [9]
as a reference. Although EG3D has better image quality, it
sacrifices the 3D consistency which we argue is a key factor
for 3D-aware generation.

Comparison with pose editing methods. We compare
with existing methods that achieve 3D pose editing of a
given portrait via single forward pass, including 2D GAN
inversion-based methods: e4e [52]+InterFaceGAN [41],
HFGI [55]+InterFaceGAN, and HFGI+StyleHEAT [65];
3D-aware GAN inversion-based methods: pix2NeRF [7]
and IDE-3D [46]; and face reenactment methods: PIRen-
derer [36] and Face-vid2vid [56].

We first evaluate the inversion fidelity among GAN
inversion-based methods (Tab. 2). We report PSNR, SSIM,
LPIPS, identity similarity (i.e. ID) measured by cosine dis-
tance of face recognition features [53], and FID. All met-
rics are calculated between the first 1K images of CelebA-
HQ and their corresponding inverted results. Since different
methods may generate images of different resolutions and
alignments, we pre-process all results following [13] and
resize them to 256 × 256 for a fair comparison. As shown,
our method significantly outperforms other 3D-aware GAN
inversion methods across all metrics. We also exceed the
StyleGAN2-based inversion method e4e and achieve com-
parable results with the state-of-the-art method HFGI.

We further compare our method with other approaches
on pose editing of portrait images. We generate novel views
(see the suppl. material) of the 1K test images using differ-
ent methods and evaluate their identity similarity and FID to
the original input in Tab. 2. Higher IDnv and lower FIDnv

indicate that a method can better keep the identity and im-
age quality while changing the camera pose. Our method
yields the best result among all competitors. We also sur-
pass PIRenderer and Face-vid2vid which require video data
for training, while ours is merely trained on monocular in-
the-wild images. Figure 5 shows a visual comparison.

Finally, we measure the 3D consistency of all methods
during continuous variation of the camera viewpoint. Fol-
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Table 2. Quantitative comparison with existing portrait editing methods. See the text for details.

Inversion fidelity Novel view quality 3D consistency
Methods PSNR ↑ SSIM ↑ LPIPS ↓ ID ↑ FID ↓ IDnv ↑ FIDnv ↓ PSNRmv ↑ SSIMmv ↑
PIRenderer [36] – – – – – 0.476 42.64 36.72 0.958
Face-vid2vid [56] – – – – – 0.416 41.76 36.10 0.942

e4e [52] + InterfaceGAN [41] 19.23 0.451 0.213 0.706 35.92 0.489 38.04 34.29 0.909
HFGI [55] + InterfaceGAN [41] 22.30 0.579 0.135 0.827 26.41 0.516 45.23 33.99 0.917
HFGI [55] + StyleHEAT [65] 22.30 0.579 0.135 0.827 26.41 0.457 58.33 35.93 0.951
pix2NeRF [7] 16.95 0.394 0.452 0.466 108.3 0.378 115.6 50.66 0.997
IDE-3D (encoder) [46] 16.73 0.382 0.290 0.393 51.51 0.324 47.56 37.57 0.950
Ours 21.51 0.650 0.127 0.936 28.17 0.635 36.02 39.53 0.974

InputOursIDE-3D (encoder)pix2NeRFStyleHEAT

InputHFGI+InterFaceGANe4e+InterFaceGANFace-vid2vidPIRenderer

Figure 5. Pose editing comparison. Texture images with smoothly tilted strips indicate better 3D consistency. Best viewed with zoom-in.

lowing [60], for each method, we generate 30 images un-
der different views for 50 test instances in CelebA-HQ, and
measure the multiview reconstruction quality of NeuS on
them (i.e. PSNRmv and SSIMmv). In theory, better 3D
consistency across different views would reduce the learn-
ing difficulty of NeuS, thus leading to higher PSNR and
SSIM. Table 2 shows that our method has the second best
3D consistency among all methods, while the best one (i.e.
pix2NeRF) generates over-smooth images of low quality
as shown in Fig. 5 and indicated by the high FID score in
Tab. 2. Our method outperforms IDE-3D in that it utilizes

a 2D super-resolution module in its 3D-aware GAN which
lowers the 3D consistency to some extent. Nevertheless, all
3D-aware GAN-based methods yield better 3D consistency
compared to other 2D methods, indicating the importance
of 3D-aware GAN for pose editing of images. A further
comparison with the full pipeline of IDE-3D which includes
an extra optimization step is in the suppl. material.

Figure 5 further shows the visual comparison of 3D con-
sistency, where we draw the stacked texture image of a fixed
horizontal line segment during continuous camera move-
ment following [60]. Methods with strong 3D consistency
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Figure 6. Visual comparison between different alternatives. Our
final solution yields the best result. Best viewed with zoom-in.

Table 3. Ablation study of our proposed framework.

Methods PSNR ↑ LPIPS ↓ ID ↑ FIDnv ↓
General 17.68 0.265 0.648 44.43
General - pretrain 17.45 0.280 0.472 52.12
General + finetune 18.00 0.254 0.678 43.46
Detail (Ours) 21.51 0.127 0.936 36.02
Detail - world2cam 19.96 0.171 0.908 38.74
Detail - superres 21.06 0.165 0.926 38.45
Detail - Lnv 22.32 0.106 0.949 36.49
Detail - mask 19.08 0.211 0.840 43.25
Detail - Ldepth 23.68 0.094 0.960 35.60

will result in texture images with smoothly tilted strips,
while methods with low 3D consistency produce twisted
textures (i.e. geometry distortions and texture flickering is-
sues) or vertical lines (i.e. texture sticking issues). Our
method clearly produces a more reasonable texture image
compared to the others. See the suppl. material and the
accompanying video for more results.

4.3. Ablation Study

We conduct an ablation study to validate the efficacy of
our proposed framework and report the results in Tab. 3 and
Fig. 6. All metrics are calculated similarly as in Sec. 4.2.

Inversion stage. Table 3 shows the performance of differ-
ent stages. General stands for the general inversion stage
without finetuned generator. General - pretrain denotes
learning the efficient GRAM with Ew together instead of
pre-training it via the 3D-aware GAN framework. Gen-
eral + finetune denotes finetuning the pre-trained efficient
GRAM as described in Sec. 3.2, and Detail denotes our fi-
nal approach with detail-specific reconstruction. As shown,

the general stage alone cannot produce faithful reconstruc-
tion result, whether the efficient GRAM is further finetuned
or not. By contrast, introducing the detail-specific recon-
struction significantly improves the inversion fidelity upon
the previous stage without sacrificing novel view quality.
Learning the efficient GRAM together with the encoder
without pre-training leads to a significant performance drop,
indicating the importance of leveraging the prior knowledge
of a pre-trained 3D-aware GAN.

Network architecture. We ablate the architecture of the
detail manifolds reconstructor. As shown in Tab. 3 and
Fig. 6, learning the low-resolution detail voxel in world
space instead of in camera space (- world2cam) harms the
reconstruction fidelity. And removing the super-resolution
module for high-resolution manifold prediction (- superres)
leads to blurry inversion results.

Regularization. We further validate our proposed regu-
larization for detail manifolds learning. As shown in Tab. 3
and Fig. 6, removing the novel view regularization (- Lnv)
causes obvious artifacts at new views and leads to the in-
crease of FIDnv , though it improves the reconstruction
quality at the input viewpoint. Simply enforcing Lnv with-
out the normal-aware mask (- mask) damages fine texture
preservation at visible regions. Finally, although learning
without the depth regularization (- Ldepth) results in better
metrics, we find that it cannot well preserve certain fine de-
tails at novel views due to incorrect parallax brought by the
depth error (e.g. mole in Fig. 6). We conjecture that such
dynamic artifact can hardly be captured by the current fea-
ture extractor [49] for FID computation.

5. Conclusions
We presented GRAMinverter, a novel approach for high-

fidelity and 3D-consistent portrait synthesis from monocu-
lar images via single forward pass. The core idea is to learn
a detail manifolds reconstructor to predict 3D-consistent
fine details on the radiance manifolds from a input im-
age, and combine them with the coarse radiance manifolds
obtained via an encoder-based inversion of the pre-trained
GRAM. Extensive experiments have demonstrated our su-
perior results over previous works. We believe our method
paves a new way for efficient 3D-aware portrait creation.

Limitations and future works. Our GRAMinverter has
several limitations. Based on the radiance manifold repre-
sentation, it produces layered artifacts at large viewing an-
gles. It cannot well handle occlusions of hands and other
accessories. Its performance is also affected by the training
data and may produce inferior results for out-of-distribution
input. Besides, it does not support editing of attributes be-
yond camera viewpoints as done in previous 2D GAN in-
versions. Better 3D representations and inversion strategies
should be further explored to alleviate these problems.
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