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Figure 1. From left to right: We present a single-image NeRF synthesis framework for in-the-wild images without 3D supervision by
leveraging general priors from large-scale image diffusion models. Given an input image, we optimize for a NeRF by minimizing an image
distribution loss for arbitrary-view renderings with the diffusion model conditioned on the input image. We design a two-section semantic
feature as the conditioning input to the diffusion model. The first section is the image caption s0 which carries the overall semantics; the
second section is a text embedding s∗ extracted from the input image with textual inversion, which captures additional visual cues. Our
two-section semantic feature provides an appropriate image prior, allowing the synthesis of a realistic NeRF coherent to the input image.

Abstract
2D-to-3D reconstruction is an ill-posed problem, yet hu-

mans are good at solving this problem due to their prior
knowledge of the 3D world developed over years. Driven by
this observation, we propose NeRDi, a single-view NeRF
synthesis framework with general image priors from 2D
diffusion models. Formulating single-view reconstruction
as an image-conditioned 3D generation problem, we op-
timize the NeRF representations by minimizing a diffusion
loss on its arbitrary view renderings with a pretrained im-
age diffusion model under the input-view constraint. We
leverage off-the-shelf vision-language models and introduce
a two-section language guidance as conditioning inputs to
the diffusion model. This is essentially helpful for improving
multiview content coherence as it narrows down the general
image prior conditioned on the semantic and visual features
of the single-view input image. Additionally, we introduce
a geometric loss based on estimated depth maps to regular-
ize the underlying 3D geometry of the NeRF. Experimental

results on the DTU MVS dataset show that our method can
synthesize novel views with higher quality even compared
to existing methods trained on this dataset. We also demon-
strate our generalizability in zero-shot NeRF synthesis for
in-the-wild images.

1. Introduction
Novel view synthesis is a long-existing problem in com-

puter vision and computer graphics. Recent progresses
in neural rendering such as NeRFs [22] have made huge
strides in novel view synthesis. Given a set of multi-
view images with known camera poses, NeRFs represent
a static 3D scene as a radiance field parametrized by a neu-
ral network, which enables rendering at novel views with
the learned network. A line of work has been focusing
on reducing the required inputs to NeRF reconstructions,
ranging from dense inputs with calibrated camera poses to
sparse images [11, 25, 52] with noisy or without camera
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poses [47]. Yet the problem of NeRF synthesis from one
single view remains challenging due to its ill-posed nature,
as the one-to-one correspondence from a 2D image to a 3D
scene does not exist. Most existing works formulate this
as a reconstruction problem and tackle it by training a net-
work to predict the NeRF parameters from the input im-
age [8, 52]. But they require matched multiview images
with calibrated camera poses as supervision, which is in-
accessible in many cases such as images from the Internet
or captured by non-expert users with mobile devices. Re-
cent attempts have been focused on relaxing this constraint
by using unsupervised training with novel-view adversarial
losses and self-consistency [21, 51]. But they still require
the test cases to follow the training distribution which lim-
its their generalizability. There is also work [44] that ag-
gregates priors learned on synthetic multi-view datasets and
transfers them to in-the-wild images using data distillation.
But they are missing fine details with poor generalizability
to unseen categories.

Despite the difficulty of 2D-to-3D mapping for comput-
ers, it is actually not a difficult task for human beings. Hu-
mans gain knowledge of the 3D world through daily ob-
servations and form a common sense of how things should
look like and should not look like. Given a specific image,
they can quickly narrow down their prior knowledge to the
visual input. This makes humans good at solving ill-posed
perception problems like single-view 3D reconstruction. In-
spired by this, we propose a single-image NeRF synthe-
sis framework without 3D supervision by leveraging large-
scale diffusion-based 2D image generation model (Figure
1). Given an input image, we optimize for a NeRF by mini-
mizing an image distribution loss for arbitrary-view render-
ings with the diffusion model conditioned on the input im-
age. An unconstrained image diffusion is the ‘general prior’
which is inclusive but also vague. To narrow down the prior
knowledge and relate it to the input image, we design a two-
section semantic feature as the conditioning input to the dif-
fusion model. The first section is the image caption which
carries the overall semantics; the second is a text embed-
ding extracted from the input image with textual inversion
[9], which captures additional visual cues. These two sec-
tions of language guidance facilitate our realistic NeRF syn-
thesis with semantic and visual coherence between different
views. In addition, we introduce a geometric loss based on
the estimated depth of the input view for regularizing the
underlying 3D structure. Learned with all the guidance and
constraints, our model is able to leverage the general image
prior and perform zero-shot NeRF synthesis on single im-
age inputs. Experimental results show that we can generate
high quality novel views from diverse in-the-wild images.
To summarize, our key contributions are:

• We formulate single-view reconstruction as a condi-
tioned 3D generation problem and propose a single-

image NeRF synthesis framework without 3D supervi-
sion, using 2D priors from diffusion models trained on
large image datasets.

• We design a two-section semantic guidance to narrow
down the general prior knowledge conditioned on the in-
put image, enforcing synthesized novel views to be se-
mantically and visually coherent.

• We introduce a geometric regularization term on esti-
mated depth maps with 3D uncertainties.

• We validate our zero-shot novel view synthesis results on
the DTU MVS [12] dataset, achieving higher quality than
supervised baselines. We also demonstrate our capabil-
ity of generating novel-view renderings with high visual
quality on in-the-wild images.

2. Related Work
Novel view synthesis with NeRF. The recently proliferat-
ing NeRF representation [22] has shown great success in
novel view synthesis, which is a long-existing task in com-
puter graphics and vision. Combining differentiable render-
ing [15, 53, 54, 55] with neural network scene parametriza-
tions, NeRF is able to recover the underlying 3D scene from
a collection of posed images and render it at novel views re-
alistically. A number of follow-up works have been focus-
ing on relaxing NeRF inputs to less informative data such as
unposed images [20, 47, 50] or sparse views [6, 11, 25, 33].
As less data gives rise to a more complex optimization land-
scape, a variety of regularization losses have been studied,
for example: RegNeRF [25] regularizes the geometry and
appearance of patches, DDP [33] and DS-NeRF [6] regular-
ize the depth maps, DietNeRF [11] enforces semantic con-
sistency between views by minimizing a CLIP [29] feature
loss, and GNeRF [20] adopts a patch-based adversarial loss.
Another line of work learns NeRF-based novel-view predic-
tion for few- or single-image inputs by pre-training a scene
prior on a large dataset of 3D scenes containing dense views
[4, 5, 17, 43, 45, 52]. With additional self-supervision tech-
niques such as equivariance [8] or cycle-consistency [21],
the learning of scene priors can be done simply from sparse-
or single-view data, or even purely from unposed image col-
lections with an image adversarial loss [2, 3, 26, 38, 49].
These two lines of works both have their specialties and
constraints: the first is generalizable to any scene configu-
rations, but is also less competitive in the more challenging
scenarios such as single-image novel view synthesis with
high quality requirements; the second, on the other hand,
has strong ability of inferring unseen novel views from very
limited inputs, but is also restricted to certain scene cate-
gories modeled by their scene priors learned from the train-
ing data. In our work, we leverage a diffusion-based image
prior for NeRF synthesis that is general enough for model-
ing variations of in-the-wild images while having the adap-
tivity to each specific input image.

20638



Figure 2. Method overview. We represent the underlying 3D
scene as a NeRF and optimize for its parameters with three losses:
a reconstruction loss at the fixed input view; a diffusion loss at
arbitrarily sampled views which also takes a conditioning text in-
put generated from the input image with our two-section feature
extraction; and finally, a depth correlation loss at the input view
regularizing the 3D geometry.

Diffusion-based generative models. Denoising diffusion
probabilistic models [10, 40], or score-based generative
models [41, 42], have recently caught a surge of inter-
ests due to their simple designs and excellent performances
across a variety of computer vision tasks such as image gen-
eration [10, 40, 41, 42], completion [35, 42], and editing
[13, 19]. In visual content creation, language-guided image
diffusion models such as DALL-E2 [31], Imagen [36] and
Stable Diffusion [34] have shown great success in generat-
ing photo realistic images with strong semantic correlation
to the given text-prompt inputs. In additional to the success
of 2D image diffusion models, more recent works have also
extend diffusion models to 3D content generation. [18, 57]
generate 3D pointclouds with point diffusions. 3DiM [48]
shows uncertainty-aware novel view synthesis with image
diffusions conditioned on input views and poses, but it does
not have guaranteed multiview consistency as no underly-
ing 3D representation is adopted. More related to ours are
DreamFusion [27] and GAUDI [1] that also generate NeRFs
with diffusions: [27] generates NeRFs under language guid-
ance by optimizing for their renderings at randomly sam-
pled views with a 2D image diffusion model [36]; [1] trains
a diffusion model on the latent space of NeRF scenes, but
the learned scene distribution is limited to a set of indoor 3D
scenes and does not generalize to in-the-wild images. Simi-
lar to [27], we also leverage 2D image diffusions to optimize
for the NeRF renderings at novel views, but instead of un-
constrained NeRF generation with user-specified language
inputs, we study how to faithfully capture the the features of
single-view image inputs and use it to constrain the novel-
view image distributions.

3. Method
An overview of our method is shown in Figure 2. Given

an input image x0, we would like to learn a NeRF repre-

sentation Fω : (x, y, z) → (c, σ) as its 3D reconstruc-
tion†. The NeRF holds the rendering equation that, for
any camera view with pose P, one can sample camera rays
r(t) = o+ td and render the image x at this view with

Ĉ(r) =

∫ tf

tn

T (t)σ(t)c(t)dt (1)

where T (t) = exp
(
−
∫ t
tn
σ(s)ds

)
. For more details,

please refer to Mildenhall et al. [22]. For simplicity, we de-
note this whole rendering equation by x = f(P, ω) which
means NeRF f renders image x at camera pose P with pa-
rameters ω. Instead of predicting the NeRF parameters ω
from x0 in a forward pass, we formulate this as a condi-
tioned 3D generation problem

f(·, ω) ∼ 3D scene distribution | f(P0, ω) = x0 (2)
where we optimize the NeRF to follow a 3D scene distri-
bution conditioned on that its rendering f(P0, ω) at a given
view P0 should be the input image x0

Directly learning the 3D scene distribution prior requires
large 3D datasets, which is less straightforward to acquire
and restricts its application to unseen scene categories. To
enable better generalizability to in-the-wild scenarios, we
instead leverage 2D image priors and reformulate the ob-
jective into

∀P, f(P, ω) ∼ P | f(P0, ω) = x0 (3)
where the optimization is conducted on images f(P, ω)
rendered at arbitrarily sampled views, pushing them to fol-
low an image prior P while satisfying the constraint x0 =
f(P0, ω). The overall objective can be written as maximiz-
ing the conditional probability

max
ω

EP P (f(P, ω) | f(P0, ω) = x0, s) . (4)

Here, s is an additional semantic guidance term that we
apply to further restrict the prior image distribution to fit
the generation context. In contrast to DreamFusion [27]
which also utilizes language-guided image diffusion model
as 2D image priors for sampled views, our main contribu-
tion stands in our approach for further constraining the iden-
tity of the generated 3D volume to be consistent with the
inputs.

We cover more details on this novel-view distribution
loss in Sec. 3.1. We utilize natural language descriptions of
the scene as the semantic guidance s. More details on this
will be discussed in Sec. 3.2. In addition, as the image dif-
fusion model only operates on the rendered rgb colors, we
further apply a geometric regularization with a depth map
estimated at the input view to facilitate the NeRF optimiza-
tion (Sec. 3.3)

3.1. Novel View Distribution Loss
Denoising Diffusion Probabilistic Models (DDPM) are

a type of generative models that learn a distribution over

†Here we use a Lambertian NeRF without view direction inputs for
enforcing stronger multiview consistency.
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training data samples. Recently, there are many advances in
language guided image synthesis with diffusion models. We
build our method upon the recent Latent Diffusion Model
(LDM) [34] for its high quality and efficiency in image gen-
eration. It adopts a pre-trained image auto-encoder with an
encoder E(x) = z mapping images x into latent codes s
and a decoder D(E(x)) = x recovering the images. The
diffusion process is then trained in the latent space by min-
imizing the objective

Ez∼E(x),s,ε∼N (0,1),t

[
‖ε− εθ(zt, t, cθ(s))‖22

]
. (5)

where t is a diffusion time scale, ε ∼ N (0, 1) is a random
noise sample, zt is the latent code z noised to time t with ε,
and εθ is the denoising network with parameters θ to regress
the noise ε. The diffusion model also takes a conditioning
input s which is encoded as cθ(s) and serves as guidance in
the denoising process. For text-to-image generation models
such as the LDM, cθ is a pre-trained large language model
that encodes the conditional text s.

In a pre-trained diffusion model, the network parame-
ters θ are fixed, and we can instead optimize for the in-
put image x with the same objective which transforms x to
follow the image distribution priors conditioned on s. Let
x = f(P, ω) be our NeRF rendering at arbitrarily sampled
view P, we can back propagate gradients to the NeRF pa-
rameters ω and thus get a stochastic gradient descent on ω.

3.2. Semantics-Conditioned Image Priors
We argue that the prior distribution over all in-the-wild

images is not specific enough to guide the novel view syn-
thesis from an arbitrary image. We thus introduce a well-
designed guidance s that narrows down the generic prior
over natural images to a prior of images related to the in-
put image x0. Here we choose text as the guidance, which
is flexible for describing arbitrary input images. Text-to-
image diffusion models such as LDM utilize a pre-trained
large language model as the language encoder to learn a
conditional distribution over images conditioned on lan-
guage. This serves as a natural gateway for us to utilize
language as a means to restrict the image prior space.

The most straightforward way of getting a text prompt
from the input image is to use an image captioning or clas-
sification network S trained on (image, text) datasets and
predict a text s0 = S(x0). However, while text descrip-
tion can summarize the semantics of the image, it leaves a
huge space of ambiguities, making it hard to include all the
visual details in the image especially with limited prompt
length. In Figure 3 top row, we show the images generated
with the caption “a collection of products” from the input
image on the left. While their semantics are highly accu-
rate with respect to the language description, the generated
images have very high variances in their visual patterns and
low correlations to the input image.

Textual inversion [9], on the other hand, optimizes for
the text embedding of one or few images from a text-based

image diffusion model. With the LDM Equation 5, we can
optimize for the text embedding s∗ for the input image x0

by
s∗ = argmin

s
Ez∼E(x0),s,ε∼N (0,1),t

[
‖ε− εθ(zt, t, cθ(s))‖22

]
(6)

In Figure 3 middle row, images generated with textual in-
version are shown. The colors and visual cues of the input
image are well captured (orange-colored elements, food,
and even the brand logos). However, the semantics at the
macro level is sometimes wrong (second column is a per-
son playing sports). One reason is that, different from the
multi-image scenarios where textual inversion can discover
the common contents of these images, it is unclear for one
single image what the key features are that the text embed-
ding should focus on.

To reflect both semantic and visual characteristics of the
input image in the novel view synthesis task, we combine
these two methods by concatenating their text embeddings
to form a joint feature s = [s0, s∗] and use it as the guid-
ance in the diffusion process in Equation 5. Figure 3 bottom
row shows the images generated with this joint feature, with
balanced semantics and visual cues.

3.3. Geometric Regularization
While image diffusion shapes the appearance of the

NeRF, multiview consistency is difficult to enforce as the
underlying 3D geometry can be different even with the
same image rendering [14, 23], making the gradient back-
propagation (from the image diffusion to the NeRF param-
eters ω) highly non-controllable. To this end, we further in-
corporate a geometric regularization term on the input view
depth to alleviate this issue. We adopt the Dense Prediction
Transformer (DPT) model [32] trained on 1.4 million im-
ages for zero-shot monocular depth estimation and apply it
to the input image x0 to estimate a depth map d0,est. We use
this estimated depth to regularize the depth

d̂0 =

∫ tf

tn

σ(t)dt. (7)

rendered by the NeRF at input view P0. Due to the ambigu-
ities of the estimated depth (including scales, shifts, camera
intrinsics) and estimation error (Figure 4), we cannot back
project pixels with depth to 3D and compute the regulariza-
tion directly. Instead, we maximize the Pearson correlation
between the estimated depth map and the NeRF-rendered
depth

ρ
(
d̂0,d0,est

)
=

Cov(d̂0,d0,est)√
Var(d̂0)Var(d0,est)

(8)

which measures if the rendered depth distribution and the
noisy estimated depth distribution are linearly correlated.

4. Experiments
Now we demonstrate our efficacy in synthesizing realis-

tic NeRFs with single-view inputs. Section 4.1 presents a
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Figure 3. Image generation with different semantic guidance. Top row: Images generated with caption “a collection of products”.
Middle row: Images generated purely with the latent embedding from textual inversion. The semantics can sometimes be erroneous
(second column, the image is a person playing sports). Bottom row: Images generated with combined image caption and textual inversion.

Figure 4. Ambiguity in estimated depth map.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 8.000 0.286 0.703
pixelNeRF 15.550 0.537 0.535
pixelNeRF, LMSE ft 16.048 0.564 0.515
SinNeRF 16.520 0.560 0.525
DietPixelNeRF 14.242 0.481 0.487
Ours 14.472 0.465 0.421

Table 1. Single-image novel view synthesis results on DTU.

quantitative comparison between our method and the state-
of-the-art single-view NeRF reconstruction methods on a
synthetic dataset. Section 4.2 shows a qualitative compari-
son as well as more synthesis results of our method on in-
the-wild images.

4.1. DTU Scenes
Setup. We evaluate our method on the DTU MVS dataset
[12] with 15 test scenes as specified in [52]. For each input
image, we use GPT-2 [30] to generate a caption (with slight
manual corrections on some obvious mistakes while trying
our best not to introduce additional details). The scenes and
their captions are listed in the supplementary material.
Implementation details. For the NeRF model, we imple-
ment the multi-resolution grid sampler as described in [24].
For the diffusion model, we employ the text-guided diffu-
sion model from [34] which was pre-trained on the LAION-
400M dataset [37]. While [34] operates on 512 × 512 im-
ages, NeRF’s volumetric rendering at this resolution would
incur an extensive computational burden. Thus, at the ran-
domly sampled novel views, we render 128 × 128 images
and resize them to 512 × 512 before feeding them to the
encoder of [34]. At the input view, we render at the same
resolution as the input image to compute the image recon-

struction and depth correlation losses.

Baselines. We compare with the state-of-the-art single-
view NeRF reconstruction algorithms, PixelNeRF [52], its
fine-tuned model with CLIP [29] feature consistency loss
as proposed by DietNeRF [11], and SinNeRF [49], all of
which trained on the training set data from the DTU MVS
dataset. To gain better convergence, we use the predictions
from [52] as an initialization for our 3D scene optimization.
But our method is directly applied to the test scenes without
any additional fine-tuning the DTU dataset.

Results. Table 1 shows the quantitative comparisons. Fol-
lowing the convention, we report the standard image qual-
ity metrics PSNR and SSIM [46]. Our PSNR and SSIM
are slightly lower than pixelNeRF and SinNeRF which di-
rectly learn the scene distributions from the DTU training
set and are on par with DietPixelNeRF [11] which enforces
semantic consistency between views. However, we empha-
size that these two metrics are less indicative in our scenario
as they are local pixel-aligned similarity metrics between
the synthesized and ground truth images but uncertainties
naturally exist in single-view 3D inference. For example:
In Figure 5, (the first scene, middle column) the height of
the tallest snack bag cannot be inferred as its top extrudes
beyond the camera view; (the third scene, left column) the
width of the toy pig cannot be inferred from the input side
view. In both cases our method guesses its novel view (bot-
tom row) in a reasonable sense but different from the ground
truth (top row). In addition, we also measure novel views
with LPIPS [56], which is a perceptual metric computing
the Mean Squared Error (MSE) between normalized fea-
tures from all layers of a pre-trained VGG encoder [39].
Our method shows a significant improvement on this metric
compared to the baselines as the diffusion model helps to
improve image qualities while the language guidance main-
tains the multi-view semantic consistency.

Figure 5 shows a qualitative comparison between our
method and the baselines. With the scene initialization from
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Figure 5. Single-image novel view synthesis results on the DTU test scenes. Vanilla NeRF cannot recover scenes from single image
inputs due to the ill-posed nature of this problem. While pixelNeRF can infer the novel view images with the prior from the DTU training
set of similar scenes, its synthesized renderings remain noisy and blurry. Our method is able to synthesize cleaner novel views with realistic
geometries and appearances, despite never being trained on this dataset. Uncertainties in novel view inference: (The first scene, middle
column) the exact height of the tallest snack bag cannot be inferred as the top goes outside of the camera view. (The third scene, left
column) the width of the toy pig from the top view is undecidable from the input view.

Method Google Scan. Obj. Img. in the Wild
Text sim. Img. sim. Text sim. Img. sim.

DietNeRF 0.231 0.755 0.236 0.798
Ours 0.251 0.737 0.248 0.790

Table 2. CLIP feature similarities.

[52], our method removes the noises and blurriness, synthe-
sizing high quality novel views.

4.2. Images in the Wild
Qualitative comparisons. Figure 6 shows a qualitative
comparison between our method and existing state-of-the-
art single-image to 3D synthesis methods for in-the-wild
images [11, 44]. Input images are adopted from the
Google Scanned Objects dataset [7] with their category la-
bels (‘bag’ and ‘hat’) as captions. Similar to ours, Diet-
NeRF [11] uses an input-view constrained NeRF optimiza-
tion technique where they minimize the CLIP [29] feature
between arbitrary view renderings. While CLIP features en-
force consistent appearances, they fail to capture the global
semantics of the object. SS3D [44] is a forward-prediction
model for 3D geometries that transfers the priors learned
on synthetic datasets to in-the-wild images with knowledge
distillation. While it generates more structured global ge-
ometries, it fails to capture the fine geometric details of the
input image. The geometries of the hats in the bottom rows
are also incorrect, with only the silhouette shape preserved
but the structure of ‘hat’ shape missing. Geometric outputs
of our method can be found in the supplementary material.
CLIP feature similarities. Table 2 shows the CLIP feature
similarities between the synthesized novel views with both
the input image and the text (plain text without textual inver-

Method Google Scanned Objects Images in the Wild
Text sim. Img. sim. Real Text sim. Img. sim. Real.

DietNeRF 3.75% 20.00% 6.94% 10.21% 6.87% 8.12%
Ours 96.25% 80.00% 93.06% 89.79% 83.13% 91.88%

Table 3. User study results.

sion). The CLIP model for evaluation is ViT-L/14, different
from the ViT-B/16 in DietNeRF optimizations. Our model
shows higher similarity to the text semantics but lower fea-
ture similarity to the input image. Note that DietNeRF di-
rectly minimizes the CLIP feature loss between views and
tend to duplicate the input view at novel views (Figure 6).

User study. We also conduct a user study as in [9] to get
the mean opinion score (MOS) and table 3 show our results.
The users are asked to select the image from each image
pair that “better represents the text” / “is more relevant to
the image” / “is more realistic as a real-world object”. We
collected 40 answers and our results are significantly better
in both input-similarities and realisticity.

More results. Figure 7a shows our results on images of
objects from the internet. The text prompts are words or
phrases used to search for the images. The backgrounds are
masked out using an off-the-shelf dichotomous image seg-
mentation network from [28]. For each input, we show 3
different novel views that are distant from the input view.
Figure 7b shows our results on images with more com-
plex contents and backgrounds from the COCO dataset [16]
which contains (image, caption) pairs. Within camera views
close to the input, our model is still able to generate realistic
renderings. But it can hardly generalize to distant views due
to the limited capacity of the NeRF scene box.
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Figure 6. Novel view synthesis results on objects from the Google Scanned Objects Dataset. Left: Our results generated from single-
word text inputs ‘backpack’ (top 3 rows) and ‘hat’ (bottom 3 rows). Middle: DietNeRF [11] synthesizes novel views with consistent
textures and styles, but fails to capture the global semantic meaning. For a fair comparison, DietNeRF is also optimized with depth
regularization. Right: SS3D [44] predicts coarse geometries in a consistency manner but fails to recover all the fine geometric details.

(a) Results on object-centric images from the internet with single-word or short
phrase captions. Input backgrounds are removed with [28].

(b) Results on images from the COCO dataset [16]. Input images have more complex
contents with backgrounds and the captions are sentences.

Figure 7. Results on images in the wild.

4.3. Ablation Studies
We use ablation studies to show the efficacy of our two-

section semantic guidance and geometric regularization.

Semantic guidance. Figure 8a shows the ablation of the
two text embeddings s0 from image captions and s∗ from
textual inversion. Without the captions s0, the model fails
to learn the overall semantics and cannot generate a mean-
ingful object. While both the full model and the caption-
only one (without textual inversion) successfully generate
backack novel views, the results without textual inversion
s∗ have more blurriness and noises. A zoom-in comparison
is shown in Figure 8b.

Figure 8c shows another comparison of models with and
without textual inversion s∗ on the can example from Figure

7b left. In the object regions visible to the input view, the
full model better recovers the fine details (the white letters
on the lateral); and in the invisible regions, the full model
completes the appearances with coherent styles of the in-
put (red and white textures at the back of the can), while
the model without textual inversion does not have such ap-
pearance coherency. The model with textual inversion can
even synthesize the pull tab at the top (second column of
the zoom-in views) by inferring from the input side view
that this is a can containing drinks.

Geometric regularization. Figure 9 shows an ablation on
the geometric regularization term. Both image renderings
and depth maps are visualized. The full model is able to
synthesize realistic novel views with coherent 3D geome-
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(a) Top row: Full model. Middle row: Caption-only guidance without textual inver-
sion. A zoom-in comparison is shown in 8b below. Bottom row: Textual-inversion-
only without caption. Textual inversion fails to capture the global semantics.

(b) A zoom-in comparison between full model results and results without textual
inversion. The full model shows better capability of synthesizing less blurry details.

(c) Another comparison between models with ant without textual inversion. The
input is from 7b left, bottom row.

Figure 8. Ablations on the two-section semantic guidance.

Figure 9. Ablations on the geometric regularization. Visual-
ization of input view reconstruction and novel views on rendered
images and depth maps.

try. The model without the regularization on the input view
depth can still generate realistic appearances at novel views
with the diffusion model, but the underlying 3D geometry
is erroneous and multi-view consistency is not enforced. As
a sanity check, we also visualize the results with only the
depth loss but without the diffusion model. The model is
unable to generate a realistic NeRF due to the 3D ambigui-
ties of monocular depth as stated in Section 3.3.

5. Conclusions
In this paper, we propose a novel framework for zero-

shot single-view NeRF synthesis for images in the wild
without 3D supervision. We leverage the general image pri-
ors in 2D diffusion models and apply them to the 3D NeRF
generation conditioned on the input image. To efficiently
use these priors in synthesizing consistent views, we de-

(a) A failure case due to the biases in the image diffusion model. Top: Novel view
synthesis results with text prompt ‘a shoe in the style of <input>’.
Bottom: Images generated by [34] with text prompt “a single shoe”. Yet half of the
images have two shoes in it.

(b) A failure case on a highly deformable instance. While the overall body shape
of the cat is captured, the synthesized cat has two heads and two tails.

Figure 10. Failure cases.

sign a two-section language guidance as conditioning in-
puts to the diffusion model which unifies the semantic and
visual features of the input image. To our knowledge, we
are the first to combine semantic and visual features in the
text embedding space and apply it to novel view synthesis.
In addition, we introduce a geometric regularization term
while addressing the 3D ambiguity of monocular-estimated
depth maps. Our experimental results show that, with well-
designed guidance and constraints, one can leverage general
image priors to specific image-to-3D, enabling us to build
generalizable and adaptable reconstruction frameworks.
Limitations and future work. As our method relies on
multiple large pre-trained image models [28, 30, 32, 34],
any biases in these models will affect our synthesis results.
Figure 10a shows an example where the image diffusion
model [34] can generate two shoes even the text prompt is
“a single shoe”, resulting in our synthesized NeRF showing
the features of multiple shoes. Our method is also less ro-
bust to highly deformable instances, as our language guid-
ance focuses on semantics and styles but lacks a global de-
scription of physical states and dynamics. Figure 10b shows
such a failure case. Renderings from each independent view
are visually plausible but represent different states of the
same instances.

Besides, while formulation-wise the optimization is ap-
plicable to any scenes, it is more suitable for object-centric
images as it takes the underlying assumption that the scene
has exactly the same semantics from any view, which is not
true for large scenes with complex configurations due to
view changes and occlusions. The text embedding learned
from textual inversion is of the dimension of a single-world
embedding, limiting its expressiveness in representing the
subtleties complex contents.
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