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Abstract

While 3D-based GAN techniques have been successfully
applied to render photo-realistic 3D images with a vari-
ety of attributes while preserving view consistency, there
has been little research on how to fine-control 3D im-
ages without limiting to a specific category of objects of
their properties. To fill such research gap, we propose a
novel image manipulation model of 3D-based GAN repre-
sentations for a fine-grained control of specific custom at-
tributes. By extending the latest 3D-based GAN models
(e.g., EG3D), our user-friendly quantitative manipulation
model enables a fine yet normalized control of 3D manip-
ulation of multi-attribute quantities while achieving view
consistency. We validate the effectiveness of our proposed
technique both qualitatively and quantitatively through var-
ious experiments.

1. Introduction

Recent advances in neural rendering [23,34,38] are mak-
ing it easy to reproduce virtual 3D objects from real-world
objects. Neural rendering approach is not fully scalable in
practice since it heavily relies on input images and thereby
can not fully represent every possible form, style, and state
variation of all real and unreal objects. 3D generative ad-
versarial networks (GANs) models, on the other hand, are
more generalizable and extensible since these can not only
reproduce 3D objects at scale but also allow easier configu-
rations based on the user’s intention [5,32,37], making them
more suitable for various 3D image synthesis tasks.

Image manipulation on the latent space of 2D GAN has
been extensively studied in recent years [2, 28, 29, 33, 39].
StyleGAN2 [15] has been the dominant technique used due
to its flexibility to represent different styles and disentan-
gled latent spaces. More recently, 3D-based GAN [24,
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Figure 1. An example of quantitative image manipulation for the
face tiredness attribute. Attributes expressed as complex facial
features, such as tiredness, are not easy to define explicitly. Our
method assigns user-defined attributes based on a small number of
image samples, allowing quantitative manipulation of 3D objects
according to the user’s desired state changes.

26, 32] for multi-view image synthesis using neural ren-
dering [23, 25] has gained popularity. For instance, those
models [5, 10, 27] equipped with StyleGAN2 modules can
generate photo-realistic 3D images with a variety of at-
tributes while preserving view consistency. Nevertheless,
the existing works do not well explore a fine-grained ma-
nipulation of custom attributes (e.g., capturing tiredness in
a face, consisting of multiple and complex facial expres-
sions, as shown in Figure 1) of 3D objects that are syn-
thesized using 3D-based GAN models, and therefore it de-
serves more thorough research. While there have been
some attempts [29,33,39] to use the latent spaces generated
by GAN models to manipulate generated and real images,
these approaches mainly focus on 2D objects and they are
not user-friendly because users need to individually deter-
mine the appropriate manipulation scale for every use ac-
cording to every specific intention.

Achieving view consistency during 3D image manipu-
lation in the latent spaces is crucial to achieve the quanti-
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tative manipulation of custom attributes. Previously, each
attribute in a multi-view image for an object was incon-
sistently estimated across viewpoints [8, 16, 17]. We al-
leviate such multi-view inconsistency problem by treating
each attribute in each multi-view image as the same. That
is, our 3D manipulation model is based on a 3D-based
GAN model like EG3D [5], also equipped with two oper-
ators: 1) attribute quantifier that estimates the quantity of
attribute to be edited, and 2) navigator that explores across
the latent space to generate a manipulated image. Since
the attribute quantifier guides the navigator, the manipula-
tion quality of the navigator depends on the performance of
quantifier. As quantifier, an off-the-shelf pre-trained regres-
sion model [1, 22] for a specific attribute is often used. It is
not always easy to construct the pre-trained quantifier, es-
pecially for uncommon custom attributes. Hence, to better
deal with custom attributes, our navigator manipulates the
image by only assigning the target quantity without explor-
ing the direction and scale of changes of the latent features.
The attribute quantifier is first trained on a small number
of custom image samples and then evaluates a user-defined
attribute as a normalized quantity in the range [0, 1]. Us-
ing the quantifier, the navigator is then trained to generate
and manipulate images corresponding to target custom at-
tributes. We evaluate our approach in various attributes of
3D and 2D objects, including human faces, confirming that
our method is qualitatively and quantitatively effective.

2. Related Works
2.1. Latent Space Image Manipulation

StyleGAN2 [15] can generate realistic images with var-
ious styles by learning from the styles of dataset images,
and effective manipulation is possible because various at-
tributes are disentangled. Some researchers [11, 29, 33, 39]
have tried to find the direction for image manipulation in the
latent space. GANSpace [11] finds meaningful directions in
an unsupervised manner through principal component anal-
ysis. StyleCLIP [29] uses contrastive language–image pre-
training (CLIP) [30] for text-driven image manipulation.
In these methods of finding direction, the moving distance
along the direction should be determined heuristically after
finding the direction vector for manipulation. To mitigate
this issue, StyleFlow [2] proposes a conditional exploration
method of GAN’s latent space using conditional normal-
izing flows. Because StyleFlow is based on an open-source
algorithm of semantic attributes, it is not easy to extend new
attributes. In contrast, our method can accurately manipu-
late images within the normalized range of attribute varia-
tion with a relatively small amount of labeled data.

2.2. 3D Object Manipulation
There have been several studies using GAN to generate

3D-aware images [5, 10, 27, 35]. The 3D GANs introduce

new architectures by combining NeRF [23] with GAN. The
vast majority of studies about 3D GAN have utilized Style-
GAN2, and these models have a structure that is easy to ma-
nipulate, like 2D StyleGAN2. However, attribute manipu-
lation based on these models has not yet been actively stud-
ied. Some of the manipulation studies that used 3D GAN
were limited to the face and used a 3D morphable model
(3DMM) [3, 36]-based method [19, 21, 44, 45]. Because we
wanted to ensure that our methodology can be used in a
domain-agnostic manner, we did not use a domain-specific
pre-trained model (e.g., 3DMM).

There have benn some NeRF editing studies [13, 37, 41,
41]. CoNeRF [13] provides fine-grained control over 3D
neural representations from a single video. Inspired by the
CoNerf approach, we extend a fine-grained control scheme
to the 3D GAN model. Compared to CoNeRF, which com-
bines parts of a video to generate a novel image, our method
is based on generative models and can therefore manipulate
diverse novel attributes.

2.3. Efficient Geometry-Aware 3D GANs (EG3D)

EG3D [5] introduced a 3D GAN framework for 3D-
aware image synthesis. By decoupling feature generator
and neural renderer, EG3D leverages StyleGAN2 for effi-
ciency and expressiveness. Using a StyleGAN2 backbone,
EG3D transforms the random latent feature z into interme-
diate latent feature w, then generates a feature map. The
feature map forms a tri-plane representation, and then the
output image is generated using a neural renderer, followed
by a super-resolution module, which uses a StyleGAN2
backbone and latent feature w. Because EG3D is designed
with a StyleGAN2 backbone, it allows for various manipu-
lations in the latent space. Researchers have studied various
approaches for attribute manipulation in the latent space of
StyleGAN2, but have not considered 3D structure. To mit-
igate this issue, we propose a novel approach to 3D image
manipulation considering multi-view consistency.

3. Method
We design a custom attribute quantifier to estimate the

normalized quantity of an image to provide user-friendly
attribute handling and a navigator to manipulate a 3D ob-
ject’s custom attribute for 3D-aware image synthesis. The
overall scheme of our method is depicted in Figure 2. On
the latent space of EG3D, a source latent feature ws, which
is obtained from a source image Is, is manipulated to tar-
get latent feature wt. Then, from wt, EG3D generates the
viewpoint-wise target image Int whose quantity vector is es-
timated by Q̂n

t . For multi-view consistency, the quantifier is
trained so that every Q̂n

t follows the target quantity vector
Qt and the variance of Q̂n

t is minimized. By using multiple
trained quantifiers, the multi-attribute navigator takes on the
role of moving the source latent feature ws to the target wt
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Figure 2. Overall scheme of the proposed method. The quantifiers that estimate the attribute quantities of the source and target images
are first trained using the custom dataset. The navigator then manipulates the latent feature for efficient geometry-aware 3D (EG3D) [5]
to generate the target image from a source latent feature given along with a target attribute quantity. The navigator is trained so that the
generated 3D-aware images are close to the target attribute quantity, yet do not lose their identity.

in the latent space, referring to Qt and the estimated source
quantity vector Q̂s. For training the navigator, the estimated
attribute quantity vector Q̂t is defined by the average of Q̂n

t

over n, which is used to form a loss (i.e., the squared er-
ror between Qt and Q̂t for accurate manipulation), while
preserving the identity of Is.

3.1. Custom Attribute Quantifier

The quantifier, which consists of a feature encoder and
a linear regression model, aims to estimate the quantity q
of the custom attribute from the image x. We use the pre-
trained image encoder of CLIP [30] as the feature encoder,
and the linear regression model comprises a fully connected
layer. The quantifier is trained using two datasets simultane-
ously: the attribute dataset Da, and the consistency dataset
Dc. The former is used to train user-defined attributes, and
the latter is used to train multi-view consistency.

Attribute Dataset Custom attributes are specified with a
small amount of labeled dataset Da provided by the user. To
train the quantifier for an attribute such as age, we construct
an attribute dataset Da = {xa, qa} with fine-grained quan-
tity labels in a range of [0, 1] to express various attributes on
a normalized scale. To assign quantity labels to the images
in Da, we first equally divide the quantity range of [0, 1]
into M groups and divide the dataset Da into M groups
in the order of attribute change. Each group comprises Ωa

images. Then, the quantity label qa for each image in the
m-th group Gm in Da is assigned to the value of m−1

M−1 . To
mitigate the lack of samples in Da, synthetic samples are
augmented using Cutmix [42] between images of adjacent
groups. For the image augmented by combining an image
in Gm with that in Gm+1 using Cutmix of the combination
ratio γ, the quantity label qa is assigned to m−γ

M−1 . Since γ
is sampled from the uniform distribution [0, 1], the dense

quantity labels are sufficient to train the quantifier for re-
gression, yielding any quantity in [0, 1]. Furthermore, we
also augment data samples by random color jittering. Color
jittering contributes to reducing the bias that is a potential
concern in visual recognition.

Consistency Dataset We construct the consistency
dataset Dc = {xc} using EG3D to train the quantifier that
estimates a quantity consistently regardless of the view-
point. The consistency dataset Dc is constructed using
EG3D without the additional annotation cost. We utilize
EG3D to generate multi-view image samples for a large
number of objects. From one random latent feature w, we
generate V images {x1

c , x
2
c , · · ·xV

c } using different V cam-
era viewpoints. Finally, the consistency dataset Dc is con-
structed using Ωc random latent features, so it consists of
multi-view images of Ωc different objects.

Loss and Training We design a loss function for training
the quantifier that can estimate user-defined attributes while
maintaining multi-view consistency. The first term of the
loss is the mean squared error (MSE) between the estimated
q̂a and label qa for an input sample xa in Da. The second
term is the variance for the estimated q̂c vector for V multi-
view images for a single object in the consistency dataset,
where q̂vc is the estimated quantity of xv

c in Dc. Quantifier
training loss Lq is given by

Lq =
∑

xa∈Da

(qa − q̂a)
2 + λc

V∑
v=1

∑
xv
c∈Dc

(
q̂vc − ¯̂qvc

)2
, (1)

where ¯̂qvc is the mean of q̂vc over all v, and λc is a hyper-
parameter for balancing among the two loss terms. For the
efficiency of training, we use a mini-batch of M images
sampled, one from each group in Da, and M objects sam-
pled from Dc.
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For K attributes estimation, K quantifiers are trained in-
dividually on a custom attribute. For inference, each at-
tribute quantity scalar q(k) from the k-th quantifier is con-
catenated to create K-dimensional quantity vector Q =
[q(1), q(2), · · · , q(K)]. A quantity vector can be designed
by a combination of various quantifiers, depending on an
application.

3.2. Multi-Attribute Navigator

Design Using the pre-trained quantifier, the navigator
controls the attribute change in the latent space, following
the given target attribute quantity. To this end, the navigator
manipulates the feature in the 512-dimensional latent space
W+, where the source feature ws is changed into the target
feature wt with the guidance of Q̂s and Qt. We design the
navigator shown in Figure 2 to handle multiple attributes ef-
fectively. First, the attribute feature representer (AFR) en-
ables more precise adjustment of attribute features by ex-
panding the quantity information with positional encoding.
AFR also represents multi-attribute feature in the attribute
quantity feature fQ. Second, layer-wise attention controller
(LAC) estimates which layer among the L layer-wise map-
pers (LWMs) to attend each attribute manipulation.

AFR converts Q̂s and Qt to a 512-dimensional attribute
quantity feature fQ. First, Q̂s and Qt are concatenated
and mapped to higher dimensional space using the posi-
tional encoding proposed by NeRF [23]. Then, a fully con-
nected layer maps the positional encoded feature to a 512-
dimensional attribute quantity feature fQ. The input vector
with 1024 dimensions is generated by concatenating ws and
fQ, and then, the input vector is fed to each LWM. From
the input vector, l-th LWM generates wl

∆, which represents
the movement on the latent space for l-th layer of EG3D.
An LWM follows the architecture of StyleGAN2’s mapping
network with four layers.

LAC outputs the layer-wise attention vector a =
[a1, a2, · · · , aL] from attribute quantity feature fQ. And the
target latent feature wt is generated as follows:

wl
t = ws + alw

l
∆, (2)

wt = [w1
t , w

2
t , · · · , wL

t ]. (3)

Because each layer of StyleGAN2 is responsible for dif-
ferent levels of an image’s style, different attributes have
different layers that are appropriate for manipulation. The
LAC module, which learns layer-wise attention, is more ef-
fective for custom attribute manipulation compared to prior
studies [2, 29], which manually specify the appropriate lay-
ers for each attribute. LAC is a two-layer MLP with sigmoid
activation in the last layer to output in the range of [0, 1].

Loss and Training The navigator is trained such that Q̂t

follows Qt, while the identity between Is and It is pre-
served. To this end, we randomly generate Qt during the

training. To enable the navigator to manipulate multiple at-
tributes simultaneously, we randomly select J attributes to
train out of a total of K attributes at every training iteration.
That is, training attribute set T is generated as follows:

T = {τ1, τ2, · · · , τJ} ⊂ {1, 2, · · · ,K}. (4)

Then, Qt is generated by replacing J elements of Q̂s with
J random target values (qt). To ensure that the navigator
performs well within the entire range of [0, 1], we use qt
randomly sampled from the uniform distribution on [0, 1]
during the navigator’s training. Hence, the navigator can be
trained to move the source latent feature to a point in the
latent space representing an intermediate target quantity.

For view consistency in manipulation, we generate
multi-view target images from wt. Using N random camera
viewpoint pnt , N multi-view images Int are generated. And
target quantity vector Q̂n

t is calculated from Int , then Q̂t is
calculated as the average of Q̂n

t vectors.
With the random target attribute quantity Qt and random

source latent ws, we train the navigator by minimizing the
losses, which can be grouped into three main subsets:

Ln = LQ(Qt, Q̂t) + Lid(wt, ws, It, Is) + La(a). (5)

The quantity loss LQ guides the navigator to manipulate
the image according to the target attribute quantity. J-
dimensional quantity vector Q′ for training attributes set T
is generated as follows:

Q′ = [q(τ1), q(τ2), · · · , q(τJ )]. (6)

And the quantity loss consists of two MSE terms between
quantity vectors as

LQ = ∥Q′
t − Q̂′

t∥22 + λq∥Qt − Q̂t∥22, (7)

where λq is the hyper-parameter for balancing the loss. In
quantity loss, the first term is for J attributes in T and the
second term is for all K attributes. Because random target
quantities are given for J attributes out of a total of K at-
tributes, K − J attributes of Qt are from Q̂s. Hence, the
second term can lead to both preserving the source attribute
quantity and manipulating it to the target attribute quantity.

The identity loss Lid is designed by

Lid = ∥wt − ws∥22 +
λL

N

N∑
n=1

LPIPS(Is, Int ), (8)

where λL is the hyper-parameter for balancing the loss, and
LPIPS denotes the learned perceptual image patch similar-
ity [43] calculated by the distance between the activation of
two images.

The third term, Ln, is a regularization loss for layer-wise
attention as

La = |α− ā| , (9)

where ā denotes the average of al over l, and α is the hyper-
parameter for the target average value of attention.
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Figure 3. Quantitative manipulation results of faces for age, smile,
and tiredness attributes. The image in the first column is the
source, and the following four images are the manipulated images
with gradually increased target quantity. The image in the last col-
umn is the 3D shape manipulated with the target quantity 1.0.

4. Experiments

4.1. Implementation Details

We evaluated our results on 3D GAN, EG3D [5]. We
tested face and cat categories, each pre-trained using the
FFHQ [14] and AFHQv2 [6] datasets, respectively. We ex-
perimented with the face category’s age, smile, gender, eye-
glasses, tiredness, pain, thinness, drunkenness, and eyebrow
attributes. In the cat category, we experimented with age,
eye, and fur attributes.

Custom Attribute Quantifier For the attribute dataset
Da of attributes, we used either a public dataset or con-
structed it manually from an unlabeled dataset. We used
the FFHQ-Aging [28] dataset for age and gender attributes,
and we used the KDEF-dyn [4] dataset and CelebAMask-
HQ [20] dataset for smile and eyeglasses, respectively. For
custom attributes that had no attribute dataset, we manu-
ally constructed Da for each attribute. We constructed each
Da for attributes of cats by manually sampling from the
AFHQv2 dataset. We constructed each Da for tiredness,
pain, thinness, drunkenness, and eyebrow attributes by web-
crawling images and annotating labels. When we manually
constructed Da, each dataset size was up to 100 samples,
taking an average of 20 minutes. Details for constructing
Da are provided in the supplement. For the consistency
dataset Dc, we used V = 10, Ωc = 10, 000. We trained
the quantifier for 50 epochs with a batch size of M . We set

Source Eyeglasses w/o Eyebrow† Thinness† Multi Attr.

Source Eyeglasses Drunkenness† Pain† Multi Attr.

Source Pain† w/o Eyebrow† Gender Multi Attr.

Source Gender Drunkenness† Thinness† Multi Attr.

Figure 4. Various custom attribute manipulation results. The im-
age in the first column is the source, and the following three images
are the results of each manipulation for a single custom attribute.
The image in the last column is the multi-attribute result of simul-
taneously manipulating the three prior attributes.
(† = custom attributes implemented via manually constructed Da)

λc to 0 until 10 epochs, then linearly increased it to 0.01
until 25 epochs, and kept it at 0.01 until the end of training.

Navigator We trained the navigator with 30,000 itera-
tions with a batch size of 16 on 4 Tesla V100 GPUs. We
used EG3D to randomly generate ws with truncation factor
ϕ = 0.7 during navigator training. We set hyper-parameters
λq = 0.5, λL = 0.1, α = 0.5, and N = 2.

4.2. Custom Attribute Manipulation

As shown in Figure 3, the faces were gradually manip-
ulated for the attributes of age and smile according to the
target attribute quantity qt normalized in the range [0, 1].
Regardless of the source attribute quantity q̂s of the source
image Is, the attribute quantity of the manipulated image
changed according to the target attribute quantity. Compar-
ing the source images in the examples of smile attributes, a
woman (third row) smiles and a man (fourth row) is expres-
sionless, which means that the source attribute quantity is
different. In our results, the manipulated images of the two
people’s faces have similar facial expressions depending on
the target attribute quantity. When qt approaches 0, they are
both expressionless; when qt approaches 1, they both smile
broadly.

Figure 4 shows that our model can manipulate faces for
various custom attributes and can also manipulate multi-
ple attributes simultaneously. We show more results of the
quantitative manipulations for these attributes in the supple-
ment. Figure 5 represents gradually manipulated images of
cats with custom attributes such as fur, eye, and age. Be-
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Figure 5. Quantitative manipulation results of cats for custom at-
tributes (fur, eye, and age). The image in the first column is the
source, and following five are the manipulated images.

cause we did not use any domain-specific pre-trained mod-
els, our method provides a domain-agnostic technique.

To demonstrate the expandability of our method, we ap-
ply our method to StyleGAN2, which has pre-trained mod-
els in various categories. Face and cat categories were
tested, pre-trained using the Stanford Cars [18] dataset and
the LSUN Church [40] dataset, respectively. As shown in
Figure 6, cars are gradually manipulated for the attributes
of year and type, and churches are gradually manipulated
for the cloudiness attribute. The manipulated results are in-
dependent of the source attribute quantity, as were the cases
for faces in Figure 3. In the case of the car year attribute,
it is difficult to intuitively describe the changes in appear-
ance according to the year attribute quantity. However, our
method can visualize the changes. In detail, the newer the
car is, the more emphasized the horizontal lines on the grill,
the sharper the headlights, and the more curved the overall
design. This result shows that our approach can be used in a
similar manner as GANalyze [9], which visualizes abstract
concepts such as memorability through GAN. Implemen-
tation details and more experimental results of StyleGAN2
are provided in the supplement.

4.3. Comparisons

In this section, we compare our method with other quan-
titative manipulation methods. For quantitative comparison,
we experimented with image manipulation of the faces on
age, smile, gender, and eyeglasses attributes. We compared
the performance of our approach with that of StyleFlow [2],
which proposes a quantitative manipulation. We also im-
plemented StyleFlow+Q, which uses our custom quantifier,
while StyleFlow uses a pre-trained model as a quantifier*.
Details for implementing StyleFlow on EG3D are provided
in the supplement.

The resultant image Iϕθ was manipulated from the source
image Iϕ using the θ-th target value (ϕ = 1, · · · ,Φ, θ =

*StyleFlow originally used Microsoft Face API [22] as a quantifier, but
Microsoft no longer supports it. Therefore, we used Face++ [1] as a quan-
tifier for StyleFlow implementation on EG3D.

Source 2000 2004 2008 2011 2015 2019−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Source
Coupe Sedan Wagon SUV Minivan−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Source
Sunny Cloudy−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 6. Quantitative manipulation results of cars for year and
type attributes, and churches for cloudiness attribute in Style-
GAN2. The image in the first column is the source, and the fol-
lowing six are the manipulated images with the target quantity in-
creased from 0.0 to 1.0.
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Young Old No-smile SmileSource

Figure 7. Qualitative comparison for age and smile attributes ma-
nipulation in EG3D. Competing methods fail to preserve identity
when manipulated to Old and No-smile.

1, · · · ,Θ). In addition, we used Face++ [1] to measure rϕθ ,
which is the resultant attribute quantity of Iϕθ .

Quantitative Comparisons Image manipulation seeks to
accomplish two primary objectives that are often conflict:
1) To modify an image to achieve specific intended at-
tributes, and 2) to maintain original image’s identity. To
evaluate our approach to the objectives, we employed five
metrics. Manipulation exactness and accuracy are both
metrics employed to evaluate the success of the first ob-
jective, while identity preservation serves as the metric to
access the achievement of the second objective. Manipu-
lation efficiency measures success in both objectives, and
identity preservation is a metric for evaluating consistency
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Method Age Smile Gender Eyeglasses
σm ↓ Ed ↓ ρ ↑ σv ↓ σm ↓ Ed ↓ ρ ↑ σv ↓ Acc. ↑ Ed ↓ Acc. ↑ Ed ↓

StyleFlow 8.40 0.373 21.3 2.304 37.38 0.382 29.9 4.859 83% 0.586 96% 0.510
StyleFlow+Q 10.46 0.331 22.1 2.304 27.49 0.320 34.4 2.635 78% 0.670 79% 0.486

Ours 8.03 0.245 32.6 2.235 21.50 0.210 51.0 2.255 95% 0.537 96% 0.468

Table 1. Quantitative comparison with competing methods in EG3D. We evaluated the manipulation performance on age, smile, gender,
and eyeglass attributes using five evaluation metrics: manipulation exactness (σm), manipulation accuracy (Acc.), identity preservation
(Ed), manipulation efficiency (ρ), and view consistency (σv). Our method gives the best results.

across multiple manipulated views.
Specifically, we defined the metrics as follows: 1) Ma-

nipulation exactness refers to the consistency of results for
the same input target value. From the standard deviation
σm,θ of the θ-th resultant quantities

{
r1θ , · · · , rΦθ

}
, the eval-

uation metric σm is the mean of σm,θ. Regarding 2) ma-
nipulation accuracy, we measured the ratio of correctly
manipulated images for binary-class attributes (e.g., gen-
der, eyeglasses). For 3) identity preservation, we deter-
mined the average Euclidean distance Ed between the em-
beddings of two manipulated images, which were generated
using two adjacent target values, as

Ed =
1

(Θ− 1)Φ

Θ−1∑
θ=1

Φ∑
ϕ=1

∥F (Iϕθ+1)− F (Iϕθ )∥, (10)

where F is the embedding of the pre-trained face recog-
nition model [7]. The metric of 4) manipulation effi-
ciency refers to trade-off ratio ρ between attribute manip-
ulation and identity preservation as (rΘ−r1)

(Θ−1)Ed
. Lastly, 5)

view consistency was calculated across multiple manipu-
lated views. In each manipulation case, we generated three
multi-view images {Iϕ,1θ , Iϕ,2θ , Iϕ,3θ } and measured the re-
sultant attribute quantities {rϕ,1θ , rϕ,2θ , rϕ,3θ }. From the stan-
dard deviation σϕ

v,θ of the resultant attribute quantities, the
evaluation metric σv is the mean of σϕ

v,θ.
We conducted experiments with Φ = 100 and Θ = 8.

As shown in Table 1, our approach outperforms the com-
peting methods in all evaluation metrics. StyleFlow and
StyleFlow+Q show similar performance, implying that our
custom quantifier has reasonable performance compared to
a public pre-trained model, Face++.

Qualitative Comparisons Age and smile attributes were
tested for qualitative comparison, as shown in Figure 7.
StyleFlow+Q sometimes significantly changes the source
identity (e.g., gender and eyeglasses status are changed in
both Old and No-smile manipulation cases). StyleFlow also
sometimes changes the source identity, and the manipula-
tion performance is worse than others in the Smile case. Our
method can manipulate images while preserving the source
identity with better manipulation performance (e.g., broadly
smiling in the Smile manipulation case).

Method Age Smile
σm ↓ Ed ↓ ρ ↑ σm ↓ Ed ↓ ρ ↑

Talk-to-Edit 14.3 0.221 32.9 22.6 0.212 40.9
StyleFlow 16.9 0.195 28.4 29.1 0.099 88.9

Ours 10.9 0.225 47.2 20.2 0.103 96.6

Table 2. Quantitative comparison with competing methods in
StyleGAN2. We evaluated the manipulation performance on age
and smile attributes using three evaluation metrics: manipulation
exactness (σm), identity preservation (Ed), and manipulation effi-
ciency (ρ).

Source
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L
IP

O
u
rs
Age Smile

Figure 8. Comparison between models regarding the degree of
image manipulation according to the manipulation strength (left:
age attribute; right: smile attribute). Red boxes denote unnatural
manipulated images due to excessive manipulation strength.

Comparisons in 2D We compare our method with four
baselines in StyleGAN2. For quantitative comparison,
we compare our method with StyleFlow [2] and Talk-to-
Edit [12], which propose quantitative manipulations. For
qualitative comparison, we compare our method with Style-
CLIP [29] and GANSpace [11], which provide direction for
attribute manipulation. The experiment was conducted by
manipulating the age and smile attributes of the FFHQ test
dataset using the authors’ official implementations.

As shown in Table 2, our approach outperforms Style-
Flow and Talk-to-Edit in manipulation exactness σm. In the
Ed score, StyleFlow is slightly better than ours, and Talk-
to-Edit is similar to ours, but our approach outperforms both
methods in terms of the efficiency score ρ. This result im-
plies that our method better preserves identity when an at-
tribute changes by the same quantity.
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Model σm ↓ Acc. ↑ Ed ↓

Design w/o LAC module 15.84 96.0% 0.415
w/o AFR module 15.37 89.0% 0.387

Training w/o entire attrs. in LQ 14.78 87.5% 0.405
w/o intermediate Qt 15.65 97.0% 0.402

Full model 14.76 95.5% 0.365

Table 3. Ablation study on quantitative manipulation. We experi-
mented on four attributes (age, smile, gender, and eyeglasses) and
reported the mean values of exactness (σm), accuracy, and identity
preservation (Ed).

In Figure 8, we compare the degree of image change ac-
cording to the gradual increase in the manipulation strength.
For each manipulation, we set the manipulation strength
using the values suggested in their provided code. Each
method enables natural manipulation of the attribute by
using the appropriate strength; however, the appropriate
strength varies for each attribute and source. In GANSpace,
a greater strength is suitable for the smile attribute, and
a lesser strength is suitable for the age attribute, which is
the opposite in StyleCLIP. Our approach can manipulate at-
tributes in a normalized range, so ours can generate natu-
rally manipulated images without exploring the manipula-
tion strength.

4.4. Ablation Study

Quantitative Manipulation We conducted several abla-
tion experiments on our method. Four ablation factors were
selected from our navigator: two from the design (LAC,
AFR) and two from the training scheme (entire attributes
in LQ, intermediate target quantity). In the ablation study
on the LAC module, we generated wt by adding w∆ to ws.
In the ablation study on the AFR module, we generated fQ
by concatenating Q̂s and Qt, then repeating it. When en-
tire attributes are not used in LQ, we trained the naviga-
tor with λq = 0. When an intermediate target quantity is
not used, we trained the navigator by randomly sampling qt
value from zero or one. We evaluated the results using the
mean values of evaluation metrics in Section 4.3. As shown
in Table 3, the full model exhibits the best performance in
evaluation exactness and identity preservation. An ablation
study on the LAC module shows slightly better accuracy
but worse performance in exactness and identity preserva-
tion. The AFR module improved the performance of ma-
nipulation exactness σm from 15.37 to 14.76. Using entire
attributes in navigator training improved the performance
of accuracy from 87.5% to 95.5%. Using intermediate tar-
get quantity in navigator training improved the manipula-
tion exactness σm from 15.65 to 14.76. By training the
navigator with a random intermediate target quantity, the
navigator could move the source latent feature to the target
more precisely, as intuitively intended.

Age Smile
2.0

2.2

2.4

2.6

2.8

vi
ew

-s
td

 (
v) w/o both factors

w/o multi-view in navigator
w/o consistency dataset (Dc)
Full Model

Figure 9. Ablation study on view consistency. We experimented
on two attributes (age, smile) and reported the viewpoint-wise
standard deviation σv (a lower value is better).

View Consistency We conducted another ablation study
on view consistency performance. Two ablation factors
were selected, one from the quantifier and one from the nav-
igator. In the ablation study on the quantifier, we trained the
quantifier without consistency dataset Dc by setting λc = 0.
In the ablation study on the navigator, we trained the navi-
gator without multi-view images by setting N = 1. Further-
more, we also experimented with a case without both fac-
tors of the quantifier and navigator. As shown in Figure 9,
each factor in the quantifier and navigator for multi-view
consistency contributes to the view consistency.

5. Conclusion
Using our method, users can easily manipulate custom

attributes of the source 3D image with only a target attribute
quantity in the range of [0, 1]. This goal was achieved
by introducing a novel attribute quantifier that can esti-
mate the normalized attribute quantity from a given im-
age. The navigator enables fine-control manipulation of
multi-attribute quantities using the attribute quantifier. Our
method achieved 3D-aware image manipulation via using a
consistent attribute quantity in multi-view. We validated the
effectiveness of our method both qualitatively and quantita-
tively through various experiments.

Limitations Since our study is based on the latent space
of a pre-trained GAN model, the performance of manipula-
tion is limited by that of the pre-trained model. EG3D has
fewer pre-trained models than StyleGAN2, so examples are
limited, but it is expected to expand as various pre-trained
models are released. Moreover, we used images generated
from random latent features as a source rather than real im-
ages. Examples of real image manipulation using the inver-
sion method [31] are provided in the supplement.

Further discussion of the potential negative social im-
pacts is provided in the supplement.
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