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Abstract

One of the classical multi-view geometry problems is the
so called P3P problem, where the absolute pose of a cal-
ibrated camera is determined from three 2D-to-3D corre-
spondences. Since these solvers form a critical component
of many vision systems (e.g. in localization and Structure-
from-Motion), there have been significant effort in develop-
ing faster and more stable algorithms. While the current
state-of-the-art solvers are both extremely fast and stable,
there still exist configurations where they break down.

In this paper we algebraically formulate the problem as
finding the intersection of two conics. With this formulation
we are able to analytically characterize the real roots of the
polynomial system and employ a tailored solution strategy
for each problem instance. The result is a fast and stable
solver, that is able to correctly solve cases where competing
methods might fail. Our experimental evaluation shows that
we outperform the current state-of-the-art methods both in
terms of speed and success rate.

1. Introduction and Related Work
Registering a new image to a given 3D model is a criti-

cal step in many computer vision pipelines, e.g. visual po-
sitioning and localization [22], augmented reality [23] or
autonomous mapping and navigation [18]. In addition, it
has been combined with deep learning to perform learning
and geometric optimization end-to-end [4]. The problem
is generally solved by establishing a sparse set of 2D-3D
point correspondences between the image and the model
using feature-based matching [17]. To deal with the po-
tential mismatches, robust estimators based on hypothesis-
and-test frameworks such as RANSAC [7] are employed.
These methods work by generating multiple candidate mod-
els from randomly selected minimal subsets of the data (to
reduce the risk of outlier contamination). In the context of
the absolute pose problem, i.e. estimating the position and
orientation of a camera given a set of 2D-3D point corre-
spondences, the minimal is called Perspective-Three-Point
(P3P). As the name suggests, the problem is minimal with
three point correspondences in the calibrated setting, and

Figure 1. The perspective-three-point problem

has up to four real solutions.
The P3P problem has a long history, predating the field

of computer vision by a large margin. The geometric prob-
lem itself (though not in the context of cameras) was con-
sidered as early as 1773 by Lagrange [16] (see [24] for de-
tails). In his work Lagrange showed that it had at most
four solutions and could be reduced to a quartic polyno-
mial. Almost a century later, in 1841, Grunert [10] revis-
ited the problem and provided a direct solution method. In
the early 20th century the problem was also studied in the
photogrammetry community, though the main focus was on
refinement-based methods instead of solving the problem
from scratch (see Haralick [12] for details). Finstenvalder
and Scheufele [6] first show that the P3P problem only re-
quired to find a root of a cubic polynomial and the roots of
two quadratic polynomials. The problem later resurfaced
in the computer vision community in the seminal RANSAC
paper from Fischler and Bolles [7]. Due to the success of
RANSAC-based estimators the problem has since received
significant attention.

Based on the degree of the final univariate polynomial,
the P3P solutions can be mainly divided into two categories:
solving a quartic equation and solving a cubic equation.
Most of the modern papers focus on converting the P3P
problem into solving a quartic equation. Gao et al. [8] used
Wu-Ritt’s zero decomposition algorithm [27] to give a first
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complete analytical solution to the P3P problem. Kneip [15]
proposed a direct method for solving the P3P-problem as
a computation of the absolute camera position and orien-
tation, which avoids doing the eigenvalue decomposition
or singular value decomposition. Ke et al. [14] proposed
an approach which directly determine the camera’s atti-
tude by employing the corresponding geometric constraints.
Banno [1] and [19] proposed direct P3P methods estimating
the distance in the intermediate coordinate system so that
the rotation matrix can be formulated as a linear representa-
tion of the distances.

Unlike the quartic equation based methods, the cubic
equation based formulation has not been given much atten-
tion in the P3P problem literature. Since the work of [6], the
cubic formulation has also been used in the work by Gra-
farend et al. [9]. They seeked to reduce (3) to homogenous
form and then they use the same technique as [6]. Haral-
ick et al. [12] reviewed the major cubic based solutions to
the P3P problem and discussed the numerical accuracy. Re-
cently, Persson and Nordberg [21] showed more details on
finding the rotation and translation and proposed an efficient
algorithm using a single root of a cubic. To the best of our
knowledge, the solver by Persson and Nordberg [21] has
better numerical accuracy and is faster than previous work.

In this paper we again revisit the P3P problem. We fo-
cus on the solution strategy that is based on intersecting two
conics, which was also used in recent work [21]. The rel-
ative position of two ellipses has been studied in several
papers [5, 26]. However, none of them considered the com-
putation of the intersection points. By contrast, We provide
a fast and stable solver based on the characterization of the
possible solution configurations. Experimentally we show
that these extreme cases are the reason for failures and in-
stabilities in previous methods. Finally, leveraging our new
understanding we design a novel P3P algorithm that explic-
itly handles the dangerous cases. The result is a stable P3P
solver that as an added benefit is faster than previous ap-
proaches.

2. Problem Statement
Consider three 3D points Xi ∈ R3, i ∈ {1, 2, 3} in the

world coordinate and their corresponding normalized image
points mi ∈ R3, |mi| = 1, i ∈ {1, 2, 3}. The two set of the
points are related by the rigid transformation

dimi = RXi + t, (1)

where di ∈ R+ are some positive numbers. To eliminate the
rotation and translation parameters, we first have (taking the
notation from Figure 1)

|AB| = |X1 −X2|,
|AC| = |X1 −X3|,
|BC| = |X2 −X3|.

(2)

Based on the law of cosines from the triangles, and normal-
ize the image points as unit vectors, we have the following
constraints

d21 + d22 − 2d1d2m
⊤
1 m2 = |AB|2,

d21 + d23 − 2d1d3m
⊤
1 m3 = |AC|2,

d22 + d23 − 2d2d3m
⊤
2 m3 = |BC|2,

(3)

where d1 = |OA|, d2 = |OB|, d3 = |OC|. Our aim is to
finding the solutions to {d1, d2, d3} and recover the rotation
and translation. We can assume d3 ̸= 0 since otherwise
the 3D point coincides with the camera center. We then
perform the following change of variables, x = d1/d3, y =
d2/d3, and divide the first two equations in (3) by the last
equation in (3) to eliminate d3. Then we have the following
two quadratic equations in two unknowns x and y,

x2 + (1− a)y2 − 2m12xy + 2am23y − a = 0, (4)

x2 − by2 − 2m13x+ 2bm23y + 1− b = 0, (5)

where

a = |AB|2/|BC|2, b = |AC|2/|BC|2,
m12 = m⊤

1 m2, m13 = m⊤
1 m3, m23 = m⊤

2 m3.
(6)

Now the P3P problem is reduced to find the real solutions
of the above two quadratic equations. In other words, we
need to find the real intersections of two conics.

3. Our Approach
We now present our approach for P3P. We follow a sim-

ilar strategy as Persson and Nordberg [21] where the main
idea is to formulate the problem as intersecting two conics.
The two quadratic equation (4) and (5) can be written as the
following matrix representations

[1, x, y]C1[1, x, y]
⊤ = 0, (7)

[1, x, y]C2[1, x, y]
⊤ = 0, (8)

where C1,C2 are 3× 3 matrices. In order to find the inter-
sections, we first construct a 3× 3 matrix

C = C1 + σC2. (9)

The intersections are found by building a degenerate conic
which also intersects the true solutions. We can calculate
the parameter σ such that C is a degenerate conic. Degen-
erate conics are characterized by the following proposition.

Proposition 1 (Degenerate conics [13]).
If the matrix C is not of full rank, then the conic is termed
degenerate. Degenerate point conics are either two lines
(rank 2) or a repeated line (rank 1), and can be written as

C = pq⊤ + qp⊤, (10)
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where p,q ∈ R3. Once we have constructed the degenerate
conic, it can be factorized into (at most) two lines (p and
q), which we can then easily intersect with the original two
conics.

3.1. Finding the Degenerate Conic

By Prop. 1, the conic should be rank-deficient, i.e.

f(σ) = det(C)

= det(C1 + σC2) = 0, (11)

which results in a cubic equation in σ. Solving (11) we can
find the values of σ and obtain the matrix C. Note that any
solution to the original equations (belonging to both conics
C1 and C2) will lie on the degenerate conic C as well.

For each solution σ to (11), we can obtain a degenerate
conic C. As shown in (10), the degenerate conic is com-
posed of two lines p and q. Our goal is now to factorize the
conic and recover the two lines.

3.2. Extracting the Lines Directly

We first show a direct method to find the lines. Assum-
ing we have obtained a degenerate conic C, which can be
written as

C =

c11 c12 c13
c12 c22 c23
c13 c23 c33

 . (12)

Since C = pq⊤ + qp⊤, let p = [p1, p2, p3]
⊤, q =

[q1, q2, q3]
⊤, the matrix C can also be written as

C =

 2p1q1 p1q2 + p2q1 p1q3 + p3q1
p1q2 + p2q1 2p2q2 p2q3 + p3q2
p1q3 + p3q1 p2q3 + p3q2 2p3q3

 . (13)

Suppose p1q1 ̸= 0, let p̃2 = p2/p1, q̃2 = q2/q1, p̃3 =
p3/p1, q̃3 = q3/q1. We have

p̃2 + q̃2 = 2c12/c11, (14)
p̃2q̃2 = c22/c11, (15)

p̃3 + q̃3 = 2c13/c11, (16)
p̃2q̃3 + p̃3q̃2 = 2c23/c11, (17)

Based on (14) and (15) we may obtain the solution to
{p̃2, q̃2}. Substituting this solution into (17) and combin-
ing (16) we can compute the solution to {p̃3, q̃3}. In this
case, we can obtain a pair of lines [1, p̃2, p̃3] and [1, q̃2, q̃3].
To avoid the case p1q1 = 0, we can first find the absolute
maximum of the diagonal elements of C, then the pair of
lines can be computed more stably.

3.3. Finding the intersection of two lines

On the other hand, we can first recover the intersection
point v = p×q which can then be used to extract the lines

from C. For the finding intersection point v, we present
two different methods.
Method 1: Null Space. From (10) it is clear that v lies in
the nullspace of C. Taking any nullvector n of C, we know
that v = αn. We must now find α ∈ R such that the scale
of v is consistent with C (and p,q). Since v = p × q, we
have

v = [p2q3 − p3q2, p3q1 − p1q3, p1q2 − p2q1] (18)

Combining (12), (12) and (18), we can derive the relation-
ship between the norm of v and the elements of the matrix
C

∥v∥2 = c212 + c213 + c223 − c11c22 − c11c33 − c22c33. (19)

Hence, rescaling n appropriately the intersection point v
with in the correct scale is obtained.
Method 2: Adjoint matrix: On the other hand, the adjoint
matrix of C should have the following formulation

−C∗ = vv⊤, (20)

Proof. Eq. (20) can simply be proved by using (13) to for-
mulate −C∗

 (p2q3 − p3q2)
2 (p3q1 − p1q3)(p2q3 − p3q2) (p1q2 − p2q1)(p2q3 − p3q2)

(p3q1 − p1q3)(p2q3 − p3q2) (p1q3 − p3q1)
2 (p1q2 − p2q1)(p3q1 − p1q3)

(p1q2 − p2q1)(p2q3 − p3q2) (p1q2 − p2q1)(p3q1 − p1q3) (p1q2 − p2q1)
2



whose entries are identical to the entries of vv⊤. Given
a matrix C, we can first obtain −C∗. Then, to avoid zero
elements, we can find the maximum of its diagonal elements
and the corresponding column. The intersection point v can
be extracted from the column divided by the squared root of
the max diagonal element.
Recovering the lines: Once we obtain the intersection
point v, the skew-symmetric matrix of v is given by

[v]× = pq⊤ − qp⊤, (21)

which can be proved by expanding the terms on both sides
of the above formulation. Then we define a new matrix

D = C+ [v]×. (22)

Combining (22) and (10) we have D = 2pq⊤. The pair of
lines {p,q} can be found from one row and the correspond-
ing column of D.
Rank-1 case: If the degenerate conic C includes a pair of
repeated lines, the matrix C will be rank-1. In this case,
the repeated lines can be recovered directly from one row
or column.

3.4. Extracting the Solutions

The lines recovered from the degenerate conic pass
through the original solutions to (7)-(8), thus to recover
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Zero intersection

(a)

Four intersections

(b)

Two intersections

(c)

One double intersection

(d)
Two double intersections

(e)

One double and two intersections

(f)

One triple and one intersections

(g)

One quadruple intersection

(h)

Figure 2. Illustration of eight possible cases for the relative position of a hyperbola and an ellipse. The pair of lines with different colors
corresponds to different cubic roots. (a)-(c): general cases that the two conics have zero, four and two real intersections, respectively.
(d)-(f): critical cases that the two conics are tangent to each other, with one double, two double, and one double and two intersections,
respectively. (g)-(h): the two conics are osculating (the two conics have the same curvature at the tangent point) to each other with one
triple and one intersections and one quadruple intersection, respectively.

them we simply need to compute the intersection between
the lines and either of the two conics. Assuming the equa-
tion of the first line in the pair is

p1 + p2x+ p3y = 0 (23)

and substituting (23) into (5) gives a quadratic equation in
x, for which there are up to two solutions. Note that, we are
only interested in the positive real solutions. Using (23) we
can obtain the corresponding y. Since x = d1/d3, we have
d1 = xd3. Substituting the formulation into (3) we obtain a
quadratic equation in d3

(x2 − 2m13x+ 1)d23 = |AC|2. (24)

Note that m13 < 1, hence the solution to d3 is given by
d3 =|AC|/

√
x2 − 2m13x+ 1. In this case, we can obtain

the values of d1, d2, d3. There will be four possible solu-
tions to di since there is a pair of lines. Once di are known,
we can perform Gauss-Newton optimization on the sum of
squares of (3) to refine the solutions. Similar refinements
have been used in several P3P algorithms [14, 19, 21].
Finding rotation and translation: For each {d1, d2, d3},
we first use (1) to eliminate the translation and obtain two
set of equations

d1m1 − d2m2 = R(X1 −X2),

d3m3 − d1m1 = R(X3 −X1).
(25)

To find another non-coplanar vector correspondence, we
can use the normal of the plane defined by the three 3D
points and image points as in [21] (See Figure 3). The nor-
mal vector also satisfies

nb = Rna. (26)

with

nb = (d1m1 − d2m2)× (d3m3 − d1m1),

na = (X1 −X2)× (X3 −X1).
(27)

Combining (25) and (26), we have

R = BA−1,

B = [d1m1 − d2m2, d3m3 − d1m1,nb],

A = [X1 −X2,X3 −X1,na].

(28)

After the rotation is recovered, the translation can be found
using (1).

Figure 3. Rotation from vector correspondences.

3.5. Analysis of the Possible Solution Configurations

Above we presented a general scheme for solving the
P3P problem. The algorithm has two main steps

• Solving for σ to build the degenerate conic (9).

• Factorizing the degenerate conic C into (up to) two
lines that we substitute into the equations (4)-(5).
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Case Roots of the cubic Number of lines Intersections of each pair of lines
real imaginary

a simple real 3 simple real 1 pair 0 4
imaginary 0 imaginary 2 pairs 0 4

b simple real 3 simple real 3 pairs 4 0
imaginary 0 imaginary 0 - -

c simple real 1 simple real 1 pair 2 2
imaginary 2 imaginary 2 pairs 2 2

d simple real 1 simple real 1 pair 1D 2
double real 1 imaginary 1 pair (twice) 1D 2

e simple real 1 simple real 1 pair 2D 0
double real 1 repeated real 1 pair (twice) 2D 0

f simple real 1 simple real 1 pair 1D + 2 0
double real 1 simple real 1 pair (twice) 1D + 2 0

g Triple root 1 simple real 1 pair (thrice) 1T + 1 0

h Triple root 1 repeated real 1 pair (thrice) 1Q 0

Table 1. The relationship among the roots of the cubic equation, the number of the lines from the degenerate conic and the intersections of
the two conics. 1D, 1T and 1Q denote one double, one triple and one quadruple intersection, respectively.

Next, inspired by [5, 26], we analyze the configurations of
real solutions that are possible, and then leverage this to
build a robust algorithm.

The general solution to the cubic equation in (11) may
have four cases: three real roots, one real and two com-
plex roots, one real and one double root, one real triple root.
These four possibilities correspond to different cases of the
lines and the intersections. In our case, the first conic (4)
is indefinite, and the second one (5) is a hyperbola (b > 0).
Without loss of generality, we assume the first one is an el-
lipse, and show the possible relative positions of the two
conics in Figure 2. To briefly present our method, we use
the Figure 2b as an example. The two conics have four real
intersections, and the characteristic cubic equation has three
real roots. Each real root corresponds to a pair of real lines.
Each pair of real lines intersects any of the two conics at the
four real intersections (Figure 2b). Similar situations also
exist in other cases. The relationship among the roots of the
cubic equation, the number of the lines and the intersections
is shown in Table 1. Assuming the cubic equation (11) can
be written as

σ3 + κ2σ
2 + κ1σ + κ0 = 0. (29)

The change of variable σ = γ − κ2

3 gives a depressed cu-
bic [3] in γ which has no term in γ2

γ3 + αγ + β = 0, (30)

with

α = (3κ1 − κ2
2)/3,

β = (2κ3
2 − 9κ2κ1 + 27κ0)/27.

(31)

The discriminant of (30) is

∆ = −(4α3 + 27β2). (32)

• If ∆ > 0, (30) has three distinct real roots which corre-
sponds to case (a) and (b). For case (a), since all the real
roots don’t correspond to any real intersections, we can
pick any of the three roots. The root can be found using
the trigonometric solution [28]. This root may correspond
to one pair of real lines or no real lines. If the picked real
root gives one pair of real lines, we can skip the second
line after verifying there are no real intersections for the
first line. For case (b), any of the three roots will result in
one pair of real lines and four real intersections.

• If ∆ < 0, (30) has one real root and two complex con-
jugate roots which corresponds to case (c). The real root
can be found using Cardano’s formula [3], and we can
obtain one pair of real lines. If the first line in the pair has
real intersections with the conic, we can skip the second
line. Otherwise, we need to check the second line if there
are no real intersections for the first line.

• If ∆ = 0, and α ̸= 0, then (30) has a simple real root γ1 =
3β
α and a double real root γ2,3 = − 3β

2α which corresponds
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to case (d), (e) and (f). For case (d), we can see that the
double real root results in imaginary lines. Hence, we can
use the simple real root for this situation.

• If ∆ = 0, and α = 0, then α = β = 0. In this instance,
Eq. (30) has a triple root γ1,2,3 = 0 which corresponds to
case (g) and (h). The real root of the cubic gives a pair of
real lines, and the real intersections can be easily found.

Based on the above analysis and Table 1 we can notice that
the real intersections can be recovered using any pair of
the real lines, and any real root of the cubic equation cor-
responds to a pair of real lines except for case (d). We only
need to avoid using the double real root when ∆ = 0, and
α ̸= 0. On the other hand, if ∆ = 0, there must be dou-
ble intersections between the pair of lines and the conic. To
avoid duplicate solutions, we need to check the intersections
between the line and the conic. We summarize the complete
procedure as Algorithm 1.

4. Experimental Results
In this section, we compare the numerical stability and

efficiency of the proposed method with the state-of-the-art
methods. All the solvers are implemented in C++ and the
experiments are run on a desktop computer with an Intel
Core i7-9700 3.0GHz CPU. We compare with the solvers
whose C++ implementations are publicly available: the P3P
solver by Ke et al. [14]1 and the solver by Kneip et al. [15]2

which result in solving a quartic equation. We also com-
pare with the solver by Nakano [19]. Unfortunately, only
the MATLAB implementation of this solver is available on-
line3, so we re-implement this solver in C++ using the Eigen
libarary [11]. In addition, we compare with the state-of-the-
art P3P solver which solves a cubic equation [20,21]4. Note
that, we have proposed several methods to extract the lines.
In practice, we find that Method 2 is more stable. To save
space, we only show the results based on Method 2, and
more results are shown in the supplementary material. The
experiments are tested on synthetic data with ground truth.
We omit the experiments with noisy data and real data, since
the noisy case can be considered as noise free data with dif-
ferent unknown ground truth. The results by the solvers are
only affected by the numerical stability (+/- some numerical
instabilities).

To make a fair comparison, the synthetic data used in this
paper is generated based on [21], which strains the solvers
and can find the failure cases. In short, the unit quaternion
is drawn from a isotropic Gaussian distribution and then
converted into the ground truth rotation matrix Rgt. The
ground truth translation tgt is generated from the standard

1https://opencv.org/
2https://www.laurentkneip.com/software/
3https://github.com/g9nkn/p3p_problem
4https://github.com/midjji/lambdatwist-p3p

Algorithm 1:
Input: 3D points Xi, image points mi, i = 1, 2, 3
Output: Rotation R, translation t

1 Normalize the image points mi = mi/|mi|
2 Compute a, b,m12,m13,m23 based on (6)
3 Construct matrix C1,C2, and obtain the cubic

equation in σ using (11)
4 Compute the discriminant using (32)
5 if ∆ > 0 then
6 Compute one real root of γ using the

trigonometric solution
7 Compute the matrix C
8 Compute the intersection point v of the lines

using (20)
9 Extract the lines using (22)

10 Compute the intersection between the first line
and one of the conic using (23)(5)

11 if Has real solutions then
12 Do the second line

13 else if No real solutions then
14 Skip the second line

15 else if ∆ < 0 then
16 Compute the real root of γ using Cardano’s

formula
17 · · · // The same as ∆ > 0
18 Do the first line
19 if Has real solutions then
20 Skip the second line

21 else if No real solutions then
22 Do the second line

23 else if ∆ = 0, α ̸= 0 then
24 Choose γ = 3β

α , compute the intersections using
both lines

25 else if ∆ = 0, α = 0 then
26 γ = 0, compute the intersections using both

lines
27 Compute d3 using (24)
28 Gauss-Newton root polishing
29 Compute R, t using (28)

normal distribution. The normalized image points are gen-
erated by a uniform sampling of 2D coordinates in the range
[-1,1], and then the corresponding 3D point is calculated by
Xi = R⊤

gt(dimi − tgt) with a uniform random positive
depth d ∈ [0.1, 10]. The rotation and translation errors are
defined by ξR = ∥Rgt −Rest∥L1 and ξt = ∥tgt − test∥L1,
respectively. The cases where three points are collinear are
removed since such cases doesn’t give enough constraints
to find the motion parameters.
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Figure 4. Gaussian kernel smoothed histograms of the sum of the
rotation and translation errors for 100,000 runs on noise-free data.
We measure the L1-norm of the difference between the estimation
and the ground truth.

4.1. Numerical Stability

In Figure 4 we show the Gaussian kernel smoothed his-
tograms of the sum of the rotation and translation errors un-
der noise-free data with 100,000 runs. We can see that all
the methods are numerically stable. The original MATLAB
implementation by Nakano [19] includes an optional root
polishing by Gauss-Newton method, so we evaluate both
the two cases (with and without root polishing, Nakano(rp)
denotes the solver with root polishing). It seems that the
solver with root polishing by Nakano [19] gives more dis-
tributions on small errors. In addition, the mean, median
and max errors are shown in Table 2. We can find that the
proposed solver achieves the best performance for mean and
max errors, while the solver by Nakano et al. [19] with root
polishing has the best performance for median error. Note
that, the quartic based solvers contain failure cases which
have been removed for this test.

4.2. Solution Discussion

In Table 3 we show the solution comparison with the cur-
rent state-of-the-art. We generated 107 scenes in this exper-
iment to strain the solvers and show more possible failure
cases. Valid solutions represent the total number of solu-
tions returned by the solver. Unique solutions represent the
number of correct solutions (with valid rotation matrix) by
removing the duplicates. If two solutions from one trial sat-
isfy ξR + ξt < 10−5, then there are defined as duplicates.
For each trial, if there is at least one unique solution, then
we say that there is good solution for this trial. The con-
dition to define a returned solution as ground truth is given
by ξR + ξt < 10−6. We can see that our solver outper-
forms the existing methods. For almost all the trials, we can
find good solutions and ground truth without duplicates or
incorrect solutions. The quartic equation based solvers by
Ke et al. [14] and Kneip et al. [15] have many duplicates

Method Mean Median Max

Ours 3.5e-12 1.4e-13 2.3e-8
Persson et al. [21] 4.2e-12 1.6e-13 4.3e-8

Ke et al. [14] 3.5e-7 1.1e-13 0.011
Kneip et al. [15] 2.5e-6 2.5e-13 0.070

Nakano [19] 4.4e-7 3.0e-13 0.002
Nakano(rp) [19] 1.7e-9 9.4e-14 1.8e-5

Table 2. The mean, median and max values of the errors. The best
results are marked bold.

and incorrect solutions, the reason is that those solvers use
all the four roots (omit the imaginary part) from the quar-
tic equation to find possible estimations. It can improve
the possibility to find the ground truth, but it will reduce
the efficiency since each hypothesis needs to be evaluated
within RANSAC in practice. The solver by Nakano [19]
uses a threshold (10−8) in the imaginary part to eliminate
unnecessary complex roots, but the results are not as good
as ours. The duplicates and incorrect solutions of Ke et al.
and Kneip et al. can also be reduced by using such threshold
to remove incorrect roots of the quartic equation.

4.3. Running Times

In Table 4 we show the mean, median, min and max run-
ning times in nanosecond of the proposed and the state-
of-the-art solvers. The timings, averaged over 107 trials
with 100 times each, are reported. We can see that the cu-
bic based solvers are more efficient than the quartic based
solvers. The proposed solver is about 15.4% faster than
the current state-of-the-art solver. The speedup is mainly
due to two reasons: (i) based on the analysis of the relative
position and the discriminant, we can quickly choose the
suitable root of the cubic. We can avoid unnecessary com-
putation according to the sign of the discriminant. (ii) The
method to recover the lines from a degenerate conic is more
efficient than [21]. It seems that our C++ implementation
of [19] doesn’t provide good performance, since the results
of MATLAB implementation in [19] showed that the solver
is slower than [21] but slightly faster than [14]. We think
the reason is that C++ and MATLAB used different matrix
computation libraries.

4.4. Analysis of Failure Cases

We have found that the discriminant of the no solution
cases by Persson and Nordberg [21] is very close to zero.
It’s understandable, since zero discriminant corresponds to
the critical cases (d)-(h) in Figure 2. Due to the float point
round-off error and numerical instability, it may be difficult
to recover the motion parameters from such cases. We also
find that most of the failure cases are case (d) and (f), where
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Method Ours Persson et al. [21] Ke et al. [14] Kneip et al. [15] Nakano [19] Nakano(rp) [19]

Valid solutions 16825700 16825700 17389005 24159054 16823126 16826586
Unique solutions 16825700 16825686 16850758 16827917 16815718 16826042

Duplicates 0 0 163038 3038 0 0
Good solution 10000000 9999989 9999622 9999663 9996957 9999249
No solution 0 11 378 337 3043 751
Ground truth 9999993 9999978 9997345 9991078 9985342 9998727

Incorrect 0 2 375209 7328099 7408 544

Table 3. Solution comparison with the current state-of-the-art solvers

Timing (ns) Ours Persson et al. [21] Ke et al. [14] Kneip et al. [15] Nakano [19] Nakano(rp) [19]

Mean 225.8 260.6 387.1 667.2 591.3 702.0
Median 225.7 260.7 387.1 667.3 591.0 702.1

Min 224.0 258.2 384.4 664.1 588.1 699.4
Max 231.6 263.7 393.5 670.7 611.8 705.5

Speed up 1.154 1.0 0.6732 0.3906 0.4407 0.3712

Table 4. Running times comparison averaged over 107 trials with 100 times each.

case (e), (g) and (h) rarely happen. A detailed analysis of
how such cases occur is interesting, although characteriza-
tion of these is future work.

Figure 5. The danger cylinder is defined as a circular cylinder cir-
cumscribing points A,B,C with axis normal to the plane ABC.

4.5. Relationship to the Danger Cylinder

The three 3D points A,B,C defines a cylinder with the
generatrix parallel to the normal of the plane ABC. This
cylinder is known as the danger cylinder in the literature. It
has been shown in [25] that the solution of the P3P prob-
lem is unstable if the optical center O lies on the surface of
this danger cylinder. The situation is shown in the follow-
ing figure. We find that the danger cylinder will result in
∆ = 0 which corresponds to the critical cases in Figure 2.
This property has been found by generating synthetic data
that satisfies the danger cylinder. Due to the lack of space
we included the details for the danger cylinder in the sup-
plementary material.

4.6. Limitations

Our approach is based on studying the real intersections
of two conics. However, P3P problem is special since the
solutions should be positive real numbers. There might be
more constraints on the cubic equation. Unfortunately, we
have not found a good way to do this. Note that, Eq. (4)
and (5) can be solved using Homotopy continuation [2],
which is good at solving large-scale squared system. For
P3P problem, we found that it is not as efficient as current
solvers which are essentially closed-form.

5. Conclusion
In this paper we have revisited the P3P problem and in

particular investigated the solution strategy that is based on
intersecting two conics, similar to what was used by Pers-
son and Nordberg [21]. By analyzing the set of possible
solutions and explicitly enumerating the corner cases, we
are able to design a P3P algorithm that is fast and stable.
In experiments, we show that the solver is both more robust
and faster compared to previous methods. The source code
is available at https://github.com/yaqding/P3P
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