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Abstract

Recently, the sizes of deep neural networks and train-
ing datasets both increase drastically to pursue better
performance in a practical sense. With the prevalence
of transformer-based models in vision tasks, even more
pressure is laid on the GPU platforms to train these heavy
models, which consumes a large amount of time and
computing resources as well. Therefore, it’s crucial to
accelerate the training process of deep neural networks.
In this paper, we propose a general network expansion
method to reduce the practical time cost of the model
training process. Specifically, we utilize both width- and
depth-level sparsity of dense models to accelerate the
training of deep neural networks. Firstly, we pick a sparse
sub-network from the original dense model by reducing
the number of parameters as the starting point of training.
Then the sparse architecture will gradually expand during
the training procedure and finally grow into a dense one.
We design different expanding strategies to grow CNNs
and ViTs respectively, due to the great heterogeneity in
between the two architectures. Our method can be easily
integrated into popular deep learning frameworks, which
saves considerable training time and hardware resources.
Extensive experiments show that our acceleration method
can significantly speed up the training process of modern
vision models on general GPU devices with negligible
performance drop (e.g. 1.42× faster for ResNet-101 and
1.34× faster for DeiT-base on ImageNet-1k). The code
is available at https : / / github . com / huawei -
noah / Efficient - Computing / tree / master /
TrainingAcceleration / NetworkExpansion and
https : / / gitee . com / mindspore / hub / blob /
master / mshub _ res / assets / noah - cvlab / gpu /
1.8/networkexpansion_v1.0_imagenet2012.md.

1. Introduction
Deep neural networks have demonstrate their excellent

performance on multiple vision tasks, such as classifica-

⋆ Corresponding authors.

tion [15, 30, 44], object detection [12, 43], semantic seg-
mentation [32, 35], etc. In spite of their success, these net-
works usually come with heavy architectures and severe
over-parameterization, and therefore it takes many days
or even weeks to train such networks from scratch. The
ever-increasing model complexity [23,24,34,42] and train-
ing time cause not only a serious slowdown for the re-
search schedule, but also a huge waste of time and com-
puting resources. However, CNNs are still going deeper
and bigger for higher capacity to cope with extremely large
datasets [27, 45]. Recently, a new type of architecture
named vision transformers (ViTs) have emerged and soon
achieved state-of-the-art performances on multiple com-
puter vision tasks [16, 48, 52, 57]. Originating from Natural
Language Processing, the vision transformer has a different
network topology and larger computational complexity than
CNNs. Besides, transformer-based models usually require
more epochs to converge.

From another perspective, compared with purchasing ex-
pensive GPU servers, many researchers and personal users
nowadays choose cloud computing service to run experi-
ments and pay their bills by GPU-hours. Thus, an acceler-
ated training framework is obviously cost-efficient. On the
other hand, shortened training time leads to not only quicker
idea verification but also more refined hyper-parameter tun-
ing, which is crucial to the punctual completion of the
project and on-time product delivery.

There are some existing methods about efficient model
training [36, 51, 53, 55], but few of them can achieve high
practical acceleration on geneal GPU platforms. [53] pro-
poses to prune the gradients of feature maps during back-
propagation to reduce train-time FLOPs, and achieve train-
ing speedup on CPU platform. [51] conducts efficient CNN
training on ARM and FPGA devices to reduce power con-
sumption. [36] prunes weights of the network to achieve
training acceleration but eventually yield a pruned sparse
model with non-negligible performance drop. [55] skips
easy samples that contribute little to loss reduction by using
an assistant model asynchronously running on CPU. Yet it
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requires sophisticated engineering implementation. Though
the prior works claim an ideal theoretical acceleration ra-
tio, none of them achieve obviously practical acceleration
on common GPU platforms. Most of these works overlook
the most general scenario, i.e. accelerating training on gen-
eral GPU platforms with popular deep learning frameworks
such as PyTorch [40] and TensorFlow [1]. The lack of re-
lated research is probably because GPU servers are not so
power-constrained as edge devices.

In this paper, we propose a general training accelera-
tion framework (network expansion) for both CNN and ViT
models to reduce the practical training time. We first sample
a sub-network from the original dense model as the starting
point of training. Then this sparse architecture will grad-
ually expand its network topology by adding new parame-
ters, which increases the model capacity along the training
procedure. When performing network expansion, we fol-
low the principle of avoiding the introduction of redundant
parameters. For CNN, new filters are progressively added
whose weights are initialized by imposing filter-level or-
thogonality. This reduces the correlation between old and
new feature maps and improves the expressiveness of the
convolutional network. For vision transformers, we first
train a shallow sub-network with fewer layers, and create an
exponential moving average (EMA) version of the trained
model. As the training continues, some layers of the EMA
model will be inserted into the trained model to construct a
deeper one. With the network expansion training paradigm,
the sampled sub-network eventually grows into the desired
dense architecture, and thus the total training FLOPs and
time are greatly reduced.

Our method can be easily integrated into popular deep
learning frameworks on general GPU platforms. Without
changing the original optimizer and hyper-parameters (such
as epochs and learning rate), our method can achieve 1.42×
wall-time acceleration for training ResNet-101, 1.34×wall-
time acceleration for training DeiT-base, on ImageNet-1k
dataset with negligible top-1 accuracy gap, compared with
normal training baseline. Moreover, experiments show that
our acceleration framework can generalize to downstream
tasks such as semantic segmentation.

2. Related Work
There are lots of works that study the accelerated training

methods for deep neural networks in many respects, since
the lengthy training phase is a practical issue to be tackled
for real-world applications of deep learning algorithms.

2.1. Efficient Training on Edge Devices
Net2Net [6] proposes to reuse the weights of a pre-

trained small model to initialize a large-sized model, which
results in faster convergence of the new model. [53] pro-
poses to prune the gradients of feature maps during back-
propagation stage to reduce train-time FLOPs. However

this method needs to modify runtime library and achieves
training speedup only on CPU platform. E2-train [51]
conducts efficient CNN training on edge devices, such as
ARM and FPGA, to reduce both the time under the con-
straint of limited power. PruneTrain [36] simultaneously
prunes weights of the network and train the network to re-
duce FLOPs, and thus eventually yielding a pruned sparse
model rather than a complete dense model. [56] also pro-
poses to speed up training by trying out different possible
sub-networks inside the dense network and obtain a sparse
model. AutoAssist [55] identifies and skips easy samples
that contribute little to the loss reduction by using an assis-
tant model asynchronously running on CPU. Yet it requires
sophisticated engineering implementation.

2.2. Distributed Parallel Training
There is another scope of research regarding accelerated

training. These works [2, 14, 26, 54] try to train neural net-
works on large-scale dataset, such as ImageNet, within just
a few minutes using distributed parallel computing clus-
ter. [54] efficiently trains ResNet50 on ImageNet within 20
minutes by using 2,048 high-end Intel CPU. [2] uses 1,024
Tesla P100 GPUs to complete the training of ResNet50 on
ImageNet with the batch size being 32K. In particular, [26]
utilizes a cluster system of 2,048 Tesla P40 GPUs to train
AlexNet within 4 minutes and ResNet50 in 6.6 minutes.
The hardware scale adopted by these works can only be
afforded by leading enterprises, and is never possible for
normal researchers and cloud-service users. Thus they are
out of the research scope of this paper.

2.3. Efficient Training of Language Model
There are a few researches that work on the efficient

training of pretrained language models (PLM), such as
BERT. Bert2BERT [5] reuses the parameters of a thinner
BERT model to initialize a wide BERT while maintaining
the mapping function, in order to accelerate the training pro-
cess. StackBERT [13] copies the whole transformer layers
of a pretrained shallow model and directly stack them on the
top of it to build a deep model, claiming that this will trans-
fer the well-learned knowledge of the shallow model into
the deep one, thus speeding up the training. However, these
methods are sub-optimal for vision tasks and will intro-
duce performance drop when applied to vision transformers
which take images as input.

2.4. Network pruning
Network pruning algorithms aim to find a sparse network

from a pretrained dense one with marginal performance
drop in pursuit of faster inference speed. However, prun-
ing algorithms would instead take much longer time to train
networks than conventional training procedures because of
necessary finetuning [17,18,21,33,46,47]. Therefore, some
recent works [7, 22, 38] called one-shot pruning try to fin-
ish the pruning process by training only once without any
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Figure 1. Diagram of width expansion for CNNs. The training
is divided into 3 growth stages with α0 = 0.5, α1 = 0.75 and
α2 = 1, respectively. Lighter color denotes the channels that later
join the network.

finetuning. However, these one-shot pruning methods still
spend more time on each forward-backward iteration to de-
termine which neurons are important enough to be kept.

The main differences that separate our work from model
pruning are two-fold. On the one hand, model pruning
aims at accelerating inference speed and spends more time
on training stage due to the need for finetuning after re-
moving unimportant weights. However, our method di-
rectly reduces the training time and doesn’t change the in-
ference process. On the other hand, pruning algorithms
find a sparse network by starting from a dense one, while
our method eventually maintains a dense structure although
starting training from a sparse one.

3. Method

3.1. Network Expansion
Let f(x;w) be a deep neural network of any kind, where

x denotes the input of f and w denotes the parameters of
f . In order to succinctly parameterize the network archi-
tecture, we solely use a scalar variable α ∈ (0, 1] to con-
trol the scale of the network. Moreover, we define a model
scaling operation ⊗ for parameter space to change the ar-
chitecture of the model. Then we use f(x;α ⊗ w) to de-
note the derived network whose structure is controlled by
α. Obviously, the model architecture is shrunk when α < 1
and is restored to the original size when α = 1. When α
gets increased, the model expanding operation is performed.
Specifically, this will either introduce new channels to each
convolutional layer from the perspective of width dimen-
sion, or add new layers to current network from the per-
spective of depth dimension. As a result, both the model ar-
chitecture and its parameter space are enlarged. During the
training process, if we gradually increase α from α0 to 1,
where α0∈(0, 1), an initially small sub-model f(x;α0⊗w)
can grow into a dense model f(x;w) after multiple expan-
sion operations. This means a great deal of FLOPs and
memory access will be saved from both the forward-pass
and backward-propagation computations. Therefore, the
whole training process can be accelerated to save practical
time cost and hardware resources. In the following section,
we will describe how to accelerate the training process by
using the network expansion strategy.

3.2. Width Expansion for CNNs
In a convolutional neural network (CNN) with L lay-

ers, the parameter set can be formulated as w = {wl ∈
RCl−1×Cl×w×h| l = 1, 2, · · · , L}. Cl−1 and Cl denote the
number of input and output feature maps of the l-th layer
respectively, C0 = 3 corresponds to the RGB channels of
the input image x, and (w, h) is the spatial size of the fil-
ter. The width scaling operation ⊗ changes the number of
channels so that the shape of all weight matrices are scaled
by α⊗wl ∈ R⌊αCl−1⌋×⌊αCl⌋×w×h for ∀wl ∈ w.

Given the fact that CNN models are generally over-
parameterized, many works [11, 37, 39, 50] have demon-
strated a sparse sub-network can still reach the accuracy
comparable to the original dense network and many chan-
nels in each layer can be taken away without harming the
performance. Inspired by these works, we believe that a
sparse network can serve as a good starting point for our
training acceleration method. For a randomly initialized
dense network f(x;w), we treat α∈(0, 1] as the width fac-
tor, and α0 the initial value. Before training, we keep only
an α0 ratio of channels for every convolutional layer and
discard other channels along with the corresponding filter
weights.

After the initial slimmed network f(x;α0 ⊗w) is sam-
pled from the dense f(x;w), it will travel through ng

growth stages by conducting ng−1 times width expanding
operation in order. A simple case is illustrated in Fig. 1 with
α0 = 0.5 and ng = 3. Suppose the network f is going to
be trained for T epochs. In order to maintain the original
training schedule, we equally split T epochs into ng phase,
which means the network f(x;αi ⊗w) will be trained for
T/ng epochs every time after α gets increased.

The main idea of our training acceleration method is to
make a sparse model with less FLOPs gradually grow into
a dense one during its training phase. Thus, we set different
width factors αi for each i-th stage to be linearly spaced
between α0 and αng−1=1, and is calculated by

αi = α0 + i · 1− α0

ng − 1
, 0 ≤ i ≤ ng − 1 (1)

where i = ⌊ epochT/ng
⌋ indicates the current growth stage. In

addition, we use ∆α = αi+1 − αi to denote the expanding
rate, which means a ∆α proportion of the total channels in
each layer will be added every time the network expands.
It’s worth noting that, without any modification to the opti-
mizer and hyper-parameters such as learning rate and num-
ber of epochs, the only thing altered is the width (number
of channels) of the network.

3.3. Weight Matrix Expanding Strategy
The newly grown channels in each layer lead to extra

weights to be included in the convolutional filters. There is
no doubt the later added weights go through less training
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Figure 2. (a) Expansion of a 2-layer conv net. (b) Corresponding
weight matrix expanding diagram, each Wl

j,k is a 2-D filter.

iterations, and therefore it would cause expressiveness mis-
match between old and new feature maps within the same
layer, which does harm to the performance of the final dense
model. Thus, we cannot just randomly initialize the filter
weights of new channels. In this work, we introduce an
weight matrix expanding strategy to carefully expand the
weight matrix wl when α is enlarged. By imposing orthog-
onality across filters, the representative ability of the net-
work is enhanced as the network grows [3, 41].

Firstly, we divide the filter weights of an expanding net-
work into 4 types. If we treat a 2-D filter with the shape
w × h as one entry of a matrix, then the weight tensor wl

can be view as a 2-D matrix of RCl−1×Cl , in which the
(j, k) entry wl

j,k is the filter that maps the j-th incoming
feature map to the k-th outgoing feature map, where the in-
dex j ∈ {1, 2, · · · , Cl−1} and k ∈ {1, 2, · · · , Cl}. As illus-
trated in Fig. 2 (a), the width scaling operation adds a new
channel to both layers of a network with 3 channels. The
black connections denote the old weights before expansion.
Connections of other colors correspond to 3 types of new
weights added. Red denotes old-to-new connections, green
denotes new-to-old connections, blue denotes new-to-new
connections. Fig. 2 (b) demonstrates the weight matrix wl

after width expansion, which is comprised of 4 sub-matrices
each in a dashed box with corresponding color. For simplic-
ity, we use W o, W r, W g , W b to denote sub-matrices in
the black, red, green, blue dashed box, respectively.

To ensure a good performance of the network, feature
maps in the same layer are expected to encode different
properties w.r.t. the input image to reduce information re-
dundancy [31, 41]. Inspired by such designing principles,
we propose to use filter orthogonality to reduce correlations
between existing and newly-added feature maps. Taking
Fig. 2 (b) as an example, when initializing W g , we expect
W g to be orthogonal to every row of W o such that

W o
row (W g

row)
⊤ = [0, 0, 0]⊤ (2)

where W o
row ∈ R3×(3·w·h) and W g

row ∈ R1×(3·w·h) are the
resulted matrices after flattening all entries of W o and W g

into row vectors. Given the property of the nullspace of a
random matrix A ∈ Rm×n (m < n) that

Ax = 0, ∀x ∈ N (A), (3)

whereN (A) is the nullspace of A, we adopt singular value
decomposition (SVD) to computeN (W o

row) to find vectors
orthogonal to the rows of W o

row:

W o
row = UΣV ⊤, (4)

where U ∈ R3×3, Σ = diag(σ1, σ2, σ3, 0, 0 · · · ) ∈
R3×(3·w·h) and V ∈ R(3·w·h)×(3·w·h). The columns of V
which correspond to zero singular values span the null space
N (W o

row), from which we can sample vectors orthogonal
to the rows of W o

row to initialize W g .
Similarly, we initialize W r to be orthogonal to every

column of W o such that

(W o
col)

⊤ W r
col = [0, 0, 0]⊤ (5)

where W o
col ∈ R(3·w·h)×3 and W r

col ∈ R(3·w·h)×1 are the
resulted matrices after flattening all entries of W o and W r

into column vectors. This can be achieved by solving for
N ((W o

col)
⊤). Last but not least, we randomly initialize the

filters in W b based on [19], since these connections can be
viewed as a sub-network within the whole network.

3.4. Depth Expansion for Vision Transformers
Besides CNNs, network expansion can also be used to

accelerate the training of vision transformer. Considering
that the transformer architecture [49] is stacked by multi-
ple structurally identical blocks that conduct self-attention
operation, we expand vision transformers by adjusting the
number of attention blocks.

For a randomly initialized dense ViT model f(x;w)
with L layers, where w = {wl| l = 1, 2, · · · , L}, we define
α ∈ (0, 1] to be the depth factor that controls the number
of layers. At the start of training, we keep only an α0 ra-
tio of the total layers to construct a shallowed ViT model
f(x;α0 ⊗ w) with α0 · L layers, and discard other lay-
ers. Similar to the width expansion for CNNs, this shallow
ViT will be trained for ng equi-length stages by conducting
ng − 1 times depth expanding operation to get deeper and
deeper, while α grows from α0 to αng−1 = 1. During the i-
th training stage, the depth factor αi = α0+ i 1−α0

ng−1 controls
the number of layers Li = αiL of the current model.

As is shown in Fig. 3(a), previous works like Stack-
BERT [13] directly copy the whole layers from the same
trained model and stack them on the top of the network
to conduct depth expansion. Although the model capacity
is increased, such depth-expanding strategy will harm the
model’s expressiveness and cause significant accuracy drop
in vision tasks. Since the new layers possess the same at-
tention weights as those old ones being copied, redundancy
is introduced to the expanded model. This is also what
we try to avoid in the width expansion for CNNs. There-
fore, we suggest that the newly added layers should per-
form mapping functions different from the old ones. To
tackle this problem, we maintain an exponential moving
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Figure 3. Diagram of depth expansion operation for ViT. For a
8-layer ViT, this figure demonstrates the situation where α is in-
creased from αi = 0.5 to αi+1 = 0.75. (a) StackBERT copies
some layers from the same model and stacks them on top. (b) We
propose to extract the layers from EMA model and insert them into
the trained model to expand depth.

average (EMA) of the current trained model during each
training stage as a parameter bank that provides new lay-
ers. During the i-th growth stage, the EMA model, denoted
as f(x;αi ⊗ w′), has the same architecture as the trained
model, but its parameters are learned via the momentum
update of αi⊗w rather than forward- and backward- prop-
agation. Specifically, supposing the final desired model
f(x;w) has 8 layers, Fig. 3(b) shows the proposed depth
expanding operation when the depth factor increases from
αi = 0.5 to αi+1 = 0.75. When entering the next train-
ing stage, ∆α · L attention blocks from the top of the EMA
model will be extracted and inserted into the corresponding
positions of the trained model to construct f(x;αi+1⊗w),
where ∆α = αi − αi−1 is the expanding rate. After the
expanding operation, the EMA model will also be reinitial-
ized. It’s worth noting that the introduction of the EMA
model helps to avoid the redundant parameters and the re-
peated attentions caused by directly copying. The extra time
cost of momentum update can be almost omitted.

A unified accelerated training framework is described in
Algorithm 1.

Algorithm 1 Procedure of the proposed training accelera-
tion framework.
Require: a dense networkf(x;w), total epochs T ,

initial scale factor α0, # of growth stages ng ,
expanding dimension (width for CNN, depth for ViT).

Output: A trained network f(x;w).
1: randomly initialize the dense network f(x;w);
2: sample a sparse sub-network f(x;α0 ⊗w);
3: for stage i in 0, 1, · · · , ng − 1 do
4: if i > 0 then
5: αi ← α0 + i · 1−α0

ng−1 ;
6: perform the network expanding operation
7: f(x;αi ⊗w)← f(x;αi−1 ⊗w);
8: end if
9: for epoch in 0, 1, · · · , T

ng
do

10: train the network f(x;αi ⊗w) for one epoch;
11: validate the network;
12: end for
13: end for

4. Experiments

4.1. Datasets And Implementations

In this section, we demonstrate the experiment results
and ablation studies of the proposed training acceleration
framework. We conduct experiments on three common
classification benchmark: CIFAR10 [29], CIFAR100 and
ImageNet-1k [9]. CIFAR10 contains a training set of 50K
tiny-resolution RGB images that belong to 10 classes and
a validation set of 10K images. CIFAR100 is a similar
dataset with tiny RGB image but the number of classes is
100. ImageNet-1k is large-scale image dataset with 1,000
categories all from real-life scenario. This dataset is com-
prised of a training set of 1.28M samples and a validation
set of 50K samples.

We choose ResNet [20] as our baseline model to val-
idate the efficacy of our training acceleration method for
CNN architecture, since it has both the block-stacking de-
sign and identity connections. This design paradigm is con-
sistent with most of the modern CNN models. To guarantee
fair comparison, we use Stochastic Gradient Descent (SGD)
optimizer in all the experiments, and follow the standard
data augmentation procedure, which includes random crop
and random horizontal flip, proposed by original ResNet pa-
per [20]. All experiments for ResNet are conducted with
PyTorch [40] and the code is based on PyTorch official
training scripts1. As for vision transformer, we choose
DeiT-base model without the distilling token as the base-
line. Since the original ViT [10] requires pretraining on the

1https://github.com/pytorch/examples/tree/main/imagenet
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CIFAR10 CIFAR100 Wall-time Acceleration
Model Method Top1 Acc.(%) Top1 Acc.(%) consumption Ratio

ResNet32 baseline 94.41 74.91 1h : 29m 1.00×
Expansion (ours) 94.36 74.87 1h : 03m 1.41×

ResNet56 baseline 95.01 75.80 2h : 31m 1.00×
Expansion (ours) 94.88 75.76 1h : 44m 1.45×

Table 1. Top1 accuracy and acceleration on CIFAR10 and CIFAR100 datesets.

larger ImageNet-21k dataset, this undermines the fairness
of the comparative experiments on practical time consump-
tion. All the training setups and hyper-parameters are inher-
ited from the official implementation1.

Note that, all the wall-time consumption reported in the
tables are the total training time which includes data-I/O,
forward process, loss calculation, back-propagation of gra-
dients, weight updates, and any other necessary training
overheads such as maintaining the EMA model.

4.2. Result on CIFAR

On CIFAR datasets, we train all networks for 240 epochs
with the batch size set to 128. The learning rate is decreased
from 0.1 to 0 with a cosine decay schedule and the weight
decay is set to 5e-4. The training time consumption is mea-
sured on a single NVIDIA-1080Ti GPU.

In order to strike a balance between the performance and
acceleration ratio, we set the initial network width α0 = 0.5
and the number of growth stages ng = 5. This leads to an
expanding rate of ∆α = αi−αi−1 = 12.5%, which means
12.5% of the total channels will be added to each layer of
the network after every 48 epochs when the width scaling
operation is applied to expand the network. Note that, the
performance gap can be mitigated by setting a bigger α0,
which leads to smaller acceleration ratio. This will be ab-
lated later in Sec. 4.5. Under such network expansion set-
ting, ResNet32 achieves 1.41× training acceleration with
less than 0.05% accuracy decay on both dataset, ResNet56
achieves 1.45× acceleration with less than 0.13% accuracy
decay on both dataset.

4.3. Result on ImageNet-1k

On ImageNet-1k, all ResNet models are trained for 120
epochs with the batch size set to 1024. The initial learning
rate is empirically set to 0.4 to fit the batch size according
to [28, 54] and is decreased to 0 with a cosine decay sched-
ule. The weight decay is set to 1e-4. Considering the num-
ber of epochs for ImageNet is only half of that for the CI-
FAR dataset. We set the initial network width α0 = 0.5 and
the number of growth stages ng = 3. This means ∆α=25%
of the total channels will be added to each layer of the net-
work after every 40 epochs when the width scaling opera-
tion is applied to expand the network.

1https://github.com/facebookresearch/deit

20 30 40 50 60
Time elapsed (Hour)

60

65

70

75

80

To
p-

1 
Ac

c 
(%

)

DeiT-base
DeiT-base + bert2BERT
DeiT-base + stackBERT
DeiT-base + Expansion (Ours)

Figure 4. Top-1 accuracy for DeiT-base on ImageNet-1k valida-
tion set w.r.t. practical wall-time consumption.

The experiment results of ResNet50 and ResNet101 are
shown in Tab. 2. For ResNet50 that is train on a cloud-
service server with 4 TeslaV100 GPUs, we achieve 1.28×
wall-time acceleration with a 0.3% performance drop. For
ResNet101 that is trained with 8 TeslaV100 GPUs, we
achieve 1.42× wall-time acceleration with a 0.2% perfor-
mance drop. It’s worth noting that our network expansion-
based training acceleration method has better effect on
heavy models with more parameters and layers. This is be-
cause the additional overhead such as memory access and
kernel launching accounts for relatively less time in the
whole training process of a bigger model.

For DeiT-base, we train it on a cloud-service server with
8 TeslaV100 GPUs for 300 epochs. We set batch size to be
1024, learning rate to be 1e-3 using a cosine scheduler with
warmup. Optimizer is AdamW whose weight decay is 5e-2.
In addition, we set initial depth factor α0 = 0.5, number of
growth stage ng = 2 for depth expansion. As a result, the
proposed network expansion method achieves 81.5% top-
1 accuracy on ImageNet (0.4% drop compared to baseline
performance of DeiT-base), and accelerates the training pro-
cess with 1.34× faster speed, and saves 15 hours. In prac-
tical uses, this means saving a 120-GPU-hour bill from a
single run. The results of more expansion setups will be
demonstrated and ablated in Sec. 4.5. Fig. 4 depicts the
training curves of top1 validation accuracy w.r.t. wall-time
consumption under different settings.
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Model Method Top1 Acc.(%) Wall-time consumption Acceleration

baseline 76.2 19h : 21m 1.00×
ResNet50 Net2Net [6] 75.6 15h : 10m 1.28×

† Prunetrain [36] 74.8 - 1.32×
Expansion (ours) 75.9 15h : 10m 1.28×

baseline 77.4 31h : 01m 1.00×
ResNet101 Net2Net [6] 76.5 21h : 45m 1.42×

Expansion (ours) 77.2 21h : 46m 1.42×

baseline 81.8 62h : 30m 1.00×
DeiT-base bert2BERT [5] 79.6 44h : 58m 1.39×

StackBERT [13] 80.8 47h : 33m 1.31×
Expansion (ours) 81.5 46h : 42m 1.34×

Table 2. Top1 accuracy and acceleration on ImageNet-1k. ( † data taken from the original paper)

Method α0 ng mIoU(%) Time consumption Acceleration

Baseline 1.0 1 76.9 21h : 59m 1.00×
Expansion 0.5 3 75.1 16h : 49m 1.30×

0.5 2 76.4 16h : 50m 1.30×

Table 3. Results of DeepLabV3+ with ResNet101 backbone on
Cityscapes dataset.

Method α0 ng Top1 Acc. Time consumption Acceleration

Baseline 1.0 1 75.80 2h : 31m 1.00×
0.875 2 75.81 2h : 08m 1.18×
0.75 3 75.88 1h : 59m 1.27×
0.625 4 75.91 1h : 52m 1.35×

Expansion 0.5 5 75.76 1h : 44m 1.45×
0.375 6 75.60 1h : 39m 1.52×
0.25 7 75.53 1h : 36m 1.57×
0.125 8 75.31 1h : 32m 1.64×

Table 4. Top1 accuracy and acceleration with different α0 and ng

for ResNet56 on CIFAR100.

4.4. Downstream Task

We further transfer the proposed acceleration framework
to downstream task semantic segmentation. We choose
DeepLabV3+ as the baseline method since it uses ResNet-
101 as feature extractor. We directly apply the network
expansion method to its backbone network. We use 2,975
finely labeled images in the Cityscapes [8] training dataset
and utilize the most basic data augmentation including ran-
dom crop, color jitter and random horizontal flip. We use
SGD optimizer with weight decay of 1e-4. The initial learn-
ing rate is 0.1 and is decayed with a poly schedule. We train
DeepLabV3+ for 40,000 steps and set the output stride to
be 16, batch size to be 16 to fit a single TeslaV100 GPU.
We set the initial network width α0 = 0.5 and the num-
ber of growth stages ng = 3. As shown in Tab. 3, the
proposed method accelerates the training of DeepLabV3+
network for 1.3× faster with 0.5% mIoU drop.

4.5. Ablation Study

Trade-off between acceleration and performance. In
the proposed training acceleration framework, the speedup
ratio can be further boosted by setting a smaller initial width
α0. However, an overly shortened training process might
eventually lead to acute performance drop. To verify the
tradeoff relation between acceleration ratio and model per-
formance, we conduct experiments by varying the initial
network width α0. The number of growth stages ng varies
accordingly since we fix the expanding rate ∆α = 0.125.
Experiment results are shown in Tab. 4. In order to rep-
resent the relationship between speedup and performance
more clearly and intuitively, we illustrate the same results
in Fig. 5.

According to the curve in Fig. 5, the acceleration ra-
tio and network accuracy are not simply in inverse propor-
tion. When the speedup ratio is less than 1.34×, the model
performance and acceleration ratio increase simultaneously.
We conjecture that, with a large α0 close to 1, the model
capacity isn’t reduced too much at the beginning of train-
ing, and therefore the final accuracy will not be constrained.
Contrarily, our expanding training strategy serves as a reg-
ularization for the network, especially when CIFAR100 is a
small dataset where a deep network is easy to overfit. When
the speedup ratio is greater than 1.34×, decreasing α0 will
cause continuous performance degradation, although more
training time can be saved. Based on the experiments, em-
pirically setting α0 = 0.5 provides a good tradeoff for both
performance and speedup.

We conduct similar experiments on DeiT-base and report
the resulted accuracy and acceleration in Tab. 5. Generally,
a smaller initial depth factor α0 leads to more speedup ra-
tio but more accuracy drop at the same time. From Tab. 5
we also find that too many times of network expansion op-
eration is not suitable for vision transformer, which causes
significant accuracy drop. Therefore, for a DeiT-base model
with 12 layers, setting α0 = 0.5 and ng = 2 provides the
best trade-off.
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Method α0 ng Top1 Acc. Time consumption Acceleration

Baseline 1.0 1 81.8 62h : 30m 1.00×
1/3 3 80.2 42h : 27m 1.47×

Expansion 0.5 3 80.5 47h : 44m 1.31×
0.5 2 81.5 46h : 42m 1.34×
2/3 2 81.8 52h : 30m 1.19×

Table 5. Top1 accuracy and acceleration with different α0 and ng

for DeiT-base on ImageNet-1k.

Method Top1 Acc.
random 75.39
replicate 74.67

orthogonal 75.76

Table 6. Results of different weight matrix expanding methods for
ResNet56 on CIFAR100.

Ablation study of weight matrix expanding strategy.
We test different weight matrix expanding methods during
the growth of network and show the results on CIFAR100
with ResNet56 in Tab. 6. Random means we sample ran-
dom values for new weights from a normal distribution
calculated by [19]. Replicate means we directly copy the
weights from old filters to initialize the new ones. Orthog-
onal means we adopt the method described in Sec. 3.3. Ex-
periment results show that orthogonal method outperforms
the other two, and replicate method performs the worst. We
conjecture that orthogonal filters generate new feature maps
irrelevant to the old ones, which can enrich the expressive
ability of the network. Conversely, replicated filters tend
to produce similar feature maps that may limit the develop-
ment of model’s representative ability.

We further visualize the correlation between feature
maps of the same layer after width expansion to support
our conjecture and show the results in Fig. 6a and Fig. 6b.
Specifically, for a ResNet20 that has just been expanded, we
choose the 3rd convolutional layer, whose C3 is increased
from 8 to 12. We then randomly sample an image from
the validation set of CIFAR100 and obtain the correspond-
ing output feature maps. The Pearson correlation coeffi-
cient [4] is calculated between each pair of the 12 feature
maps. Since we copy the upper-left corner of W o (please
refer to Sec. 3.3) to initialize the newly grown weights, as
shown in Fig. 6a, the 1st, 2nd, 3rd and 4th channels are di-
rectly correlated with the 9th, 10th, 11th and 12th channels,
respectively. Oppositely, when applying orthogonal weight
matrix expanding method, as shown in Fig. 6b, the feature
maps have low cross-channel correlations as expected.

5. Conclusion

This paper proposes a practical training acceleration
method via network expansion for deep neural networks,
which can be easily integrated into popular deep learn-
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Figure 5. Trade-off between acceleration ratio and model perfor-
mance by setting different α0.
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Figure 6. Weights correlation between different convolution chan-
nels under (a) replicate expanding strategy, and (b) orthogonal ex-
panding strategy.

ing frameworks on general GPU devices. Specifically, our
method takes the advantage of the sparsity of deep neu-
ral networks in both width and depth dimension. We fur-
ther introduce a weight matrix expanding strategy for CNNs
via orthogonal filters to help increase the network’s rep-
resentative ability and lower the information redundancy
across channels. We also design a depth expanding strat-
egy for ViTs by using the corresponding EMA model to
avoid redundancy caused by direct copy. Extensive exper-
iments demonstrate the effectiveness of our method. We
achieve ideal acceleration results with insignificant perfor-
mance drop on several tasks for both CNN and ViT architec-
tures. Our training acceleration frameworks can reduce the
practical time and power consumption caused by training
deep networks, which is also beneficial and cost-efficient to
those cloud service users who pay bills by hours. Thus, this
work is of great significance in a practical sense.
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