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Abstract

In this paper we introduce a rule-based, compositional,
and hierarchical modeling of action using Therbligs as our
atoms. Introducing these atoms provides us with a con-
sistent, expressive, contact-centered representation of ac-
tion. Over the atoms we introduce a differentiable method of
rule-based reasoning to regularize for logical consistency.
Our approach is complementary to other approaches in that
the Therblig-based representations produced by our archi-
tecture augment rather than replace existing architectures’
representations. We release the first Therblig-centered an-
notations over two popular video datasets - EPIC Kitchens
100 and 50-Salads. We also broadly demonstrate bene-
fits to adopting Therblig representations through evalua-
tion on the following tasks: action segmentation, action
anticipation, and action recognition - observing an aver-
age 10.5%/7.53%/6.5% relative improvement, respectively,
over EPIC Kitchens and an average 8.9%/6.63%/4.8% rel-
ative improvement, respectively, over 50 Salads. Code and
data will be made publicly available.

1. Introduction
We propose the use of Therbligs - a low-level mutu-

ally exclusive contact demarcated set of sub-actions. These
Therbligs are consistent in that a given action segment has
only a single Therblig representation, and Therbligs are ex-
pressive in that they capture the meaningful physical as-
pects of action relevant to action modeling. Therbligs were
introduced in the early 20th century as a set of 18 elemental
motions used to analyze complex movement - see the Sup-
plementary Materials for a brief historical background. We
adopt 7 Therbligs pertaining to those involving the manipu-
lation of objects. See Figure 1 for our Therblig set.

The benefits of our Therblig-centered framework in-
clude: compositionality & hierarchy; rule-based reasoning;
resolution of semantic ambiguity; contact-centered preci-
sion of temporal boundaries of action.

Contact transitions demarcate Therblig boundaries, giv-

ing Therbligs a consistency which methods relying on anno-
tators’ intuited demarcations lack 1. Between points of con-
tact exist contact states represented by a binary class (con-
tact, no contact) for each object present, which are wholly
captured by Therbligs. As objects in contact are the pri-
mary objects of interaction and define the space of possible
actions, they provide meaningful information for the mod-
eling of action.

Therblig atoms are then composable into higher entities,
including full actions. These actions are in turn compos-
able into sequences constituting activities. We then have
the hierarchy of representation illustrated in Figure 2. At
the lowest, and instantaneous, level are points of contact,

1See [1] for a case study on how annotators have difficulties coming to
a consensus on when actions begin and end.

Figure 1. Listed above are the Therbligs we select, their symbolic
illustrations as introduced by Gilbreths, and brief descriptions of
their usage.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. We introduce the use of Therbligs (ti) in video understanding as a consistent, expressive, symbolic representation of sub-action.
Points of Contact (indicated by the divider dashes) are necessarily associated with Therbligs and/or their boundaries. Because of the
unambiguity of Points of Contact, Therblig boundaries gain precision and are non-overlapping. On top of Therblig atoms we construct a
framework for Rule Enforcement, enforcing greater logical consistency through commonsense rules. This rule-based framework allows
for the easy introduction of long-term constraints. Therblig atoms are then composable into actions (ai), which are in turn composable into
activities.

between which exist Therbligs with temporal extension, on
top of which exist action, permutations of which constitute
longer activities.

Architectures built upon Therbligs for the modeling of
action gain temporal precision through points of contact as
well as meaningful information captured by contact states.
Therbligs also exhibit semantic mutual exclusivity in that
there is one and only one Therblig interpretation of a se-
quence, as opposed to the many interpretations when action
labels are intuited 2, leading to semantic ambiguity. As a
consequence of Therbligs, semantic ambiguity at the action-
level is constrained by the deeper grounding of action labels
in explicit action dynamics (see Figure 2).

Unlike higher level actions, Therbligs enable the im-
posing of a contact-based logic defining preconditions and
postconditions in the form of states of contact before and
after Therbligs. For example, an object being moved must
be preceded by grasp and proceeded by a release. The rules
of this logic interface at the Therblig level of the hierarchy.
These rules allow for biasing towards consistency between
contact states and Therblig predictions within a loss term
(see Section 3.2.2), and provide constraints over possible
action sequences (see Section 3.2.1).

In producing sub-action level symbolic representations,
our proposed hierarchical architecture is comprised of two
main components; the Therblig-Model, which maps video
to Therbligs; and, the Action-Model, which maps video
and Therbligs to actions. The Therblig-Model is optimized
over a loss including structure-aware terms for contact con-
sistency and Therblig consistency by incorporating differ-
entiable reasoning. Figure 3 illustrates our architecture.

2Some additional structure is needed for complete mutual exclusivity -
see the Supplementary Materials for discussion on this structure.

This architecture is complementary to, rather than in com-
petition with, existing architectures for action modeling -
Therblig representations can be easily integrated through
concatenation with existing feature representations. We
demonstrate this with two state-of-the-art approaches to ac-
tion segmentation - MSTCN++ [15] and ASFormer [22]
and four popular approaches to action recognition - I3D [5],
ViViT [2], TimeSFormer [3], and MoViNet [13].

We evaluate our approach over the tasks of action
segmentation, action recognition, and action anticipation.
We evaluate over the EPIC Kitchens 100 and 50-Salads
datasets.

The primary contributions of our work are as follows:

• Therbligs, a consistent, expressive symbolic represen-
tation of sub-action centered on contact.

• Rules: Flexible and differentiable constraining of in-
tuitive constraints on arrangement of atomic actions,
informed by commonsense rules.

• Novel hierarchical architecture composed of a
Therblig-Model and Action-Model. Representations
produced by the Therblig-Model can be easily inte-
grated into other approaches, as we demonstrate with
six popular action understanding approaches.

• Dataset: We release the first Therblig-centered annota-
tions over two popular video datasets.

The rest of this paper is structured as follows: Section 2
discusses related works, Section 3 introduces our proposed
method, Section 4 describes the experiments, in Section 5
we provide discussion and in Section 6 we conclude.
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Figure 3. Architectural diagram of our framework. Therblig-Model takes a stack of K = 100 frames as input, feeding them to various
backbone video architectures followed by a 2-layer GRU (Backbone + LSTM), which in turn produces hidden states ht

i , passing through
all T/100 stacks of the video. Hidden states ht

i are fed to fully connected layers, followed by a Gumbel-Softmax operation, producing
Therblig predictions amenable to differentiable reasoning. Action-Model takes a sliding window with window size W over the original
video sequence with stride s, both values depending on the choice of architecture. These windows are fed to ϕ, an attention mechanism
consisting of a 2 layer MLP - this MLP attends over the hidden states produced by Therblig-Model. The blended features produced by ϕ
are fed together with the video window to a (Video Network) predicting action class likelihood a. See Sections 3.1.1 and 3.1.2 for details.

2. Related Works
2.1. Sub-Action Video Datasets

There exist several datasets that provide sub-action level
annotations as a means of resolving semantic and tempo-
ral ambiguity in annotation, and enabling the hierarchical
modeling of action [11, 19, 20]. FineGym [19] introduces
fine-grained action annotations for actions in gymnastics,
but suffers from a difficult and expensive data collection
process. TAPOS [20] manually breaks actions into sub-
actions for Olympics videos via temporal action parsing.
Other datasets producing sub-action level annotations are
of an instructional nature [14,17,21], providing annotations
for steps of various cooking activities. Our Therblig anno-
tations differ from other sub-action ontologies by 1) resolv-
ing temporal ambiguity by means of contact, 2) having a
simple, logically consistent data collection process enabled
through the imposing of commonsense rules, and 3) being
flexible in application to a wide variety of datasets within
the realm of object manipulation without relying on domain
expertise.

2.2. Contact in Video Understanding

Contact has proven to be a useful feature in several tasks
of interest in computer vision, such as hand-object pose es-
timation [4,12,18], character animation, kinematic pose es-
timation [16], etc. However, the vast majority of contact-
centered approaches apply in the single-image setting, and
few works [11] consider the modeling of contact for use in
action understanding, despite contact being a defining char-

acteristic of all physical human interaction. Ego-OMG [7]
approaches the task of action anticipation, representing long
sequences of manipulation activity through sequences of
discrete states, each state delineated by the making and
breaking of contact. Rather than directly extract contact
from each video frame as in [6, 7], we instead propose
the adoption of Therbligs, a contact-centered representation
governed by simple contact-based rules.

3. Methods

For video segment si with T frames, the Therblig rep-
resentation ti is a sequence of N Therblig tuples for ev-
ery 100-frame chunk of si, and the contact representa-
tion ci represents the objects in contact at the end of that
video segment. Each Therblig annotation ti is a sequence
of the form (v0, o0), ...(vN−1, oN−1), where vj ∈ V and
V = {∅, Re,M,G,R,U,O,H}. In other words, vj indi-
cates the Therblig verb and each oj indicates the object of
interaction. See Figure 1 for full descriptions of each el-
ement of V (not included is ∅, corresponding to an empty
sequence where no Therbligs occur). To illustrate, see the
Therbligs and Contacts rows for annotations ti and ci, re-
spectively, in Figure 6. We set the maximum number of
possible Therblig annotations per sequence N to 6. Each
contact annotation ci is a tuple of the form (cri , c

l
i), where

cri corresponds to the class of the object held by the right
hand, and cli corresponds to the class of the object held by
the left hand.

Given video segment si, our goal is to infer the relevant
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action class likelihood over the tasks of action recognition
and anticipation, and to infer the relevant action class like-
lihood for each frame over the task of action segmentation.
We do this by means of a novel hierarchical architecture as
described in Subsection 3.1. This architecture consists of
two levels; a Therblig-Model (3.1.1) and an Action-Model
(3.1.2). We then describe our rule-based reasoning formu-
lation in Subsection 3.2, and detail the Therblig annotation
collection process in Subsection 3.3.

3.1. Architecture

The architecture of our proposal is illustrated in Fig-
ure 3. We apply a backbone video network for each seg-
ment si ∈ S where S is composed of video segments
S = {s0, ..., sT/100}, where T is the number of frames in
S. This results in video features F = {f0, ..., fT/100}. Our
Therblig-Model predicts a sequence of Therbligs t̂i for each
fi ∈ F . Our Action-Model takes the representations pro-
duced by the Therblig-Model along with S, and produces
action class likelihood(s) predictions.

As the Therblig annotations ti and action annotations ai
do not exhibit one-to-one overlap between their respective
video sequences, the Therblig-Model and Action-Model are
trained separately.

3.1.1 Therblig-Model

The primary base architecture for Therblig-Model can be
any popular video architecture. Features fi are extracted
from the backbone immediately prior to action classifica-
tion and sent to a 2-layer GRU. Due to the lack of precise
temporal alignment between the input video segments si ∈
S and the Therblig annotations ti, we adopt an encoder-
decoder schema as follows: The hidden state of the GRU
is set to fi, and the network is rolled out to iteratively pre-
dict a sequence of Therbligs t̂i = {t̂0i , ..., t̂

N−1
i }, feeding

0⃗ as the initial input, and outputs of previous hidden layers
as the inputs to the decoder for subsequent timesteps. We
adopt the practice of teacher forcing, where the outputs of
previous hidden layers are occasionally replaced with the
ground truth, with probability p = 0.5. After training the
Therblig-Model for 30 epochs and selecting the model in-
stance with the top validation accuracy, we freeze the model
for the training of the Action-Model.

3.1.2 Action-Model

As with the Therblig-Model, the base network of the
Action-Model can be any popular video architecture. Slid-
ing windows of size W is taken from input video S of T
frames with a stride of s, where s < W for the task of action
segmentation, and s = W for the task of action recognition
& anticipation. Each window is fed to the video model, pro-
ducing features fj ∈ {f0, ..., fT/s} extracted immediately

prior to action classification. Our action segmentation mod-
els process the sliding windows sequentially, whereas our
action recognition & anticipation base networks capture the
entire video without windowing. We pair indices i from
ht
i and j from fj by cross-referencing the closest times in

video S associated with i and j.
We adopt a temporal attention mechanism ϕ, taking fea-

tures fj as input, and producing learned attention weights
αa
i = {αa0

i , ..., αaN−1

i } over hidden layer outputs ĥi =

{ĥt0

i , ..., ĥtN−1

i }. After blending the hidden states with
αa
i , the blended features are concatenated with features fj ,

and fed to fully connected layers to predict action class â
for action recognition & anticipation, and action classes
âj ∈ {a0, ..., aT/s} for action segmentation.

3.2. Therblig Rules

Therbligs enable the introduction of contact-centered
rules that 1) provide significant structure to the annotation
process and 2) provide structure during training in the form
of separate differentiable loss components. See Sections
3.2.1 and 3.2.2 for more.

3.2.1 Explicit Rules

Below we enumerate the explicit commonsense rules we in-
troduce over the Therblig ontology.

Rule 1 The additions and subtractions of objects in con-
tact (through grasping and releasing, respectively) produced
by the Therblig sequence linking ci and ci+N−1 must pro-
duce object contact set ci+N−1 from ci.

Rule 2 Objects in contact state ci cannot be grasped or
reached without first being released.

Rule 3 Objects not in contact state ci cannot be moved,
oriented, used, or released without first being grasped.

These rules structure the second stage of crowdsourcing
annotations in the form of a filter over all possible annota-
tions. Annotations violating any of Rules 1, 2 or 3 are re-
jected are re-sent to annotators for correction - see Section
3.3 for details.

3.2.2 Differentiable Rules

We wish to incorporate the rules discussed in Section 3.2.1
into the training of the Therblig-Model. However, the rules
are non-differentiable, and as such we approximate each
rule with differentiable closed-form expressions. However,
the logic requires discrete representations of Therblig pre-
dictions. As the softmax activation outputs are continuous,
they must be converted into their discrete equivalents. The
argmax operation is non-differentiable, and so we adopt
the use of Gumbel Softmax as a differentiable alternative,
applying it over the pre-softmax features of the Therblig-
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Figure 4. An overview of our two-stage crowdsourcing pipeline. The Contact Annotation Stage provides an image (shown) paired with
a video (not shown) and asks the user to indicate the objects held by the actor in the image/video via multiple choice (circled). In the
Therblig Annotation Stage, an annotator first validates the correctness of ci and ci−1 and then produces Therblig annotations ti. As can
be seen above, in the Contact Annotation Stage a worker mistakenly indicated that nothing was held by the left hand for ci. In the Therblig
Annotation Stage, after correcting these erroneous contact annotations, a new worker annotates the sequence of Therbligs ti (circled) - the
multiple choice options shown to this worker have been filtered so as to achieve consistency with rules discussed in Section 3.2.1.

Model to arrive at discrete one-hot-encodings of Therbligs
(ĝi) while maintaining differentiability.

The rules are represented as follows:
Rule 1 Cross Contact-Therblig Consistency Loss

LC(i) =

N∑
k=0

∥ci + ĝki β − ci+1∥ (1)

Rule 2 Contact Enforcement Loss

LEC(i) =

N∑
k=0

∥ai,k − ĝki γ∥

where ai,k = ai,k−1 + ĝk−1
i β and ai,0 = ci

(2)

Rule 3 Non-Contact Enforcement Loss

LNC(i) =

N∑
k=0

∥ai,k − ĝki δ∥

where ai,k = ai,k−1 + ĝk−1
i β and ai,0 = ci

(3)

Each of β, γ, and δ, correspond to a vector of size 7× 1,
each index of which corresponds to a single Therblig verb.
The predicted Therbligs ĝki are of dimension |C|×7, where
C is the set of object categories in the dataset. Contact state
ci is of dimension |C| × 1, taking values of 1 for object in-
dices corresponding to those in contact with the hand, and
0 otherwise, based on ground truth. The k variable is used
to iterate over each of the N elements in the Therblig se-
quence. The i variable takes a value in [0, T/s] correspond-
ing to segments in the input clip.

For β, values take on 1 for grasp, −1 for release, and 0
otherwise. These values of β were chosen such that ĝki β re-
flects the addition and subtraction of objects to and from the
hand. Our loss formulation in Rule 1 penalizes predictions
ĝki that do not produce contact state ci+1 from ci.

For γ in Rule 2, values take on −1 for reach and grasp, 0
otherwise. These values of γ were chosen such that ĝki γ re-
sults in loss that penalizes reach and grasp Therbligs when
the Therblig-derived contact state ai,k already contains their
respective objects.

For δ in Rule 3, values take on 1 for move, orient, use,
or release, and 0 otherwise. These values of δ were chosen
such that ĝki δ results in loss that penalizes those Therbligs
when the Therblig-derived contact state ai,k does not con-
tain their respective objects.

Loss component LC of Rule 1 measures the offset of
ci and ci+1 against gki β. Loss component LEC of Rule 2
iteratively compares the Therblig-derived contact state ai,k
against ĝki γ. Loss component LNC of Rule 3 iteratively
compares ai,k against ĝki δ.

We adopt each of these loss terms in addition to Cate-
gorical Cross Entropy loss LCE to arrive at combined loss
L = LCE + LNC + LEC + LC . These loss terms provide
meaningful constraints in guiding the learning process, and
we demonstrate this finding empirically in Section 4.2.

3.3. Crowdsourcing

We crowdsource our annotations in two stages; see Fig-
ure 4. The first stage involves the crowdsourcing of objects
in contact with the hands. The annotator is shown an im-
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age, along with a slightly slowed-down video roughly 5 sec-
onds long. The addition of the video adds temporal context
for images too difficult to annotate alone. The annotator is
asked to indicate via multiple choice the objects in contact
with the actor’s hands at the end of the interaction. We pool
5 independently collected responses per image, taking the
mode of the answers for consistency. The average time per
assignment was 3.4 minutes.

In the second stage, the possible Therbligs for each item
in the sequence tji for 0 ≤ j < N are determined by
taking the cross product of the contact annotations ci and
ci+1 with V = {Re,M,G,R,O,U,H} and filter the re-
sults such that consistency is observed with respect to the
three rules defined in Subsection 3.2.1. We note there are
1, 067 possible Therblig (verb, object) tuples; through
our rules, we are able to significantly reduce the aver-
age number of multiple choice annotation possibilities
to just 19 (verb, object) tuples! We set N , the number of
Therblig tuples per video clip, to 6.

4. Experiments
Our experiments on action segmentation explore the ex-

tent to which we are able to predict Therbligs and the extent
to which their incorporation benefits action segmentation3.
We report our numbers by early stopping over validation ac-
curacy for 3 independent runs, reporting only the mean. All
code, data and results will be released upon acceptance.

4.1. Datasets

EPIC Kitchens We choose the EPIC Kitchens 100
dataset because of the benefits the egocentric perspective
provides in allowing for full view of the hands and objects in
contact. We augment portions of the EPIC Kitchens dataset

3See here for an exhaustive list of videos paired with their correspond-
ing Therblig annotations, contact state annotations, Therblig predictions
and action annotations.

Figure 5. Breakdown by frequency of Therblig verbs over all col-
lected annotations. Null corresponds to Therblig sequences where
workers indicated no hand-object activity took place.

Full Data 50-Salads EPIC Kitchens

LCE 22.1%/3.19/2.25 9.5%/5.68/2.491
LCE + LC 23.0%/3.15/1.96 9.9%/5.209/2.124
LCE + LEC 23.2%/2.99/1.92 11.7%/5.238/1.90
LCE + LNC 23.1%/2.83/1.98 12.7%/5.16/1.91
All L 25.1%/2.6/1.70 13.7%/5.19/1.83
Low Data

LCE 12.1%/5.91/2.53 7.4%/5.37/2.36
All L 16.9%/5.25/1.96 10.1%/5.21/1.86

Table 1. Evaluation of Therblig-Model when trained over all
Therblig annotations (Full Data) and when trained over a subset
(Low Data). Results reported in order of : Accuracy ↑/Levenshtein
Distance ↓/ Logical Consistency ↓.

with densely labeled Therbligs, for a total of 14, 600 crowd-
sourced annotations. In accordance with reporting prac-
tices of other action segmentation approaches over EPIC
Kitchens, we perform training and evaluation solely at the
verb-level. See the Supplementary Materials for more.

50 Salads We choose the 50 Salads dataset because
each activity performed is strongly structured by the mak-
ing and breaking of contact. We augment the entirety of
the video in this dataset, for a total of 6, 500 crowdsourced
annotations. See the Supplementary Materials for more.

4.2. Therblig Prediction

In this set of experiments, we answer the extent to which
our Therblig-Model is capable of mapping video chunks si
to the sequence of Therbligs t̂i = {t̂0i , ..., t̂

N−1
i }.

Metrics We evaluate our results, comparing t̂ji and tji ,
for 0 ≤ j ≤ N , ∀i) over the following metrics of evalua-
tion: Element-wise accuracy and Levenshtein distance (L).
Element-wise accuracy metrics suffer from the strict order-
ing requirement; and so are not reflective of sequence-level
similarity. Therefore we also evaluate over Levenshtein dis-
tance, the number of edits (insertions, deletions, and swaps)
to transform t̂ji into tji . In addition, we evaluate the logi-
cal consistency of our predictions as measured by the nor-
malized number of violations per sequence of the rules de-
scribed in Section 3.2.1.

Comparisons Table 1 illustrates the results of vari-
ous forms of Therblig-Model using a backbone I3D net-
work over the EPIC Kitchens and 50 Salads datasets. LCE

refers to a simple, 2-layer bidirectional GRU trained solely
over Categorical Cross Entropy. We train our GRU with and
without each of the loss components discussed in Section
3.2.2. In addition, we include results when training over
LCE + LC + LEC + LNC and LCE , but in the low-data
setting where roughly 10% of our annotations are trained
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Figure 6. Qualitative results for the action segmentation task showing Therblig annotations (Therbligs), contact annotations ci (contacts),
ground truth annotations (GT), the base GRU baseline (GRU) and the base GRU with Therbligs (GRU (T)). Grey colors indicate un-
annotated frames. Errors in GRU due to lack of mutual exclusivity are shown in the form of non-black contrastive colors w.r.t. GT. Black
colors indicate all other action misclassifications. Actual model predictions are at the verb-level (objects are introduced into predictions
solely for purposes of illustration).

50 Salads EPIC Kitchens

GRU 62.8%/8.45/60.9 39.1%/19.3/23.2
GRU w. T 66.9%/8.21/65.1 44.7%/13.5/25.6

Base MST 78.19%/7.1/74.16 53.44%/10.4/54.38
MST w. T 85.25%/6.7/81.01 58.75%/9.9/60.97

Base ASF 82.97%/6.9/77.23 58.14%/10.3/56.41
ASF w. T 88.2%/6.3/84.33 64.03%/9.5/61.46

Table 2. Action Segmentation results over EPIC Kitchens and 50
Salads datasets for frame-wise accuracy ↑/ segmental edit distance
↓/ and segmental F1-score@25 ↑. Base models (without w. T) are
followed by base models incorporating Therbligs (w. T).

over for both datasets, highlighting the value of the struc-
ture defined in Section 3.2.2. See Table 1 for results. All
training and evaluation details are described in the Supple-
mentary Materials section.

4.3. Action Segmentation

In this experiment we evaluate the extent to which the in-
corporation of Therblig-Model benefits performance in ac-
tion segmentation. In accordance with [8] we perform pre-
dictions at the verb level, rather than the verb-object level.

Metrics As action segmentation is a classic task in
computer vision, we rely on the works of [8, 10] in adopt-
ing the following evaluation metrics: frame-wise accuracy,
segmental edit-score, and segmental F1-score. Frame-wise
accuracy is used in all action segmentation works, whereas
segmental edit-score and F1-score are most commonly used
to penalize over-segmentation in particular.

Comparisons Table 2 illustrates the results of abla-
tions of our proposed architecture over the EPIC Kitchens
and 50 Salads datasets for the following base architectures
of Action-Model: GRU, MST (MSTCN++), and ASF (AS-
Former). The models (with no suffix) correspond to the
mapping of raw video to framewise action labels and the
models with the (w. T) suffix correspond to those of our
proposed framework. For simplicity, we utilize the same
Therblig-Model across all models with an I3D backbone,
as ASFormer and MSTCN++ both use I3D features as their
respective backbones. All training and evaluation details
are described in the Supplementary Materials section.

4.4. Action Recognition & Anticipation

In these experiments we evaluate the extent to which the
incorporation of Therblig-Model benefits performance in
action recognition & anticipation. The Therblig-model and
Action-model backbones are identical throughout all these
experiments.

Metrics We adopt accuracy as the primary metric of
comparison for all action recognition & anticipation results.
We structure results over EPIC Kitchens by verb recogni-
tion accuracies, object recognition accuracies, and action
recognition accuracies.

Comparisons Tables 3 and 4 illustrate the re-
sults of ablations of our proposed architecture over the
EPIC Kitchens and 50 Salads datasets for the following
base architectures of Action Model: I3D, TimeSFormer
(TimeSFormer-B), ViViT (ViViT-B/16x2) and MoViNet
(MoViNet-A3). The models (with no suffix) correspond to
the mapping of raw video to framewise action labels and
the models with the (w. T) suffix correspond to those of our
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50 Salads EPIC Kitchens

I3D 64.2% 65.1%/49.7%/39.2%
I3D w. A 64.0% 65.9%/49.6%/39.5%
I3D w. T 69.1% 68.2%/51.9%/41.6%

TimeSFrmr 73.1% 62.1%/55.4%/41.1%
TimeSFrmr w. A 74.2% 61.9%/56.9%/41.9%
TimeSFrmr w. T 76.4% 67.6%/57.0%/44.0%

ViViT 72.1% 62.4%/56.0%/43.3%
ViViT w. A 72.9% 64.0%/57.2%/44.0%
ViViT w. T 74.3% 66.4%/56.9%/45.9%

MoViNet 73.9% 67.9%/52.9%/41.1%
MoViNet w. A 72.8% 67.6%/52.1%/40.2%
MoViNet w. T 76.5% 69.1%/55.0%/43.8%

Table 3. Action recognition accuracies over EPIC Kitchens and
50 Salads datasets. Results under EPIC Kitchens are provided as:
verb/object/action prediction accuracies, respectively. Base mod-
els (without w. T) are followed by base models incorporating ac-
tion labels (w. A) and Therbligs (w. T).

proposed framework. All models are pre-trained over Ki-
netics 400. For purposes of reproducibility, we describe all
details in the Supplementary Materials.

5. Discussion

To give better intuition we show predicted Therblig se-
quences alongside video of manipulation activity here.

We point the reader’s attention towards the ”Low Data”
results reported in Table 1, where we observe a large in-
crease in accuracy through the incorporation of all the rule-
based loss components. We believe this validates our hy-
pothesis that the constraints imposed by the rules play a
particularly outsized role in the low-data setting, where the
model would otherwise have to infer the same common-
sense structure, motivating future possible directions in the
few-shot domain.

As demonstrated in Tables 2, 3, and 4, the incorpora-
tion of Therbligs results in superior performance over both
the 50 Salads and EPIC Kitchens 100 datasets for all base
architectures and tasks. While the accuracies of the mod-
els trained in Figure 2 come close to matching the reported
numbers in the original papers, the accuracy of the mod-
els trained with Therbligs reported in Table 2 outperform
baseline models trained by us as well as those reported in
original papers.

We point the reader’s attention to the particularly pro-
nounced role Therbligs play in improving verb recogni-
tion accuracy in the action segmentation (Table 2) and ac-
tion recognition (Table 3) results, even more pronounced
among the Transformer models, likely due to difficulties of

50 Salads EPIC Kitchens

I3D 39.5% 31.1%/18.3%/10.1%
I3D w. A 41.9% 32.0%/18.1%/10.4%
I3D w. T 43.1% 33.0%/18.9%/10.9%

TimeSFrmr 48.6% 31.6%/28.2%/13.6%
TimeSFrmr w. A 49.0% 29.9%/28.5%/13.1%
TimeSFrmr w. T 51.4% 33.9%/28.5%/14.8%

ViViT 45.6% 31.9%/29.8%/13.9%
ViViT w. A 44.9% 33.0%/30.1%/14.5%
ViViT w. T 49.1% 33.7%/29.4%/14.7%

MoViNet 46.4% 34.2%/25.6%/13.1%
MoViNet w. A 47.2% 34.9%/26.0%/13.3%
MoViNet w. T 48.2% 36.1%/26.9%/14.0%

Table 4. Action anticipation accuracies over EPIC Kitchens and
50 Salads datasets. Results under EPIC Kitchens are provided as:
verb/object/action prediction accuracies, respectively. Base mod-
els (without w. T) are followed by base models incorporating ac-
tion labels (w. A) and Therbligs (w. T)

Transformers in capturing the fine-grained aspects of mo-
tion [9]. We also point the reader to Figure 6 for quali-
tative results. When more than one action applies to any
given video segment, the model incorporating Therbligs is
more likely to produce interpretations of action that happen
to align more closely with actions belonging in the ground
truth. We hypothesize the reason to be that the incorporation
of Therbligs alleviates the burden on the network of learning
movement representations, and allows it to focus on contex-
tual cues important to resolving issues of mutual exclusiv-
ity. Furthermore, the model incorporating Therbligs pro-
duces predictions with better action boundaries.

We point the reader to the Supplementary Material for
more discussion.

6. Conclusion

In this paper we have presented a method for mitigation
of common limitations in action understanding approaches
using a novel framework structured around Therbligs - a
consistent, expressive, contact-centered representation of
action. We demonstrate superior performance through the
introduction of Therbligs over action recognition/action
anticipation/action segmentation - observing an average
10.5%/7.53%/6.5% improvement, respectively, over EPIC
Kitchens and an average 8.9%/6.63%/4.8% relative im-
provement, respectively, over 50 Salads. We hope the re-
lease of Therblig annotations inspires future work towards
the hierarchical modeling of action, and will release all code
and data upon acceptance.
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