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Abstract

Current semantic segmentation models have achieved

great success under the independent and identically dis-

tributed (i.i.d.) condition. However, in real-world appli-

cations, test data might come from a different domain than

training data. Therefore, it is important to improve model

robustness against domain differences. This work stud-

ies semantic segmentation under the domain generalization

setting, where a model is trained only on the source domain

and tested on the unseen target domain. Existing works

show that Vision Transformers are more robust than CNNs

and show that this is related to the visual grouping property

of self-attention. In this work, we propose a novel hierarchi-

cal grouping transformer (HGFormer) to explicitly group

pixels to form part-level masks and then whole-level masks.

The masks at different scales aim to segment out both parts

and a whole of classes. HGFormer combines mask clas-

sification results at both scales for class label prediction.

We assemble multiple interesting cross-domain settings by

using seven public semantic segmentation datasets. Exper-

iments show that HGFormer yields more robust semantic

segmentation results than per-pixel classification methods

and flat-grouping transformers, and outperforms previous

methods significantly. Code will be available at https:

//github.com/dingjiansw101/HGFormer.

1. Introduction

Research in semantic image segmentation has leaped for-

ward in the past years due to the development of deep neural

network. However, most of these models assume that the

training and testing data follow the same distribution. In the

real-world, we frequently encounter testing data that is out

of distribution. The generalization ability of models under

distribution shift is crucial for applications related to safety,
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Figure 1. Semantic segmentation can be considered as partition-

ing an image into classification units (regions), then classifying the

units. The units can range from pixels to large masks. Intuitively,

mask classification is more robust than per-pixel classification, as

masks allow to aggregate features over large image regions of the

same class to predict a ‘global’ label. Despite this promise, the

process of grouping pixels into whole-level masks directly from

pixels is very challenging under the distribution shift (e.g., Gaus-

sian Noise). In order to tackle this problem, we present a hierar-

chical grouping paradigm to group pixels to part-level masks first

and then to group part-level masks to whole-level masks to get re-

liable masks. Then we combine both part-level and whole-level

mask classification for robust semantic segmentation, given that

the masks at the two levels capture complementary information.

such as self-driving. In domain generalization setting, mod-

els are trained only on source domains and tested on tar-

get domains, where the distributions of source domains and

target domains are different. Unlike the domain adapta-

tion [25, 56], target data is not accessible / needed during

training, making the task challenging but practically useful.

Recently, Vision Transformers have been shown to be

significantly more robust than traditional CNNs in the out-

of-distribution generalization [21, 25, 42, 58, 60, 70]. Some

works interpret self-attention as a kind of visual group-
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ing [7, 38], and believe that it is related to robustness [70].

However, these works mainly focus on classification. Al-

though FAN [70] and Segformer [60] have been evaluated

on segmentation, they do not explicitly introduce visual

grouping in their networks. Since grouping is naturally

aligned with the task of semantic segmentation, we would

like to ask the question: can we improve the robustness of

semantic segmentation by introducing an explicit grouping

mechanism into semantic segmentation networks?

Most deep learning based segmentation models directly

conduct per-pixel classification without the process of

grouping. Some recent segmentation models introduced flat

grouping [15,67] into the segmentation decoder, where pix-

els are grouped into a set of binary masks directly and clas-

sification on masks is used to make label prediction. By us-

ing a one-to-one matching similar to DETR [5], the loss be-

tween predicted masks and ground truth masks is computed.

Therefore the network is trained to directly predict whole-

level masks, as shown in Fig. 1. Intuitively, if whole-level

masks are accurate, mask classification will be more robust

than per-pixel classification due to its information aggrega-

tion over regions of the same class. But we find that using

the flat grouping to generate whole-level masks is suscepti-

ble to errors, especially under cross-domain settings. This

is shown by the example in Fig. 1 - bottom.

Different from the flat grouping works [14, 67], we pro-

pose a hierarchical grouping in the segmentation decoder,

where the pixels are first grouped into part-level masks, and

then grouped into whole-level masks. Actually, the hierar-

chical grouping is inspired by the pioneer works of image

segmentation [2, 13, 49] and is further supported by strong

psychological evidence that humans parse scenes into part-

whole hierarchies [24]. We find that grouping pixels to part-

level masks and then to whole-level masks is more robust

than grouping pixels directly to whole-level masks. Part-

level masks and whole-level masks segment images at dif-

ferent scales such as parts and a whole of classes. There-

fore, part-level and whole-level masks are complementary,

and combining mask classification results at those different

scales improves the overall robustness.

To instantiate a hierarchical grouping idea, we propose

a hierarchical grouping transformer (HGFormer) in the de-

coder of a segmentation model. The diagram is shown in

Fig. 2. We first send the feature maps to the part-level

grouping module. In the part-level grouping module, the

initialization of cluster centers is down sampled from fea-

ture maps. Then we compute the pixel-center similarities

and assign pixels to cluster centers according to the simi-

larities. To get the part-level masks, we only compute the

similarities between each pixel feature and its nearby cen-

ter features. We then aggregate information of the part-

level masks and generate whole-level masks by using cross-

attention, similar to how previous methods aggregate pixels

information to generate whole-level masks [14,67]. Finally,

we classify masks at different levels, and average the se-

mantic segmentation results of all the scales.

We evaluate the method under multiple settings, which

are assembled by using seven challenging semantic seg-

mentation datasets. In each of the setting, we train the

methods on one domain and test them on other domains.

Extensive experiments show that our model is significantly

better than previous per-pixel classification based, and

whole-level mask based segmentation models for out-of-

distribution generalization.

To summarize, our contributions are: 1) We present a hi-

erarchical grouping paradigm for robust semantic segmen-

tation; 2) based on the hierarchical grouping paradigm, we

propose a hierarchical grouping transformer (HGFormer),

where the pixels are first grouped into part-level masks,

and then grouped into whole-level masks. Final semantic

segmentation results are obtained by making classifications

on all masks; 3) HGFormer outperforms previous seman-

tic segmentation models on domain generalized semantic

segmentation across various experimental settings. We also

give detailed analyses of the robustness of grouping-based

methods under distribution shift.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation is a classic and fundamental

problem in computer vision. It aims to segment the objects

and scenes in images and give their classifications. In the

deep learning era, semantic segmentation is usually formu-

lated as a pixel-level classification problem [9–12, 36, 60]

since FCN [36]. Recently, it is becoming popular to use

whole-level mask classification to formulate the seman-

tic segmentation problem [14, 15, 54, 66, 67]. In contrast

to pixel-level and mask-level classification, to our best

knowledge, there are very few works on learning part-

level masks [27, 62], and using part-level mask classifica-

tion [20, 69] for semantic segmentation in deep learning

era. Among them, SSN [27] and super pixel FCN [62]

mainly focus on part-level mask learning instead of part-

level classification for the semantic segmentation results.

BI [20] is not an end-to-end model, which needs extra part-

level masks as input. RegProxy [69] is a recent work that

closes to our work, which uses convolutions to learn part-

level masks, and is only evaluated on the i.i.d. condition.

In contrast, we use similarity-based grouping to learn part-

level masks, and are the first to validate the effectiveness

of using part-level mask classification for domain general-

ized semantic segmentation. Besides, Regproxy [69] is cus-

tomized with plain ViT [51], while our work is applicable

to pyramid transformers [35, 57] and CNNs. Our work is

also different for the hierarchical segmentation design.
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2.2. Domain Generalization

Domain generalization (DG) assumes that the target data

(even unlabelled) is not accessible during training. Methods

for DG in classification includes domain alignment [31,37],

meta-learning [3,30], data augmentation [52,61], ensemble

learning [8,34,63], self-supervised learning [4,6], and regu-

larization strategies [26,53]. The ensemble of mask classifi-

cation at different levels is related to the ensemble methods

for domain generalization. The drawback of the previous

ensemble-based methods [29,64] is that they will largely in-

crease the runtime. Some ensemble methods [45, 59] focus

on the averaging of model weights, which do not increase

the runtime, but increase the training time. Our method does

not introduce extra FLOPS due to the efficient hierarchical

grouping design, and does not introduce extra training time.

While the DG in classification is widely studied in the

previous works, there are only several works that study

the DG in semantic segmentation. The previous meth-

ods for DG in semantic segmentation includes: (1) Do-

main Randomization [44, 68] and (2) Normalization and

Whitening [16, 40, 41, 43]. Although not designed specif-

ically for domain generalization tasks, the Vision Trans-

formers [18] have shown their robustness [70] in the out-of-

distribution setting. The robustness of Vision Transformer

was explained to be related to the grouping property of self-

attention [70]. However, there are no works that study the

effect of explicit grouping in the segmentation decoder for

semantic segmentation in DG. Motivated by these results,

we study the different levels of grouping and mask classifi-

cation for semantic segmentation in DG.

3. Methods

Given an image I ∈ R
H×W×3, an image partition is

defined as S = {R1, ..., RN}, such that ∪N
i=1Ri = Ω and

Ri ∩ Rj = Ø, if i ̸= j. After mapping each region Ri to a

class by Li, we get C = {L1(R1), ..., LN (RN )}. Semantic

segmentation can then be defined as:

Y = {S,C}. (1)

According to the scales, we can roughly divide the image

partitions into three levels: pixels, part-level masks, and

whole-level masks. The pixel partition, where each element

in S is a pixel, is widely used by all per-pixel classification

methods [10, 36]. The whole-level masks partition, where

each element in S represents a whole mask of a class, is

used by a few recent approaches [14, 15]. The part-level

mask partition, where each element aims to cover a class

part, is proposed by this work and used along with whole-

level masks to enhance robustness.

Intuitively, mask classification is more robust than per-

pixel classification, as masks allow to aggregate features

over large image regions of the same class to predict a

Algorithm 1 Part-level grouping

Require: Pixel feature map K ∈ R
(H×W )×d, classifica-

tion feature map V ∈ R
(H×W )×d

1: Initialize the cluster center features Q1 ∈ R
Np×d by

down sampling K

2: for t = 1, · · · , L do

3: Compute assignment matrix At by Qt and K

4: Update the cluster center features Qt+1 = At ×K

5: Update the part-level tokens Zt = At ×V

6: end for

‘global’ label. Despite of this promise, generating whole-

level masks directly from pixels is a very challenging task.

While SOTA methods [14, 15] can generate reasonable

whole-level masks directly from pixels, the flat grouping

methods used are not robust to domain changes – when

tested on a different domain, the generated masks are of

poor quality, leading to low semantic segmentation perfor-

mance (see Fig. 1). In order to tackle this problem, this

work proposes using hierarchical grouping in the segmen-

tation transformer architecture to group pixels to part-level

masks first and then to group part-level masks to whole-

level masks. The advantages are 1) the grouping task be-

comes less challenging; 2) mask classification can be per-

formed at both scales and their results can be combined for

more robust label prediction, given that the masks at the

two scales capture complementary information; 3) global

self-attention to aggregate long-range context information

can be performed directly at both part-level and whole-level

now, which is not possible at pixel-level due to the huge

computation cost.

3.1. HGFormer

To efficiently implement a model which can predict se-

mantic segmentation at different scales, we adopt a hierar-

chical grouping process, which consists of two stages. The

first is to group pixels into part-level masks by similarity-

based local clustering. The second is to group part-level

masks into whole-level masks by cross-attention. Then we

make classification on partitions at different scales. The

framework can be seen in Fig. 2. We will introduce the

details in the following.

Part-level grouping. The goal of part-level grouping is

to compute a partition Sm = {R1, ..., RNp
}, with Np the

number of part-level masks. Sm can be represented by

a hard assignment matrix Ã ∈ {0, 1}Np×(HW ) such that

Ãij = 1 if the j-th pixel is assigned to mask i and 0 oth-

erwise. Since the hard assignment is not differentiable, we

compute a soft assignment matrix A ∈ [0, 1]Np×(HW ) such

that
∑Np

i=1 Aij = 1. Aij represents the probability of as-

signing the j-th pixel to mask i.
To compute A, we perform an iterative grouping al-
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Figure 2. The pipeline of our proposed method. We first pass an image to a backbone network and get feature maps at different resolutions.

The largest feature map K0 is projected to K for part-level grouping. The other three feature maps are fused to form a new feature map

V for part-level mask feature extraction used for later classification. The details of part-level grouping can be seen in Algorithm 1. The

grouping process is repeated L iterations. At the end of each iteration, there are Np part-level masks, and their tokens. Combining part-

level classifications and part-level masks, we can get the semantic segmentation results O1. The part-level tokens from the last iteration

of part-level grouping are aggregated to whole-level masks by whole-level grouping (which are actually cross-attention layers). Similarly,

there are also L iterations in the whole-level grouping. At the end of each iteration, there are No whole-level tokens. Whole-level masks

are computed by a matrix multiplication between K0 and projected whole-level mask tokens. Similarly, we can get semantic segmentation

results O2 by combining whole-level masks and their classifications. The final results O are the sum of O1 and O2.

gorithm (see Algorithm 1). It takes a feature map K ∈
R

(H×W )×d as input to compute assignment matrix. We par-

tition an image feature map K into regular grid cells with

size (r×r) as the initialization of part-level masks, which is

a common strategy in super pixel learning [1, 27, 62]. Then

we average the features inside regular grid cells to get the

features of part-level masks (or called cluster center) fea-

tures Q ∈ R
Np×d, where Np = H/r×W/r. Then we com-

pute the cosine similarities between pixel-center pairs and

get D ∈ R
Np×(HW ). For efficiency, we do not compute the

similarities between all pixel-center pairs. Instead, we only

compute the similarities between pixels and their 9 nearby

centers (see Fig. 3). As a result, we get D′ ∈ R
9×(HW ).

But for the convenience of describing, we still use the D in

the following. Due to the local constraint, each cluster cen-

ter can only aggregate the nearby pixels, so we can get the

part-level masks.

The similarities between the i-th center feature and j-th

pixel feature are written as:

Di,j =

{

f(Qi,Kj) if i ∈ Nj

−∞ if i /∈ Nj ,
(2)

where Qi ∈ R
d is the i-th cluster center feature, and

Kj ∈ R
d is the j-th pixel feature. f(x,y) = 1

τ
x·y

|x|·|y| com-

putes the cosine similarity between x and y, where τ is the

temperature to adjust the scale of similarities. Nj is the

set of nearby regular grid cells of j-th pixel, which can be

viewed in Fig. 3. Then we can compute the soft assignment

matrix as:

Ai,j = softmax(D)(i, j) =
exp(Di,j)

∑Np

i=1 exp(Di,j)
, (3)

Figure 3. Explanation of the similarities between pixel features

and its nearby center features. The grouping process is to assign

each pixel to one of Np center features. However, due to the com-

putation cost of the global comparisons, we only compute the sim-

ilarities between pixels and their nearby center features to perform

local comparisons. For example, we only assign each pixel in the

green box to one of its 9 nearby center features.

Then we can update the cluster center features by

Qnew = A×K. (4)

After we get the new center features, we can compute the

new assignment matrix by using updated center features

Qnew and feature map K. The process is repeated L times,

as shown in Algorithm 1. To get the part-level mask tokens

for classification, we use the assignment matrix to extract

part-level tokens from another feature map V by

Z = A×V. (5)

To strengthen the part-level mask features, we pass Z to a

self-attention layer and a feed forward network (FFN) layer

and get Z′. Then we use a linear classifier layer and a

softmax activation layer to map Z′ ∈ R
Np×d to part-level

class predictions Pm ∈ R
Np×K , where K is the number of

classes.
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Note that we use different feature maps for part-level

grouping and classification to decouple these two kinds of

tasks, since the shallow layers are usually used for localiza-

tion while the deep layers benefit the classification [33].

Whole-level grouping. The aim of this stage is to group

part-level masks into whole-level masks. Our framework

is agnostic to the detailed grouping method. But for a fair

comparison, we use the transformer decoders for grouping,

following [14]. Each transformer decoder layer consists of

one multi-head cross-attention, one self-attention, and an

FFN layer. Firstly, we perform cross-attention between No

learnable positional embeddings E ∈ R
No×d and part-level

tokens Z′ ∈ R
Np×d to get the output features:

Eout = Softmax((EWq)× (Z′Wk)
T )× (Z′Wv), (6)

where Wq ∈ R
d×d, Wk ∈ R

d×d, Wv ∈ R
d×d are pro-

jection heads for queries, keys, and values, respectively.

For simplicity, the multi-head mechanism is ignored in the

formulation. The cross-attention layer is followed by self-

attention, and Eout and FFN layers. Similar to the pro-

cess in part-level mask learning, the transformer decoder

operation is also repeated L times. At the end of each

transformer decoder layer, there are two MLP layers. The

first MLP layer maps the out features Eout ∈ R
N×d to

mask embedding ε ∈ R
N×d. Then the whole-level masks

M ∈ [0, 1]N×(H0×W0) can be computed as

M = σ(ε×KT
0 ), (7)

where KT
0 ∈ R(H × W ) × d is a feature map before K

(see Fig. 2). The second MLP layer maps the out features to

class logits. Then we apply a softmax activation on the class

logits to get the probability predictions Ph ∈ R
N×(K+1),

where K is the number of classes. There is an extra dimen-

sion representing the “no object” category (∅).

The difference between our work and the previous coun-

terparts [14, 67] is: the keys and values in previous works

are pixel features, while our keys and values are features of

part-level masks. Our hierarchical grouping design reduces

the computation complexity, since the number of part-level

masks is much smaller than the pixels.

Multi-scale semantic segmentation. We conduct clas-

sification at two levels: part-level mask classification and

whole-level mask classification. The semantic segmenta-

tion results from the part-level mask classification can be

computed as

O1 = PT
m ×A (8)

The semantic segmentation results form the whole-level

mask classification can be computed as

O2 = PT
h ×M (9)

The final semantic segmentation result is an ensemble of

two results by a simple addition.

Loss design. The challenge in part-level mask learning is

that we do not have the ground truth for the part-level par-

tition. The partition at the part-level stages is not unique.

Therefore, we design two kinds of losses. First, we di-

rectly add a cross-entropy loss Lpart,cls on O1. Given that the

cross-entropy loss is also affected by classification accuracy,

which does not have a strong constraint on the mask quality,

we also add a pixel-cluster contrastive loss. The core idea

of the contrastive loss is to learn more discriminative feature

maps, which can the be used for similarity-based part-level

grouping. Given ground truth masks MG ∈ R
g×(H×W ),

where g is the number of masks in an image, we first av-

erage the features within each ground truth mask and get

T ∈ R
g×d. Then the contrastive loss [22, 50, 54] for each

pixel in K is computed as:

Li
contrast = − log

∑K

j=1 MG,j,i exp(f(Ki,Tj))
∑K

j=1 exp(f(Ki,Tj))
, (10)

where f(x,y) is a function to measure the similarity be-

tween two feature vectors. The losses for the whole-level

learning mainly follow previous works [14]. There is a one-

to-one matching between predictions and ground truths. For

the matched prediction, a dice loss Ldice, a mask loss Lmask,

and a mask classification loss Lmask,cls are computed.

3.2. Implementation Details

We set the weights for Lpart,cls, Lcontrast, Ldice, Lmask, and

Lmask,cls to 2, 6, 5, 5, and 2, respectively. The temperature

τ in contrastive loss is 0.1, and the down sample rate r is

4. We set the number of refining stages L in part-level and

whole-level grouping to 6. We use the deformable attention

Transformer (MSDeformAttn) [71] layers to strengthen the

features before we project the feature maps to K and V.

The output strides for K and V are 1/8. We conduct a multi-

scale augmentation and then crop a 512 × 1, 024 patch for

training. During testing, we send the images with the origi-

nal size to models. By default, models are trained with 20k

iterations with a batch size of 16. We use the ADAMW

as our optimizer with an initial learning rate of 0.0001 and

0.05 weight decay.

4. Experiments

4.1. Datasets

Real-world datasets. Cityscapes contains 5,000 urban

scene images collected from 50 cities primarily in Germany.

The image size of Cityscapes images is 2, 048 × 1, 024.

BDD is another real-world dataset, which contains 7,000

images for training, and 1,000 images for testing. The im-

ages of BDD is mainly collected from US. The image size

of BDD is 1, 280 × 720. Mapillary [39] is a large-scale

dataset, which contains 18,000 images for training, 2,000

515417



images for validation, and 5,000 images for testing. The

images of Mapillary are captured from all over the world,

at various conditions regarding weather and season, which

makes the dataset very diverse. ACDC [48] collects the im-

ages with a resolution of 1, 920×1, 080 under adverse con-

ditions, including night, fog, rain, and snow. ACDC con-

tains 1,600 images for training, 406 images for validation,

and 2,000 images for testing.

Synthetic datasets. GTAV is a synthetic dataset collected

from GTAV game, which contains 12,403, 6,382, and 6,181

images with a resolution of 1, 914×1, 052 for training, val-

idation, and testing, respectively. SYNTHIA [47] is another

synthetic dataset, which consists of 9,400 photo-realistic

images with a size of 1, 280× 760.

Common corruption dataset. We follow the previous

works [28, 60] to expand the Cityscapes validation set with

16 type of generated corruptions. The corruptions can be

divided into 4 categories: noise, blur, weather, and digital.

There are 5 severity levels for each kind of corruption.

4.2. Main Results

We evaluate models on 4 kinds of generalization settings.

Normal-to-adverse generalization. In this experimental

setting, all the models are trained on Cityscapes [17] (im-

ages at normal conditions) and tested on ACDC [48] (im-

ages at 4 kinds of adverse conditions). Although not specif-

ically designed for domain generalization, transformer-

based methods have been shown to be more robust than

traditional CNN methods. Therefore, we compare our

proposed HGFormer with two representative transformer-

based segmentation methods in Tab. 1. Among them, all

CNN-based methods and Segformer [60] are based on per-

pixel classification. Mask2former [14] is based on whole-

level classification. We can see that our method outperforms

the previous CNN-based methods by a large margin, and

also significantly outperforms the competitive transformer-

based segmentation models.

Cityscapes-to-other datasets generalization. In this ex-

perimental setting, models are trained on Cityscapes [17]

and tested on BDD [65], Mapillary [39], GTAV [46], and

Synthia [47]. The results are shown in Tab. 2. In the

first block of Tab. 2, we compare all the methods with a

ResNet-50 [23] backbone. We can see that the grouping-

based method Mask2Former [14] is already comparable to

the previous domain generalization methods, which indi-

cates the effectiveness of grouping-based model for gener-

alization. Our HGFormer outperforms Mask2Former [14]

by 1.5 points, showing that our hierarchical grouping-based

model is better than the flat grouping-based model for do-

main generalized semantic segmentation.

Mapillary-to-other datasets generalization. Here, mod-

els are trained on Mapillary [39] and tested on BDD [65],

Mapillary [39], GTAV [46], and Synthia [47]. We can

Table 1. Cityscapes-to-ACDC generalization. The models are

trained on Cityscapes [17] only, and tested on ACDC [48]. The

results of Mask2former [14], Segformer [60], and HGFormer are

implemented by us. Others are from ACDC paper [48]. The results

of models trained by us are an average of 3 times. The results of

Segformer [60] are obtained by their officially released model.

Method backbone Fog Night Rain Snow All

RefineNet [32] R101 46.4 29 52.6 43.3 43.7

DeepLabv2 [10] R101 33.5 30.1 44.5 40.2 38

DeepLabv3+ [12] R101 45.7 25 50 42 41.6

DANet [19] DA101 34.7 19.1 41.5 33.3 33.1

HRNet [55] HR-w48 38.4 20.6 44.8 35.1 35.3

Mask2former [14] R50 54.1 36.5 53.1 50.6 49.8

HGFormer (ours) R50 56.5 35.8 57.7 56.2 53.0

Mask2former [14] Swin-T 56.4 39.1 58.9 58.2 54.6

Segformer [60] B2 59.2 38.9 62.5 58.2 56.2

HGFormer (ours) Swin-T 58.5 43.3 62.0 58.3 56.7

Segformer [60] B5 63.2 47.8 66.4 63.7 62.0

Mask2former [14] Swin-L 69.1 53.1 68.3 65.2 65.0

HGFormer (ours) Swin-L 69.9 52.7 72.0 68.6 67.2

Table 2. Cityscapes to other datasets generalization. Models

are trained on Cityscapes and tested on BDD (B), Mapillary (M),

GTAV (G), and Synthia (S). Results of IBN, SW, DRPC, GTR,

ISW, and SAN-SAW are from paper [43]. Others are implemented

by us. Our results are an average of 3 times.

Method backbone B M G S Average

IBN [40] R50 48.6 57.0 45.1 26.1 44.2

SW [41] R50 48.5 55.8 44.9 26.1 43.8

DRPC [68] R50 49.9 56.3 45.6 26.6 44.6

GTR [44] R50 50.8 57.2 45.8 26.5 45.0

ISW [16] R50 50.7 58.6 45 26.2 45.1

SAN-SAW [43] R50 53.0 59.8 47.3 28.3 47.1

Mask2former [14] R50 46.8 61.6 48.0 31.2 46.9

HGFormer (ours) R50 51.5 61.6 50.4 30.1 48.4

Mask2former [14] Swin-T 51.3 65.3 50.6 34 50.3

HGFormer (ours) Swin-T 53.4 66.9 51.3 33.6 51.3

Mask2former [14] Swin-L 60.1 72.2 57.8 42.4 58.1

HGFormer (ours) Swin-L 61.5 72.1 59.4 41.3 58.6

Table 3. Mapillary-to-other datasets generalization. The mod-

els are trained on Mapillary, and tested on GTAV (G), Synthia (S),

Cityscapes (C), and BDD (B).

Method backbone G S C B Average

IBN [40] R50 30.7 27.0 42.8 31.0 32.9

SW [41] R50 28.5 27.4 40.7 30.5 31.8

DRPC [68] R50 33.0 29.6 46.2 32.9 35.4

GTR [44] R50 32.9 30.3 45.8 32.6 35.4

ISW [16] R50 33.4 30.2 46.4 32.6 35.6

SAN-SAW [43] R50 34.0 31.6 48.7 34.6 37.2

Mask2former [14] R50 55.8 37.7 65.6 56.4 53.9

HGFormer (ours) R50 59.2 37.4 67.1 59.1 55.7

Mask2former [14] Swin-T 57.8 40.1 68.2 59.1 56.3

HGFormer (ours) Swin-T 60.1 39.5 69.3 61.0 57.5

Mask2former [14] Swin-L 64.8 48.4 77.9 64.7 63.9

HGFormer (ours) Swin-L 66.5 47.7 78.2 66.3 64.7

see that HGFormer is consistently better than Mask2former

with all backbones, as shown in Tab. 3.

Normal-to-corruption generalization. In this set-

615418



Table 4. Cityscapes-to-Cityscapes-C generalization (level 5).

Method Average
Blur Noise Digital Weather

Motion Defoc Glass Gauss Gauss Impul Shot Speck Bright Contr Satur JPEG Snow Spatt Fog Frost

Mask2former-Swin-T [14] 41.6 51.5 49.4 38.2 46.2 9.6 9.8 13.5 44.4 74.2 60.0 70.0 23.3 23.7 59.4 65.4 27.3

HGFormer-Swin-T (ours) 43.9 52.9 53.9 39.0 49.5 12.1 12.3 18.2 46.3 75.0 60.0 71.2 27.2 29.4 60.6 65.0 29.1

Mask2former-Swin-L [14] 58.7 63.5 66.6 62.1 62.3 26.2 35.9 33.2 62.9 80.0 72.6 77.3 52.5 50.5 75.3 75.1 43.0

HGFormer-Swin-L (ours) 59.4 64.1 67.2 61.5 63.6 27.2 35.7 32.9 63.1 79.9 72.9 78.0 53.6 55.4 75.8 75.5 43.2

Table 5. Ablation of iterations in part-level mask classifca-

tion. In this ablation, HGFormer with Swin-T [35] is trained on

Cityscapes (C), and tested on Cityscapes, ACDC all (A), GTAV

(G), BDD (B), Synthia (S), and Mapillary (M).

Iter C A G B S M Avg

1 76.8 56.1 51.3 52.1 32.1 65.8 55.7

2 77.6 56.1 51.4 52.0 32.3 65.9 55.9

3 77.9 56.2 51.8 52.6 32.8 66.2 56.2

4 77.9 56.5 52.0 52.6 32.6 66.3 56.3

5 77.8 56.4 51.7 52.6 32.5 66.3 56.2

6 77.4 55.4 50.5 52.2 32.3 65.6 55.6

Figure 4. Visualization of results on adverse conditions. The

models are only trained on Cityscapes, and tested on images with

adverse conditions. Our method is significantly better than the

Mask2former [14] under adverse conditions.

ting, models are trained on Cityscapes [17] and tested on

Cityscapes-C [28] level 5, which includes 16 types of ar-

tificial corruptions at an extreme level. We compare HG-

Former with Mask2former in Tab. 4, showing that HG-

Former is significantly better than Mask2former when gen-

eralizing to extremely corrupted images.

4.3. Ablation Studies

Ablation of iterations in part-level mask classification.

We test the results of different iterations of HGFormer and

show the results in Tab. 5. It shows that the first itera-

tion is much lower than later iterations on in-domain per-

formance, and slightly lower than the later stages on out-

of-distribution performance. As the iteration increases, the

performance gradually increases. The performance is satu-

rated at iteration 4. The last stage is lower than the second-

last stage. We hypothesize that the last stage is influenced

by the gradients from whole-level grouping since only the

part-level tokens of the last stage are taken as the input of

whole-level grouping. When we remove the whole-level

grouping during training, the last stage is slightly higher

than the second-last stage, which verifies our hypothesis.

Individual performance of part-level and whole-level

masks. We report the individual generalization perfor-

mance of part-level and whole-level mask classification in

Tab. 6. It shows that the part-level classification is sig-

nificantly better than the whole-level classification in HG-

Former. And the ensemble of part-level and whole-level

classification can further improve the performance, which

indicates that the part-level and whole-level mask classifi-

cation are complementary to each other.

4.4. Visualization Analyses

Visualization comparisons with Mask2former. We

present the visualization results of Mask2forme and HG-

Former, both with Swin-Tiny on ACDC (see Fig. 4) and

Cityscapes-C (see Fig. 5) to demonstrate the performance of

models for real-world adverse conditions and for synthetic

corruptions. We choose impulse noise and defocus blur at

level 5 for visualization. The results on both of the datasets

show that HGFormer makes fewer errors than Mask2former

in adverse conditions.

Masks at different levels of corruption. We visualize

the part-level and whole-level masks at different levels of

corruption to show how they change as the severity level in-

creases (see Fig. 6). We can see that the whole-level masks

are not stable with the increasing of severity levels, and to-

tally failed at level 5. In contrast, the part-level masks are

more stable, and can achieve high recall for the boundaries

between classes.

Part-level masks with different model weights. To pro-

vide more insights about our method, we visualize the part-

level masks with model weights from random initializa-

tion, ImageNet pre-trained weights and Cityscapes trained

weights. The results are shown in Fig. 7. We can see that

even using the randomly initialized weights and ImageNet

pre-trained weights, our model can produce reasonable part-

level masks, which indicates that our model has the poten-

tial for unsupervised segmentation and weakly-supervised

segmentation. The results indicate that the part-level group-

ing structure itself can provide a good prior, which can

explain the generalization from the grouping side. For the

Cityscapes trained model weights, the boundaries between
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Table 6. Comparison of part-level classification and whole-level classification, and their combination. We train HGFormer with

Swin-T on Cityscapes, then test the model on other datasets.

whole-level mask part-level mask ACDC (all) GTAV BDD Synthia Mapillary Average

✓ 54.5 49.5 51.5 33.8 66.3 51.1

✓ 56.2 51.3 53.1 33.3 66.5 52.1

✓ ✓ 56.6 51.3 53.4 33.6 66.9 52.4

Impulse Noise

Defocus Blur

Mask2former

Mask2former

HGFormer

HGFormer

Ground truth

Ground truth

Figure 5. Visualization of results on corruptions. We choose two kinds of corruption at level 5 for this visualization: impulse noise and

defocus blur. The models are trained on Cityscapes.

Clean Level1 Level2 Level3 Level4 Level5

Figure 6. Visualization of part-level and whole-level masks at different levels of Gaussian noise. In the first row, we visualize the

whole-level masks from Mask2former. In the second row, we visualize the part-level masks from our method. We can see that our part-

level masks are more robust than the whole-level masks in Mask2Former as the increasing severity level of Gaussian noise.

Segmentation annotation trainedRandomly initialized ImageNet pre-trained

Figure 7. Visualization of part-level masks with different weights. We find that the randomly initialized weights can also produce some

reasonable part-level masks.

different categories are more accurate than the randomly

initialized and ImageNet pre-trained weights. It is worth-

while noting that the boundaries between the same class

is not unique, due to no ground truths being used for part-

level masks. But with a part-level classification, all feasible

part-level partitioning can be transformed to correct seman-

tic segmentation results, if the boundaries between different

classes are correct.

5. Conclusion and Future work

In this paper, we propose a hierarchical semantic seg-

mentation model, which can efficiently generate image par-

titions in a hierarchical structure. Then we perform both

part-level mask classification and whole-level mask classi-

fication. The final semantic segmentation result is an en-

semble of two results. Our method is verified to be robust

in out-of-distribution images. We can explore more com-

plicated fusion methods of classification at different scales.

We leave them as future works. Since our model can be

considered a kind of multi-task learning, how to automati-

cally balance the loss weights of classification at different

scales can be studied in the future.
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els compared to state-of-the-art superpixel methods. IEEE

PAMI, 34(11):2274–2282, 2012. 4

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-

tendra Malik. Contour detection and hierarchical image seg-

mentation. IEEE TPAMI, 33(5):898–916, 2010. 2

[3] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-

lappa. Metareg: Towards domain generalization using meta-

regularization. NeurIPS, 31, 2018. 3

[4] Silvia Bucci, Antonio D’Innocente, Yujun Liao, Fabio M

Carlucci, Barbara Caputo, and Tatiana Tommasi. Self-

supervised learning across domains. IEEE PAMI,

44(9):5516–5528, 2021. 3

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-

to-end object detection with transformers. In ECCV, pages

213–229. Springer, 2020. 2

[6] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-

bara Caputo, and Tatiana Tommasi. Domain generalization

by solving jigsaw puzzles. In CVPR, pages 2229–2238,

2019. 3

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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