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Abstract

Deep Neural Networks show superior performance in
various tasks but are vulnerable to adversarial attacks.
Most defense techniques are devoted to the adversarial
training strategies, however, it is difficult to achieve satis-
factory robust performance only with traditional adversar-
ial training. We mainly attribute it to that aggressive per-
turbations which lead to the loss increment can always be
found via gradient ascent in white-box setting. Although
some noises can be involved to prevent attacks from deriv-
ing precise gradients on inputs, there exist trade-offs be-
tween the defense capability and natural generalization.
Taking advantage of the properties of random projection,
we propose to replace part of convolutional filters with ran-
dom projection filters, and theoretically explore the geomet-
ric representation preservation of proposed synthesized fil-
ters via Johnson-Lindenstrauss lemma. We conduct suffi-
cient evaluation on multiple networks and datasets. The
experimental results showcase the superiority of proposed
random projection filters to state-of-the-art baselines. The
code is available on GitHub.

1. Introduction

Although Deep Neural Networks (DNNs) have become a
popular technique in various scientific fields [16,46,47,50],
the vulnerability of DNNs reveals the high risk of deploy-
ment in real scenarios, especially under the attack of ad-
versarial examples [11, 28]. Some tiny and imperceptible
perturbations to network inputs could result in the major
changes of outputs, which can be easily crafted through
various adversarial attack strategies [1, 6, 11]. Adversar-
ial attacks could be generally categorized into two streams,
the white-box and black-box attacks. In black-box set-
ting, the attackers have no knowledge of victim models but
can estimate the strong perturbation via surrogate models
or huge number of queries [15, 19]. In white-box setting,
the attackers have full knowledge of victim model, includ-
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ing the model parameters, network architecture, and infer-
ence strategy [28, 39]. Since the gradients of victim models
can be directly fetched, the crafted adversarial examples are
more aggressive and the performance under white-box at-
tacks is one of the key criteria of robustness evaluation.

Seeking adversarial robust networks becomes a key chal-
lenge when it comes to the deployment of DNNs. One of the
most popular and effective techniques is adversarial train-
ing [28], which arguments the training data with adversarial
examples within a fixed perturbation size. With the involve-
ment of adversarial examples, DNNs are optimized to pre-
serve their outputs for perturbed samples within the ℓp ball
of all training input data. However, due to the increasingly
advanced attack techniques, it is difficult for existing adver-
sarially trained networks to achieve satisfactory robustness
against all potential attacks. Furthermore, the training on
stronger adversarial examples could hurt the natural gen-
eralization of models [52], and there exists a trade-off be-
tween robustness and accuracy [51].

Besides the traditional adversarial training, the utiliza-
tion of randomization in adversarial robustness has been
proven effective. For example, Liu et al. [25] propose to
inject noise which is sampled from Gaussian distribution to
the inputs of convolution layers. Some theoretical analy-
ses have shown that randomized classifiers can easily out-
perform deterministic ones in defending against adversar-
ial attacks [32, 33]. We mainly attribute the improvement
of randomization in adversarial robustness evaluation to the
fusion of features with noises, which prevents white-box at-
tackers from obtaining the precise gradients of loss with re-
spect to the inputs. Although the involvement of noise in the
networks can be an effective defense mechanism, the design
of noises, such as the way of injection, the magnitude of
noise, etc., can also significantly influence the natural gen-
eralization of networks in practice. The trade-offs between
the adversarial robustness and optimization difficulty are al-
ways ignored in the randomized techniques, which limits
their superiority to deterministic models.

In this paper, we introduce randomness into deep neu-
ral networks with the help of random projection filters.
Random projection is a simple yet effective technique
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for dimension reduction, which can approximately pre-
serve the pairwise distance between any two data points
from a higher-dimensional space in the projected lower-
dimensional space under certain conditions. The theoretical
and empirical advantages offered by random projection thus
inspire a new way to explore the potential of noise injection
with better trade-offs in Convolutional Neural Networks
(CNNs). We propose to partially replace the convolutional
filters with the random projection filters. Theoretically, we
extend the scope of Johnson-Lindenstrauss Lemma [41] to
cover the convolutions, where partial convolutional filters
are randomly sampled from a zero-mean Gaussian distribu-
tion. Pairwise example distance can also be approximately
preserved under the new convolutions defined by random
projection filters, if the number of random projection fil-
ters is lower bounded in terms of the weight norm of the
remaining convolutional filters. Motivated by these obser-
vations, we introduce a simple and efficient defense scheme
via the proposed Random Projection Filters (RPF). As pa-
rameters of random projection filters are randomly sampled
during forwarding, the attackers have no knowledge of up-
coming sampled parameters even if in white-box attack set-
tings. The effectiveness of proposed RPF is verified via ex-
tensive empirical evaluations in our experiments.

2. Related Work

2.1. Adversarial Attacks

The adversarial examples are first revealed by [39], in
which Szegedy et al. demonstrated the vulnerability of
DNNs to the perturbed inputs within a ℓp ball. To explore
the vulnerability of DNNs, various attacks have been de-
veloped [3, 6, 12, 28]. Adversarial attacks can be gener-
ally categorized into white-box attacks and black-box at-
tacks. [12]. In white-box setting, the attackers have ac-
cess to all the information of victim models, such as the
model parameters and structure. Since the gradient infor-
mation can be fetched, most white-box attacks utilize gra-
dients to obtain the perturbations on the inputs which max-
imize the loss function. Goodfellow et al. introduce an ef-
ficient yet effective attack method via the sign of gradients,
named Fast Gradient Sign Method (FGSM) [12]. Kurakin
et al. proposed to adopt basic iterative method for FGSM,
which achieves a higher attack success rate [24]. Projec-
tion Gradient Descent (PGD) proposed to randomly initial-
ize the adversarial examples within the ℓp ball [28]. Carlini
and Wagner (CW) attack proposed to treat adversarial attack
as a constrained optimization problem [3]. Some feature-
disruption-based attacks are introduced [20, 48]. Dong et
al. explored various momentum-based iterative attack algo-
rithm and proposed Momentum Iterative Fast Gradient Sign
Method (MI-FGSM), which showed that the momentum
term in the iterations can stabilize the updating direction and

prevent local maxima [9]. In black-box setting, the attackers
have no access to the information of victim models. One of
the sub-categories of black-box attack is query-based meth-
ods where the perturbations can be approximated via huge
number of queries [1, 4, 13]. However, massive queries can
be easily detected in real scenarios, which motivates some
works to focus on efficiency [37,38]. Another sub-category
lies in transfer-based methods where the attacks have full
access to a surrogate model and aims at generating adver-
sarial examples with higher transferability [26, 31, 42]. Al-
though transfer-based methods dismiss the massive queries,
they can hardly achieve satisfactory attack success rate on
robust models. Recently, an ensemble of multiple attacks is
introduced [6,27]. In Auto Attack [6], four different diverse
attacks including both white-box and black-box attacks are
utilized in a specific order, which achieves state-of-the-art
attacking performance. Due to its superior performance,
Auto Attack is currently one of the most important criteria
of network adversarial robustness evaluation.

2.2. Adversarial Defense

Defending adversarial attacks becomes a crucial prob-
lem which has attracted increasing attention [5, 8]. The
main stream of defence mechanisms lies in the adversarial
training and it remains relatively resistant to most existing
attacks. Vanilla adversarial training strategy simply takes
adversarial examples as training data to form a min-max
game during optimization [28]. There exist a large num-
ber of variants of adversarial training algorithms, which im-
prove the adversarial robustness performance [35, 36, 45].
Zhang et al. introduced friendly adversarial training which
adopts early-stopped PGD attack to improve natural gener-
alization of networks [52]. Rice et al. explored the impor-
tance of early-stopping strategy in adversarial training [35].
TRADES was introduced to achieve better trade-offs be-
tween adversarial robustness and natural accuracy [51]. Be-
sides traditional adversarial training, there exist random-
ized techniques for adversarial robustness [7, 17, 21]. Liu
et al. proposed to inject random noises before the convolu-
tional layers, which forms a noisy model to defend against
adversarial examples [25]. Pinot et al. provided theoreti-
cal evidence that deterministic classifier can hardly ensure
optimal robustness against all potential adversarial attacks
and a mixture of classifiers can offer better robustness [32].
Fu et al. proposed to utilize random bits for adversarial de-
fense [10]. Although the methods of noise injection can be
diverse, how the noise injection influence the natural gener-
alization as well as convergence of networks has not been
well explored, which could constrained the robustness.

2.3. Random Projection

Random projection is a classic technique in dimension-
ality reduction [2]. Through controlling the distribution and
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dimensionality of random projection matrices, the pairwise
distances between any two data points can be preserved af-
ter the projection, which is stated in Johnson-Lindenstrauss
lemma [41]. Furthermore, the projection is achieved by a
simple linear transformation via random projection matri-
ces, whose entities are sampled from a predefined distri-
bution, random projection is both efficient and effective in
practice. Due to its effectiveness, some work proposed to
incorporate random projection into DNNs [30, 50]. Differ-
ent from previous work, we propose to treat random projec-
tion as a noise injection method, which performs a strong
defense scheme against adversarial attacks.

3. Methodology
3.1. Preliminaries

Adversarial Training Given a classifier f with param-
eters θ which maps the input image X ∈ RD to the logits
fθ(X ) ∈ RC where D and C denote the dimension of orig-
inal image and number of classes respectively, the adversar-
ial example X adv = X + δ is defined as

max
Xadv

L(fθ(X adv), y), s.t. ∥X adv −X∥p ≤ ϵ, (1)

where L(, ) denotes the loss function (e.g. cross-entropy
loss), ϵ denotes the maximum perturbation size and y de-
notes the ground truth label. In adversarial training strat-
egy, the adversarial examples are generated and fed to the
classifier to form a min-max optimization as

min
θ

max
Xadv

L(fθ(X adv), y), s.t. ∥X adv −X∥p ≤ ϵ. (2)

Random Projection The random projection is a linear
transformation from D dimensions to D′ dimensions via a
random matrix R ∈ RD×D′

where each entry is drawn from
an independent identically distributed (i.i.d.) Gaussian dis-
tribution N (0, 1) and the columns are normalized to have
unit lengths. Given data point x ∈ RD, the random pro-
jected data point x′ ∈ RD′

can be derived as x′ = xR. In
CNNs, we can simply replace the filter parameters with the
i.i.d. zero-mean Gaussian weights.

3.2. Random Projection Filters

White-box attacks have full access to network including
the parameters and architecture and it is difficult for net-
works to defend against various white-box attacks since ad-
versarial perturbations can be easily found via gradient as-
cent. Thus, to prevent attackers from deriving precise gra-
dient on input image, we propose to involve some noises
during the network inference. However, the magnitude of
noise and the manner of the noise involvement can signifi-
cantly influence the optimization, which implies that a care-
ful design of noise is necessary to achieve a better trade-offs
between adversarial robustness and optimization difficulty.

Motivated by the distance preservation of random pro-
jection, we propose to incorporate random projection into
CNNs to achieve a better trade-offs. The core idea of ran-
dom projection mainly lies in the Johnson-Lindenstrauss
lemma which states that a projection of data points of high
dimension to an appropriate lower dimensional space can
preserve the distances among the data points. By definition,
given a linear mapping F : RD → RD′

and a set of data
points X with size of m, for D′ > 8(ln m)/ϵ2

(1−ϵ)∥xi−xj∥2 ≤ ∥F (xi)−F (xj)∥2 ≤ (1+ϵ)∥xi−xj∥2,
(3)

for all xi, xj in X. Since convolution is a linear mapping,
Johnson-Lindenstrauss lemma holds for CNNs. According
to Eq. 3, the dimension of projected space plays an im-
portant role in random projection. Intuitively, a higher ra-
tio of random projection in CNNs could make it difficult
for white-box attackers to obtain adversarial perturbations,
however, it also brings huge noise to network optimization.
Thus, to balance these trade-offs, we propose to replace a
bunch of the convolutional filters in CNN layers with ran-
dom projection, as shown in Figure 1 (a). Formally, given
the input feature x ∈ Rn×n×d where n and d denote the
size and dimension of feature respectively, and a single fil-
ter of CNN F ∈ Rr×r×d where r denotes the kernel size,
the output z is given by

z(p, q) = F∗[x]rp,q =

r∑
i=0

r∑
j=0

d∑
k=0

F (i, j, k)·x(p+i, q+j, k),

(4)
where [x]rp,q denotes the subarea of x for convolutional op-
eration with row from p to p+ r − 1 and column from q to
q + r − 1. For a convolutional layer which contains N fil-
ters F1, . . . , FN , we divide these filters into two parts. We
denote F1, . . . , FNr as the random projection filters with
parameters randomly sampled from a zero-mean Gaussian
distribution, and denote FNr+1, . . . , FN as the traditional
convolutional filters with trainable parameters. The output
z can be formulated as

z(p, q) =
[
F1,...,Nr

∗ [x]rp,q, FNr+1,...,N ∗ [x]rp,q
]
,

where F1, . . . , FNr
∼ N (0, σ2),

(5)

where
[
,
]

denotes the concatenation and σ2 denotes the
variance of random projection filters. With Eq. 5, the
trade-offs between adversarial defense capability and net-
work optimization difficulty can be explored via adjusting
Nr. The Johnson-Lindenstrauss lemma in CNN layers has
been studied in [30]. In this work, under mild assumptions,
we further generalize it to the random projection scenario
where only Nr output features are derived via random pro-
jection while the others via optimized convolutional filters.
Since batch normalization layers with affine transformation
are widely adopted in CNNs, we assume that the inputs to
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Figure 1. An overview of proposed with Random Projection Filters with defense scheme. Part of the filters in convolutional layers are
replaced by random projection, whose weight is randomly sampled from a Gaussian distribution. RP[A] and RP[I] denote the sampled
Gaussian matrix of random projection filters during attack and infer phase respectively.

the filters follows Gaussian distribution with mean of β and
variance of γ2 where β and γ are the affine parameters of
batch normalization layers. We also assume that the vari-
ance of trainable filters FNr+1

, . . . , FN is same as the one
of random projection filters F1, . . . , FNr .

Theorem 1. Let x, y ∈ Rn×n×d be the input to the fil-
ters, which follow Gaussian distribution x, y ∼ N (β, γ2).
Consider we have N filters F1, . . . , FN ∈ Rr×r×d, in
which F1, . . . , FNr

denote the random projection matrices
where all the entries are drawn from i.i.d. N (0, 1

r2 ) while
FNr+1 , . . . , FN denote the trainable parameters of convo-
lutional layer with mean of µ and variance of 1

r2 where r
denotes the kernel size. We assume that

max
i,j
∥[x]rij∥ ≤ R, max

i,j
∥[y]rij∥ ≤ R, max

i
∥Fi∥ ≤W,

(6)
and we denote K = n2max{C

2
0R

2

r2 , (r2dβµ + C0Wγ)2}
and D = µ2β2n2r4d2. Then the probability that the dis-
tance between x, y cannot be preserved after convolutional
operation F can be upper bounded as

P

(∣∣∣∣∣ 1N
N∑
l=1

⟨Fl ∗ x, Fl ∗ y⟩ − ⟨x, y⟩

∣∣∣∣∣ ≥ ϵ

)
≤ δ, for δ > 0 and

Nr >


(D−ϵ)N+Klog 2Cn2

δ

D , if ϵ−N−Nr
N D

K ≤ (ϵ−N−Nr
N D)2

K2

(D−ϵ)N+NK

√
log 2CNn2

δ

D , otherwise
(7)

where C and C0 are absolute constants.

In Theorem 1, we define the distance between two
data points x, y as ⟨x, y⟩ and the geometric representation
preservation as the scenario where the sum of absolute dif-
ferences between ⟨Fl ∗x, Fl ∗ y⟩ and ⟨x, y⟩ can be bounded
by ϵ. The proof mainly utilizes the Bernstein’s inequal-
ity [41] and the detailed proof is provided in the supplemen-
tary material. In Eq. 7, we can see that the probability of

breaking geometric representation preservation can be up-
per bounded by δ if an appropriate Nr is selected for this
convolutional layer. It indicates a lower bound of the num-
ber of random projection filters. Since our objective is the
better trade-offs between network optimization difficulty
and defense capability, we propose to reduce the number of
random projection filters Nr while meeting the constraint
in Eq. 7 so that geometric representation preservation holds
and the noises introduced by random projection filters do
not damage the convergence and performance of networks.
Besides the constants, the lower bound of Nr is dominated
by K = n2max{C

2
0R

2

r2 , (r2dβµ + C0Wγ)2}. In practice,
the maximum Euclidean norm of input subareas R can be
well-controlled due to batch normalization layers while the
weight norm of trainable parameters FNr+1

, . . . , FN can-
not. Thus, to reduce the burden of Nr, we propose to im-
pose a larger weight decay to the FNr+1 , . . . , FN , which
minimizes W to relieve the constraint in Eq. 7. Thus, the
objective in Eq. 2 can be reformulated as

min
θ

max
Xadv

L(fθ(X adv), y) + α∥FNr+1, . . . , FN∥,

s.t. ∥X adv −X∥p ≤ ϵ,
(8)

where α denotes the hyperparameter of weight decay.

3.3. Adversarial Training with Random Projection

Existing white-box attacks can easily discover an aggres-
sive perturbation δ for a fixed network f via gradient as-
cent, however, it is difficult for the generated adversarial
example x′ = x + δ to attack another network f ′ success-
fully [40, 43]. Since the parameters of random projection
filters F1, . . . , FNr

are randomly sampled from N (0, 1
r2 ),

we individually sample parameters for random projection
filters during attacking and inference phase, which is de-
noted as F1:Nr [A] and F1:Nr [I] respectively. Considering
the partial derivative of output feature z with respect to the
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Algorithm 1 Adversarial Training with Random Projection

Input: Network with random projection filters fθ; Num-
ber of random projection filters Nr; Weight decay of ran-
dom projection filters α; Perturbation size ϵ; Attack step
size η; Attack iterations t; Training set {X , Y};
while not converge do

Sample a batch of data {x, y}ni=1 from {X , Y};
for F with random projection filters do

F1, . . . , FNr ∼ N (0, 1
r2 )

end for
Random initialize adversarial perturbation δ;
for i← 1 to t do

δ = δ + η · sign(∇xL(fθ(xadv), y);
Clip xadv = Clipϵx{x+ δ};

end for
for F with random projection filters do

F1, . . . , FNr
∼ N (0, 1

r2 );
end for
θ = θ−∇θ

(
L(fθ(xadv), y)+α∥FNr+1, . . . , FN∥

)
;

end while

input adversarial feature xadv

∂z(p, q, 1 : Nr)

∂xadv(p+ i, q + j, k)
= F1:Nr [A](i, j, k)

̸= F1:Nr
[I](i, j, k),

(9)

which indicates that the difference between F1:Nr
[A] and

F1:Nr
[I] can significantly influence the gradient of adver-

sarial examples. fθ[A] denotes the parameters to be op-
timized in a network with the random projection filters
F1:Nr [A], while fθ[I] corresponds to the parameters to be
optimized in one network with F1:Nr

[I]. The mix-max op-
timization in Eq. 2 can be reformulated as

min
θ[I]

max
Xadv

L(fθ[A](X adv), y) + α∥FNr+1, . . . , FN∥,

s.t. ∥X adv −X∥p ≤ ϵ,
(10)

where adversarial examples have been produced from a net-
work with random projection filters F1:Nr [A] and then the
adversarial examples are used to train a network with ran-
dom projection filters F1:Nr

[I]. The details of adversarial
training with random projection is shown in Algorithm 1.

With the involvement of random projection in convolu-
tional filters and corresponding adversarial training strategy
in Algorithm 1, CNNs can perform a strong defense dur-
ing inference phase, which is illustrated in Figure 1 (b).
Considering a white-box attack which has access to the cur-
rent sampled random projection parameters F1:Nr [A] and
generates adversarial example X adv of fθ[A] successfully,
F1:Nr

[A] is re-sampled and becomes F1:Nr
[I] during eval-

uation so that X adv can hardly be generalized to fθ[I]. To-

gether with the fact that Theorem 1 holds for random Gaus-
sian matrix sampling strategy, RPF achieves better trade-
offs between clean accuracy and adversarial robustness.

4. Experiments

4.1. Experimental Setup

Datasets Following previous work [28, 35], we include
multiple datasets in our evaluation, including CIFAR-
10/100 and ImageNet. CIFAR-10 and CIFAR-100 datasets
[23] have 10 and 100 categories respectively. Each of them
contains 60K color images with size of 32×32, including
50K training images and 10K validation images. ImageNet
dataset [16] contains 1.2M training images and 50k testing
images with size of 224× 224 from 1000 categories.
Models Note that our proposed RPF can be easily applied
to any CNN-based models via partially replacing CNN fil-
ters with random projection ones. Thus, we evaluate the
performance of RPF on several widely compared models
in the field of adversarial robustness, including ResNet-
18 [23] and WideResnet-34-10 [49] on CIFAR-10/100 as
well as ResNet-50 [23] on ImageNet.
Training Strategy We follow the protocol of state-of-
the-art adversarial training strategy [35] to setup our exper-
iments on CIFAR-10/100. We train the network for 200
epochs with a batch size of 128 via SGD with momentum
of 0.9. The learning rate is set to 0.1 and the weight decay
is set to 5 × 10−4. We use a piecewise decay learning rate
scheduler with a decay factor of 0.1 at 100 and 150 epoch.
For adversarial example generation, PGD-10 is used with
the a maximum perturbation size ϵ = 8/255. The step size
of PGD is set to 2/255. On ImageNet, we train the net-
work for 90 epochs with a batch size of 1024 via SGD with
momentum of 0.9. The learning rate is set to 0.02 and the
weight decay is set to 1 × 10−4. We use a cosine learning
rate scheduler. For adversarial example generation, PGD-2
is used with the a maximum perturbation size ϵ = 4/255.
Attacks For the adversarial robustness evaluation of pro-
posed RPF, we conduct extensive experiments on vari-
ous attacks, including Fast Gradient Sign Method (FGSM)
[39], Projected Gradient Descent (PGD) [28], CW attack
[3], Momentum-based Iterative Fast Gradient Sign Method
(MIFGSM) [9], DeepFool [29] and Auto Attack [6]. We
follow the standard protocol [22] to setup the attacks. The
maximum perturbation size ϵ is set to 8/255 for FGSM,
PGD, MIGFSM, and Auto Attack. The step size is set to
2/255 for PGD and MIGFSM, and the steps are 20 and 5
for PGD and MIGFSM respectively. For CW attack, the
learning rate is set to 0.01 with 1000 steps. For DeepFool,
the steps are set to 50 with an overshoot of 0.02. On Ima-
geNet, ϵ is set to 4/255 with steps of 10 and 50.
Baselines We include extensive baselines for compari-
son. We compare RPF with some randomize techniques,
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Table 1. The comparison with noise injection techniques with ResNet-18 on CIFAR-10 and CIFAR-100.

Dataset Method Clean FGSM PGD20 CW MIFGSM DeepFool AutoAttack

CIFAR-10

AT [35] 81.84 56.70 52.16 78.46 54.96 0.35 47.69
Additive [25] 81.24 59.19 57.61 80.84 57.83 73.44 62.25
Multiplicative 83.16 61.92 59.49 82.80 59.48 78.28 63.78

RPF(Ours) 83.79 62.71 61.27 83.60 60.72 79.43 64.38

CIFAR-100

AT [35] 55.81 31.33 28.71 50.94 30.26 0.79 24.48
Additive [25] 53.34 31.72 31.13 52.50 31.16 46.76 36.37
Multiplicative 54.52 34.09 32.58 54.61 32.45 50.90 38.13
RPF (Ours) 56.88 37.67 37.37 56.59 35.31 54.39 42.88

Table 2. Adversarial robustness evaluation of randomized tech-
niques with WideResNet on CIFAR-10.

Method FGSM PGD20 MIFGSM AA
AT [35] 60.65 55.06 58.47 52.24

Random Bit [10] 57.95 53.96 56.32 53.30
Additive [25] 62.36 58.47 60.58 60.55
Multiplicative 62.01 57.48 59.79 57.99
RPF (Ours) 63.95 63.71 60.77 68.71

such as additive noise [25] and random bits [10]. We also
include another strong baseline for comparison which re-
places the additive noise with the multiplicative noise. In
addition, some other defense techniques are also involved
in our comparison, including RobustWRN [18], AWP [44],
SAT [45], LLR [34], and RobNet [14].

4.2. Results on CIFAR

To demonstrate the effectiveness of proposed RPF, we
first perform six different attacks. Besides the determin-
istic classifier with adversarial training denoted as AT, we
include the additive noise injection. We follow the set-
ting of [25] to conduct noise injection where some sampled
noises are added to the input of convolution layers. Further-
more, we also construct another stronger baseline, namely
multiplicative noise injection, which simply fuses the fea-
ture maps via multiplying noises. Additive noises are sam-
pled from a standard Gaussian distribution N (0, 1) while
multiplicative noises are sampled from N (1, 1). Although
these baselines are simple, they can achieve satisfactory ad-
versarial robustness in our defense scheme. The compari-
son results are shown in Table 1. All the baselines are ad-
versarially trained with the same setting. On CIFAR-10, the
additive noise injection can achieve 57.61% robust accuracy
under PGD20 attack and 59.19% under FGSM attack. Com-
pared with deterministic AT baseline, additive noise injec-
tion improves the baseline by 5.45% under PGD20 attack
and 2.49% under FGSM attack, which demonstrates that
the randomized techniques can improve the adversarial ro-
bustness against current popular white-box attacks. Besides
additive noise injection, the multiplicative noise injection
baseline also shows superiority to AT baseline. Compar-
ing additive and multiplicative noise injections, the multi-

plicative one has better performance. For example, multi-
plicative noise achieves 82.80% robust accuracy under CW
attack with a gap of 1.96% an 63.78% under Auto Attack
with a gap of 1.53%, which indicates that the noise injected
to CNNs as well as the method of injection play impor-
tant roles in the adversarial robustness. The natural ac-
curacy decrement of additive noise injection also implies
that there exists a trade-offs between natural generalization
of network and adversarial robustness if randomized tech-
niques are utilized. Thus, RPF is introduced to tackle this
problem via the involvement of random projection. With
the assistance of the geometric representation preservation
property, our algorithm can achieve better trade-offs than
these baselines. To illustrate, on ResNet-18, our proposed
RPF achieves 83.79% natural accuracy, 61.27% robust ac-
curacy under PGD20 attack, 79.43% under DeepFool at-
tack, and 64.38% under Auto Attack, with a obvious gap
between RPF and all the baselines. Under 6 different at-
tacks, our proposed RPF achieves the best performance in
all the scenarios as well as the highest clean accuracy. This
superiority can also be generalized to CIFAR-100. RPF im-
proves the robust accuracy of AT baseline by 18.40% under
Auto Attack, 8.66% under PGD20 attack, and 5.05% under
MIFGSM attack. Furthermore, RPF achieves a clean ac-
curacy of 56.88%, which improves all the noise injection
techniques by a considerable gap. On the contrary, the su-
periority of both additive and multiplicative noises to AT
baseline becomes much slighter, which highlights the ne-
cessity of proposed RPF as a more advanced noise injection
techniques for adversarial robustness.

We also provide adversarial robustness evaluation with
WideResNet-34-10 on CIFAR-10, and compare the results
with other randomized baselines. The comparison is pre-
sented in Table 2. Similar to the results on ResNet-18,
our proposed RPF achieves strong adversarial robustness.
Under powerful Auto Attack, RPF remains a accuracy of
68.71% with a gap of 16.47 to deterministic AT classifier
and a gap of 8.16% to the additive noise injection. Com-
pared to other randomized techniques, such as random bit,
RPF also show clear advantage, with a robust accuracy of
63.71% under PGD20 compared to 53.93% in random bits.
The extensive experimental results under various attacks
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Figure 2. The evaluation of stronger PGD attacks with ResNet-18 on CIFAR-10 and CIFAR-100.

Table 3. Comparison with SOTA defense algorithms on CIFAR-
10 and ImageNet.

Method CIFAR-10 ImageNet
PGD20 AA PGD10 PGD50

Overfit [35] 55.06 52.24 39.85 39.19
RobustWRN [18] 59.13 52.48 31.14 -

AWP [44] 58.14 54.04 - -
RobNet [14] 52.74 - 37.16 37.15

Random Bit [10] 53.96 53.30 42.88 42.72
SAT [45] 56.01 51.83 - 42.30
LLR [34] 54.24 - - 47.00

RPF (Ours) 63.71 68.71 56.56 55.41

with multiple models on different datasets show strong em-
pirical evidence that our proposed RPF can achieve superior
adversarial robustness.

4.3. Evaluate with Stronger Attacks

Besides the standard evaluation of adversarial robustness
under various attacks in Table 1, we also provide the perfor-
mance of AT baseline, noise injection baselines, and our al-
gorithm under stronger attacks. The evaluation is conducted
on CIFAR-10 and CIFAR-100, as shown in Figure 2. We
mainly consider two scenarios, including the PGD attacks
with more steps and the PGD attacks with larger maximum
perturbation size ϵ. Specifically, we consider the attacking
scenario of PGD10, . . . , PGD100, and ϵ ∈ [2/255, 20/255].
The randomized techniques are insensitive to the increasing
PGD steps, as illustrated in Figure 2 (a) and (c). Different
from the deterministic AT classifier whose robust accuracy
is inversely proportional to the number of steps, all the noise
injection based method still have chance to achieve a rela-
tively higher robust accuracy even under PGD100. Among
all the techniques, RPF achieves the best performance under
different PGD steps. Taking PGD size into consideration,
all the robust methods have a large drop with the increment
of perturbation size since the search space of adversarial
perturbations becomes much larger. The results are illus-
trated in Figure 2 (b) and (d). Compared with baselines,
RPF shows more robust performance under larger perturba-
tion sizes. On CIFAR-10, RPF achieves 78.73% accuracy
under PGD with ϵ = 2/255 and 24.53% under PGD with
ϵ = 20/255, where the drop is 54.31%. Additive noise in-
jection has a drop of 60.29%(76.37%→ 16.08%) and mul-

tiplicative noise injection has a drop of 56.92%(77.80%→
20.88%). Similarly, on CIFAR-100, the drop of RPF is
36.22%, 39.63% for additive noise injection, and 39.16%
for multiplicative noise injection, where RPF has a much
smaller accuracy drop. Thus, among all the noise injection
techniques, RPF performs better resistance against stronger
PGD attacks. In all the scenarios including PGD steps and
sizes, RPF consistently achieves the best robust accuracy,
which highlights the superior defense capability of RPF.

4.4. State-of-the-art Comparison

We further provide the comparison with state-of-the-art
defense techniques to demonstrate the effectiveness of pro-
posed RPF. We consider two popular benchmarks which are
widely compared, including WideResNet-34-10 (WRN-34-
10) on CIFAR-10 and ResNet-50 on ImageNet. For eval-
uation, we select PGD20 and Auto Attack on CIFAR. On
ImageNet, we report the robust accuracy under PGD10 and
PGD50 attacks. For baselines Overfit [35] and Random
bit [10], we reproduce the results with the official imple-
mentation. For the rest results, we cite them from the orig-
inal paper. Compared with these baselines, RPF performs
much stronger defense. RPF achieves 5.57% higher than
AWP with PGD20 and 15.41% higher than Random Bits
with Auto Attack on CIFAR-10. Similarly, RPF achieves
19.4% higher than RobNet with PGD10 and 8.41% higher
than LLR with PGD50 on ImageNet. We mainly attribute
the success of RPF to the theoretical-guided design of ran-
domized techniques. Note that RPF can be easily integrated
into other state-of-the-art defense techniques to further im-
prove the performance since RPF is orthogonal to other
baselines and there is no extra parameters involved.

4.5. Ablation Study

During the setup of random projection filters, multiple
components could influence the performance, including the
location of random projection filters in the network, the ra-
tio of random projection, and the weight decay of the other
convolution filters. We further provide more empirical evi-
dence to verify the observations in Theorem 1.
Random Projection Filters Location We first replace a
specific convolution layer with the one with random projec-
tion filters in different locations of network. Taking ResNet-
18 as an example, we propose to apply random projection
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Figure 3. Ablation studies of Random Projection Filters on location, ratio, and weight decay.

in different layers or entire block and the number of ran-
dom projection filters is set to 48. The natural accuracy and
adversarial robustness under different scenarios are shown
in Figure 3 (a). Considering the replacement of an entire
block, the injected noise could be redundant and overwhelm
the natural generalization, which makes both natural and ro-
bust accuracy drop to some extent. RPF on the first layer
achieves a natural accuracy of 83.79% and robust accuracy
of 61.27% under PGD attack while the natural accuracy
drops to 73.76% and robust accuracy to 53.80% with RPF
on the first block. Thus, we propose to apply random pro-
jection to a specific layer in the network. There exist a clear
tendency that the robust accuracy decreases if we deploy
random projection filters in the deeper layers. For exam-
ple, the robust accuracy is 63.57% under Auto Attack with
RPF on the 2nd layer while 53.39% on the 6th layer and
48.06% on the 14th layer. According to Eq. 7, the geo-
metric representation preservation holds if the number of
random projection filters Nr is large than the term which is
proportional to the total number of filters N . When it goes
deeper in ResNet-18, N keeps increasing, which requires
larger Nr to guarantee the bound in the deeper layers where
the redundant random projection filters could hurt the trade-
offs between robustness and natural generalization. Thus,
we apply random projection filters to the first layer in our
experiments to achieve better trade-offs.

Ratio of Random Projection Filters We then explore
how the ratio of random projection filters in the first layer of
ResNet-18 influence the adversarial robustness. The results
are shown in Figure 3 (b). According to Eq. 7, the number
of random projection filters Nr is required to be sufficient,
however, directly setting Nr ≈ N could involves redundant
noise to the network. For illustration, applying RPF with
a ratio of 0.75 can achieve the natural accuracy of 83.79%
and robust accuracy of 61.27% under PGD attack. On the
contrary, the natural accuracy becomes 73.60 with a RPF
ratio of 1.0 due to the redundant random projection filters,
and the robust accuracy becomes 58.26% under PGD attack
with a RPF ratio of 0.1 due to the insufficient random pro-
jection filters. Thus, the empirical observations of the RPF
ratio is consistent with the analysis of Theorem 1.

Weight Norm Study According to Eq. 7, the require-

ment of Nr can be further relieved via the reduction of
weight norm of convolution filters of that layer besides the
random projection, which motivates us to adjust the weight
decay of these convolution filters via α in Eq. 8. We further
provide empirical evidence that the weight norm could play
an important role in the our defense scheme through set-
ting different weight decays for the trainable parameters in
the first layer of ResNet-18, as shown in Figure 3 (c). The
traditional weight decay is set to 5 × 10−4 for ResNet-18
on CIFAR-10, however, it cannot achieve satisfactory per-
formance, with 60.04% robust accuracy under Auto Attack.
On the contrary, the variants with larger weight decays, such
as 1× 10−2 or 1× 10−1, can achieve 64.38% and 63.12%
respectively, which empirically verify the effectiveness of
Eq. 8 and the correctness of Theorem 1.

5. Conclusion

In this paper, we propose to utilize random projection as
the noise injection to perform a randomized defense tech-
nique against adversarial examples. Through the gener-
alization of Johnson-Lindenstrauss lemma to the scenario
where partial convolution filters can replaced by random
projection, we theoretically show the correlations between
weight norm, the number of random projection filters, and
the total number of filters. Based on these observations,
we introduce Random Projection Filters as a strong defense
scheme. Through sufficient evaluation with various models
and datasets, we present the superiority of proposed algo-
rithm to other baselines.
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