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Abstract

3D object detection is an important task in autonomous
driving to perceive the surroundings. Despite the excellent
performance, the existing 3D detectors lack the robustness
to real-world corruptions caused by adverse weathers, sen-
sor noises, etc., provoking concerns about the safety and
reliability of autonomous driving systems. To comprehen-
sively and rigorously benchmark the corruption robustness
of 3D detectors, in this paper we design 27 types of common
corruptions for both LiDAR and camera inputs considering
real-world driving scenarios. By synthesizing these corrup-
tions on public datasets, we establish three corruption ro-
bustness benchmarks—KITTI-C, nuScenes-C, and Waymo-
C. Then, we conduct large-scale experiments on 24 diverse
3D object detection models to evaluate their corruption ro-
bustness. Based on the evaluation results, we draw several
important findings, including: 1) motion-level corruptions
are the most threatening ones that lead to significant perfor-
mance drop of all models; 2) LiDAR-camera fusion models
demonstrate better robustness; 3) camera-only models are
extremely vulnerable to image corruptions, showing the in-
dispensability of LiDAR point clouds. We release the bench-
marks and codes at https://github.com/thu-ml/
3D_Corruptions_AD to be helpful for future studies.

1. Introduction

As a fundamental task in autonomous driving, 3D object
detection aims to identify objects of interest (e.g., vehicles,
pedestrians, or cyclists) in the surrounding environment by
predicting their categories and the corresponding 3D bound-
ing boxes. LiDAR and camera are two important types of
sensors for 3D object detection, where the former provides
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the depth information of road objects as sparse point clouds,
while the latter captures abundant semantic information of
the scene as color images. Based on the complementary na-
ture of the two modalities, 3D object detection models can
be categorized into LiDAR-only [29,47,48,60,69], camera-
only [39, ], and LiDAR-camera fusion [ 11,28, 34, 53]
models. Since autonomous driving is safety-critical, it is of
paramount importance to assess the robustness of 3D object
detectors under diverse circumstances before deployed.

Although the recent progress of 3D object detection has
led to significant improvements in typical benchmarks (e.g.,
KITTI [17], nuScenes [0], and Waymo [51]), the existing
models based on data-driven deep learning approaches of-
ten generalize poorly to the corrupted data caused by, e.g.,
adverse weathers [21,22,27], sensor noises [7,25,44], and
uncommon objects [9,31], posing a formidable obstacle to
safe and reliable autonomous driving [1]. To perform ro-
bustness evaluation, recent works construct new datasets of
road anomalies [9,23,31,40] or under extreme weather con-
ditions [4, 15,41]. Nevertheless, they are usually of small
sizes due to the high data collection costs and the rareness
of corner cases or adverse weathers. Other works synthesize
common corruptions on clean datasets to benchmark robust-
ness on image classification [25] and point cloud recogni-
tion [44, 50], but they only consider several simple corrup-
tions, which could be insufficient and unrealistic for 3D ob-
ject detection. Therefore, it remains challenging to com-
prehensively characterize different corruptions considering
diverse driving scenarios and fairly evaluate corruption ro-
bustness of existing models within a unified framework.

In this paper, we systematically design 27 types of com-
mon corruptions in 3D object detection for both LiDAR and
camera sensors to comprehensively and rigorously evalu-
ate the corruption robustness of current 3D object detectors.
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Figure 1. An overview of 27 corruptions for 3D object detection, which are categorized into weather, sensor, motion, object, and alignment
levels. As shown, some corruptions are effective for one modality, while the others are applied to both (e.g., Snow, Moving Object, Shear).

The corruptions are grouped into weather, sensor, motion,
object, and alignment levels, covering the majority of real-
world corruption cases, as demonstrated in Fig. 1. Most of
them are specifically designed for autonomous driving (e.g.,
motion-level ones), which have not been explored before.
Following [25], every corruption has five severities, leading
to a total number of 135 distinct corruptions. By applying
them to typical autonomous driving datasets—KITTI [17],
nuScenes [6], and Waymo [51], we establish three corrup-
tion robustness benchmarks—KITTI-C, nuScenes-C, and
Waymo-C. We hope that they can serve as general datasets
for comprehensively benchmarking corruption robustness
of 3D object detectors and facilitating future research.

We conduct large-scale experiments to compare the cor-
ruption robustness of existing 3D object detection models.
Specifically, we evaluate 11 models on KITTI-C, 10 models
on nuScenes-C, and 3 models on Waymo-C. The models are
of great variety with different input modalities, representa-
tion methods, and detection heads. Based on the evaluation
results, we find that: 1) the corruption robustness of 3D ob-
ject detectors is highly correlated with their clean accuracy;
2) motion-level corruptions impair the model performance
most, while being rarely explored before; 3) LIDAR-camera
fusion models are more resistant to corruptions, but there is
a trade-off between robustness under image corruptions and
point cloud corruptions of fusion models. More discussions
are provided in Sec. 6. Moreover, we study data augmenta-
tion strategies [ 14,64, 67] as potential solutions to improve
corruption robustness, but find that they provide a little ro-
bustness gain, leaving robustness enhancement of 3D object
detection an open problem for future research.

2. Related Work
2.1. 3D Object Detection

Based on the input modality, we categorize 3D object de-
tection models into LiDAR-only, camera-only, and LiDAR-
camera fusion models.

LiDAR-only models: LiDAR point clouds are sparse,

irregular, and unordered by nature. To learn useful represen-
tations, voxel-based methods project point clouds to com-
pact grids. Typically, VoxelNet [69] rasterizes point clouds
into voxels, which are processed by PointNets [43] and 3D
CNNs. To speed up, SECOND [60] introduces sparse 3D
convolutions and PointPillars [29] elongates voxels into pil-
lars. Other works exploit information of object parts [49]
or shape [70] to improve the performance. On the other
hand, point-based methods take raw point clouds as inputs
and make predictions on each point. PointRCNN [48] pro-
poses a two-stage framework that first generates 3D pro-
posals and then refines the proposals in the canonical co-
ordinates. 3DSSD [61] is a lightweight one-stage detector
with a fusion sampling strategy. To have the best of both
worlds, point-voxel-based methods are then explored. PV-
RCNN [47] integrates 3D voxel CNN and PointNet-based
set abstraction to efficiently create high-quality proposals.
Camera-only models: 3D object detection based on im-
ages is challenging due to the lack of depth information, but
attracts extensive attention considering the advantage of low
cost. The most straightforward approach is to take monocu-
lar detection methods [10, 36, 39, 56,57] and apply post-
processing across cameras. For example, Mono3D [10]
generates 3D object proposals scored by semantic features.
SMOKE [36] combines a single keypoint estimation with
regressed 3D variables. To address the limitation of post-
processing in monocular methods, multi-view methods fuse
information from all cameras in the intermediate layers.
DETR3D [58] adopts a transformer-based detector [&] that
fetches the image features by projecting object queries onto
images. BEVFormer [33] exploits spatial-temporal infor-
mation from multi-view images based on BEV queries.
LiDAR-camera fusion models: To leverage the com-
plementary information from LiDAR and camera inputs, fu-
sion methods are also extensively studied. Following [35],
we classify the newly developed methods into point-level,
proposal-level, and unified representation fusion methods.
Point-level methods augment LiDAR point clouds with se-
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mantic image features and then apply existing LIDAR-only
models for 3D detection, including PointPainting [53], EP-
Net [26], PointAugmenting [54], Focals Conv [13], efc.
Proposal-level fusion methods [11,42] generate 3D object
proposals and integrate image features into these proposals.
FUTR3D [12] and TransFusion [2] employ a query-based
transformer decoder, which fuses image features with object
queries. Moreover, BEVFusion [35] unifies the image fea-
ture and point cloud feature in a BEV representation space,
which stands out as a new fusion strategy.

2.2. Robustness Benchmarks

It is well-known that deep learning models lack the ro-
bustness to adversarial examples [20, 52], common corrup-
tions [25], and other kinds of distribution shifts [18, 19,24].
In autonomous driving, many works collect new datasets to
evaluate model robustness under different conditions. For
example, the Seeing Through Fog (STF) [4], Canadian Ad-
verse Driving Conditions (CADC) [41], and Ithaca365 [15]
datasets are collected in adverse weathers; and others gather
road anomalies of 2D images [9,23,31,40]. Despite the ef-
forts, these datasets only cover limited scenarios due to the
high collection costs of rare data. Moreover, as mainly used
for evaluation, these datasets have a big domain gap from
the large-scale training datasets since they were collected in
different cities with varying vehicles and sensors, making it
hard for us to examine the effects of different factors (e.g.,
weather vs. city) on model robustness.

One promising direction is to synthesize real-world cor-
ruptions on clean datasets to benchmark model robustness.
For example, ImageNet-C [25] is first introduced in image
classification with 15 corruption types, ranging from noise,
blur, weather to digital corruptions. The similar methodol-
ogy is further applied to 2D object detection [38] and point
cloud recognition [44,50]. However, many of these studied
corruptions are hypothetical and thus unrealistic in the sce-
nario of autonomous driving. It is still challenging to build
a comprehensive benchmark for robustness evaluation of
3D object detection considering diverse real-world driving
cases. We notice that two concurrent works [32,63] to ours
also study robustness of 3D object detection in autonomous
driving. However, they mainly consider specific kinds of
3D detection models (i.e., LIDAR-only models in [32] and
fusion models in [63]) and include limited types of corrup-
tions with less evaluations, as compared in Appendix A.2.

3. Corruptions in 3D Object Detection

Real-world corruptions arise from diverse scenarios in
autonomous driving, based on which we systematically cat-
egorize the corruptions into weather, sensor, motion, object,
and alignment levels. We identify common corruption types
for each level considering real-world driving scenarios, re-
sulting in 27 distinct corruptions in total, as shown in Fig. 1.

Among them, some corruptions are applied to both modal-
ities simultaneously, such as weather-level ones, while the
others are designed for a single modality, such as sensor-
level ones. We visualize a subset of corruptions in Fig. 2.

Weather-level corruptions: Weather change is usually
encountered in autonomous driving, which can dramatically
disrupt both LiDAR and camera inputs. For example, fog
reduces the visibility of objects in images and causes scat-
tered points due to attenuation and backscattering [4,22,65].
Consequently, 3D detectors trained on data collected in nor-
mal weather tend to perform poorly under adverse weath-
ers [4]. To study the robustness under weather changes, we
consider 4 weather-level corruptions: Snow, Rain, Fog, and
Strong Sunlight, as they are more common [4, 15,41]. For
LiDAR, we adopt physically based methods [21,22,27] to
simulate the effects of rain, snow, and fog on point clouds
from normal weather. We simulate the effect of strong sun-
light by applying strong Gaussian noises to points along the
sun direction [7]. For camera, we apply image augmenta-
tions [25] to simulate visually realistic weathers.

Sensor-level corruptions: The sensors, when affected
by numerous internal or external factors (e.g., sensor vibra-
tion [46], lighting conditions [25, 33] and reflective materi-
als), can induce various kinds of corruptions to the captured
data. Based on prior discussions on sensor noises [3, 7,25,

], we design 10 practical sensor-level corruptions—7 for
point clouds and 3 for images. The point cloud corruptions
are: Density Decrease, Cutout, LIDAR Crosstalk, FOV Lost,
Gaussian Noise, Uniform Noise, and Impulse Noise. Den-
sity decrease simulates missing points commonly observed
in typical datasets [17]. Cutout occurs when laser pulses
have no echo in a local region (e.g., puddle) and is simu-
lated by dropping points in a randomly selected area. Li-
DAR crosstalk [5] happens when multiple LIDARSs operate
at close range, which is simulated by applying strong Gaus-
sian noises to a small subset of points. FOV lost simulates a
limited field-of-view of LiDAR caused by occlusion. More-
over, due to the ranging inaccuracy of LiDAR, we consider
3 noise corruptions that apply Gaussian, uniform, and im-
pulse noises to point coordinates, respectively. The 3 image
corruptions include: Gaussian Noise, Uniform Noise, and
Impulse Noise to simulate the visual noise patterns due to
low-lighting conditions or defects of camera [25]. Although
we design sensor-level corruptions for LiDAR and camera
separately, they can occur for both sensors at the same time,
affecting LIDAR-camera fusion models further.

Motion-level corruptions: An autonomous vehicle will
encounter several types of corruptions during driving. In
this paper, we introduce 3 motion-level corruptions: Motion
Compensation, Moving Object, and Motion Blur, which are
practical in the real world and studied for the first time. Ve-
hicle ego-motion induces distortions to point clouds since
the points in a frame are not obtained in the same coordi-
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nate system [68]. To obtain accurate point clouds, motion
compensation is typically used with the aid of the localiza-
tion information [6, 17]. However, this process can intro-
duce noises, which we call motion compensation corrup-
tion, simulated by adding small Gaussian noises to the rota-
tion and translation matrices of the vehicle’s ego pose. The
moving object corruption denotes the case that an object is
moving rapidly in the scene. It can cause shifting points
within the object’s 3D bounding box [59] and blur the im-
age patch of the object. The last corruption is motion blur
on camera images, which is caused by driving too fast.
Object-level corruptions: Objects in the real world al-
ways come in a variety of shapes and materials [9,3 1], mak-
ing it challenging to correctly recognize them. The viewing
direction can also lead to wrong recognition of objects [16].
Based on this, we introduce 8§ object-level corruptions: Lo-
cal Density Decrease, Local Cutout, Local Gaussian Noise,
Local Uniform Noise, Local Impluse Noise, Shear, Scale,
and Rotation. The first five corruptions are only applied to
LiDAR point clouds to simulate the distortions caused by
different object materials or occlusion. As their names in-
dicate, these corruptions only make changes to local sets of
points within the objects’ 3D bounding boxes. The last three
corruptions simulate shape deformation of objects, and Ro-
tation can also simulate different view directions of objects.
They can affect both LIDAR and camera inputs. To make
consistent distortions to two modalities, we apply the same
transformation of shear, scale, or rotation to both points and
image patches belonging to the objects in the scene.
Alignment-level corruptions: It was typically assumed
that LiDAR and camera inputs are well aligned before feed-
ing to the fusion models. However, this assumption can be
invalid during long-time driving, e.g., the collection of the
ONCE dataset [37] needs re-calibration almost every day to
avoid misalignment between different sensors. In practice,
an autonomous vehicle can encounter Spatial Misalignment
and Temporal Misalignment [63]. Spatial misalignment can
be caused by sensor vibration due to bumps of the vehicle.
We simulate it by adding random noises to the calibration
matrices. Temporal misalignment happens when the data
is stuck or delayed for a sensor. We keep the input of one
modality the same as that at the previous timestamp to sim-

s L
Figure 2. Visualization of typical corruption types of each level in our b
of all corruptions are shown in Appendix A.3.

enchmark (best viewed when zoomed in). Full visualization results

ulate temporal misalignment between the two modalities.
Discussion about the gap between synthetic and real-
world corruptions. Real-world corruptions can come from
multiple and diverse sources. For example, an autonomous
vehicle can encounter adverse weather and uncommon ob-
jects at the same time, leading to much more complicated
corruptions. Although it is impossible to enumerate all real-
world corruptions, we systematically design 27 corruption
types grouped into five levels, which can serve as a practical
testbed to perform controllable robustness evaluation. Espe-
cially, for weather-level corruptions, we adopt the state-of-
the-art methods for simulation, which are shown to approxi-
mate real data well [21,22]. Although there inevitably exists
a gap, we validate that the model performance on synthetic
weathers are consistent with that on real data under adverse
weathers. More discussions are provided in Appendix A.4.

4. Corruption Robustness Benchmarks

To comprehensively evaluate the corruption robustness
of 3D object detection models, we establish three corrup-
tion robustness benchmarks based on the most widely used
datasets in autonomous driving—KITTI [17], nuScenes [6],
and Waymo [51]. We apply the aforementioned corruptions
to the validation sets of these datasets and obtain KITTI-
C, nuScenes-C, and Waymo-C, respectively. Note that al-
though several corruptions naturally appear in few samples
of the datasets, we still apply the synthetic corruptions to
all data to fairly compare model robustness under different
corruptions and reduce the efforts of filtering data. Besides,
we build a unified toolkit comprising of all corruptions, that
can be used for other datasets as well. Below we introduce
the dataset details, evaluation metrics, and evaluated models
of the three benchmarks, respectively.

4.1. KITTI-C

The KITTI dataset [ 1 7] contains 3712 training, 3769 val-
idation, and 7518 test samples. As we do not have access
to the test set, KITTI-C is constructed upon the validation
set. Among the corruptions, we do not include FOV Lost,
Motion Compensation and Temporal Misalignment since:
1) 3D object detection models usually take front-view point
clouds of 90° FOV as inputs since the KITTI dataset only
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Model [ Modality [ Representation [ Detection
SECOND [60] LiDAR-only voxel-based one-stage
PointPillars [29] | LiDAR-only voxel-based one-stage
PointRCNN [48] | LiDAR-only point-based two-stage
Part- A2 [49] LiDAR-only voxel-based two-stage
PV-RCNN [47] LiDAR-only | point-voxel-based | two-stage
3DSSD [61] LiDAR-only point-based one-stage
SMOKE [36] camera-only monocular one-stage
PGD [55] camera-only monocular one-stage
ImVoxelNet [45] | camera-only monocular one-stage
EPNet [26] fusion point-level two-stage
Focals Conv [13] fusion point-level two-stage

Model [ Modality [ Representation [ Detection
PointPillars [29] | LiDAR-only voxel-based one-stage
SSN [70] LiDAR-only voxel-based one-stage
CenterPoint [62] | LiDAR-only voxel-based two-stage
FCOS3D [56] camera-only monocular one-stage
PGD [55] camera-only monocular one-stage
DETR3D [58] camera-only multi-view query-based
BEVFormer [33] | camera-only multi-view query-based
FUTR3D [12] fusion proposal-level | query-based
TransFusion [2] fusion proposal-level | query-based
BEVFusion [35] fusion unified query-based

(a) Evaluated models on KITTI-C.

(b) Evaluated models on nuScenes-C.

Table 1. The 3D object detection models adopted for corruption robustness evaluation on KITTI-C and nuScenes-C. We show the input
modality, representation learning method (see Sec. 2.1), and detection head of each model.

provides box annotations in front of the vehicle; 2) the lo-
calization and timestamp information of each frame is not
provided in the dataset. Therefore, there are 24 corruptions
in KITTI-C with 5 severities for each following [25].

The standard evaluation is performed on Car, Pedestrian
and Cyclist categories at Easy, Moderate and Hard levels
of difficulty. The evaluation metric is the Average Preci-
sion (AP) with 40 recall positions at an IoU threshold 0.7
for cars and 0.5 for pedestrians/cyclists. We denote model
performance on the original validation set as AP¢jea,. For
each corruption type c at each severity s, we adopt the same
metric to measure model performance as AP, ;. Then, the
corruption robustness of a model is calculated by averaging
over all corruption types and severities as

1 —1¢
APeor = mZEZIAPC,S, M

ceC s=

where C is the set of corruptions in evaluation. Note that for
different kinds of 3D object detectors, the set of corruptions
can be different (e.g., we do not evaluate camera noises for
LiDAR-only models), thus the results of AP, are not di-
rectly comparable between different kinds of models and we
perform a fine-grained analysis under each corruption. We
also calculate relative corruption error (RCE) by measuring
the percentage of performance drop as

APclcan - APC,S . _ APclcan - APcor
APclean ' ROE = APclean

We select 11 representative 3D object detection mod-
els trained on KITTI, including 6 LiDAR-only models:
SECOND [60], PointPillars [29], PointRCNN [48], Part-
A? [49], PV-RCNN [47], and 3DSSD [61]; 3 camera-only
models: SMOKE [36], PGD [55], and ImVoxelNet [45];
and 2 LiDAR-camera fusion models: EPNet [26] and Fo-
cals Conv [13]. The details regarding their representations
and detection heads are shown in Table 1(a).

RCE, , = e

4.2. nuScenes-C

The nuScenes dataset [6] contains 1000 sequences of ap-
proximately 20s duration with a LiDAR frequency of 20

FPS. The box annotations are provided for every 0.5s. Each
frame has one point cloud and six images covering 360°
horizontal FOV. In total, there are 40k frames which are
split into 28k, 6k, 6k for training, validation, and testing. As
the dataset provides full annotations and information of ve-
hicle pose and timestamp, we can simulate all corruptions.
Thus, we apply all 27 corruptions to the nuScenes validation
set with 5 severities to obtain nuScenes-C.

For 3D object detection, the main evaluation metrics
are mean Average Precision (mAP) and nuScenes detection
score (NDS) computed on 10 object categories. The mAP
is calculated using the 2D center distance on the ground
plane instead of the 3D IoU. The NDS metric consolidates
mAP and other aspects (e.g., scale, orientation) into a uni-
fied score. Similar to KITTI-C, we denote model perfor-
mance on the validation set as mAP ¢jean and NDS jean, and
measure the corruption robustness mAP .., and NDS,,, by
averaging over all corruptions and severities. We also com-
pute the relative corruption error RCE under both mAP and
NDS metrics similar to Eq. (2).

On nuScenes-C, we select 10 3D detectors, including 3
LiDAR-only models: PointPillars [29], SSN [70], and Cen-
terPoint [62]; 4 camera-only models: FCOS3D [56], PGD
[55], DETR3D [58], and BEVFormer [33]; and 3 LiDAR-
camera fusion models: FUTR3D [12], TransFusion [2], and
BEVFusion [35]. The model details are shown in Table 1(b).

4.3. Waymo-C

The Waymo open dataset [5 1] consists of 798 scenes for
training and 202 scenes for validation. Similar to nuScenes-
C, Waymo-C is constructed by applying all 27 corruptions
to the Waymo validation set with 5 severities. The offi-
cial evaluation metrics are mAP and mAPH by taking the
heading accuracy into consideration. We similarly calcu-
late the corruption robustness and relative corruption er-
ror on Waymo-C. Due to the license agreement, there are
no pre-train models publicly. Thus, we train the LiDAR-
only PointPillars [29], camera-only BEVFormer [33], and
LiDAR-camera fusion TransFusion [2] on a subset of train-
ing data [33] for robustness evaluation.
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Corruption LiDAR-only Camera-only LC Fusion

SECOND  PointPillars  PointRCNN ~ Part-A?  PV-RCNN  3DSSD | SMOKE PGD ImVoxelNet | EPNet Focals Conv

None (AP jcan) 81.59 78.41 80.57 82.45 84.39 80.03 7.09 8.10 11.49 82.72 85.88

Snow 52.34 36.47 50.36 42.70 52.35 27.12 2.47 0.63 0.22 34.58 34.77

Weather Rain 52.55 36.18 51.27 41.63 51.58 26.28 3.94 3.06 1.24 36.27 41.30

Fog 74.10 64.28 72.14 71.61 79.47 45.89 5.63 0.87 1.34 4435 44.55

Sunlight 78.32 62.28 62.78 76.45 79.91 26.09 6.00 7.07 10.08 69.65 80.97

Density 80.18 76.49 80.35 80.53 82.79 77.65 - - - 82.09 84.95

Cutout 73.59 70.28 73.94 76.08 76.09 73.05 - - - 76.10 78.06

Crosstalk 80.24 70.85 71.53 79.95 82.34 46.49 - - - 82.10 85.82

Gaussian (L) 64.90 74.68 61.20 60.73 65.11 59.14 - - - 60.88 82.14

Sensor Uniform (L) 79.18 77.31 76.39 71.77 81.16 7491 - - - 79.24 85.81

Impulse (L) 81.43 78.17 79.78 80.80 82.81 78.28 - - - 81.63 85.01

Gaussian (C) - - - - - - 1.56 1.71 2.43 80.64 80.97

Uniform (C) - - - - - - 2.67 3.29 4.85 81.61 83.38

Impulse (C) - - - - - - 1.83 1.14 2.13 81.18 80.83

Motion Moving Obj. 52.69 50.15 50.54 54.62 54.60 52.47 1.67 2.64 5.93 55.78 49.14

Motion Blur - - - - - - 3.51 3.36 4.19 74.71 81.08

Local Density 75.10 69.56 74.24 79.57 77.63 77.96 - - - 76.73 80.84

Local Cutout 68.29 61.80 67.94 75.06 72.29 73.22 - - - 69.92 76.64

Local Gaussian 72.31 76.58 69.82 77.44 70.44 75.11 - - - 75.76 82.02

Object Local Uniform 80.17 78.04 77.67 80.77 82.09 78.64 - - - 81.71 84.69

Local Impulse 81.56 78.43 80.26 82.25 84.03 79.53 - - - 82.21 85.78

Shear 41.64 39.63 39.80 37.08 47.72 26.56 1.68 2.99 1.33 41.43 45.71

Scale 73.11 70.29 71.50 75.90 76.81 75.02 0.13 0.15 0.33 69.05 69.48

Rotation 76.84 72.70 75.57 77.50 79.93 76.98 1.11 2.14 2.57 74.62 77.76

Alig t Spatial - - - - - - - - - 35.14 43.01

Average (AP ,r) 70.45 65.48 67.74 69.92 72.59 60.55 2.68 242 3.05 67.81 71.87

Table 2. The benchmarking results of 11 3D object detectors on KITTI-C. We show the performance under each corruption and the overall
corruption robustness AP, averaged over all corruption types. The results are evaluated based on the car class at moderate difficulty.

5. Benchmarking Results

We present the evaluation results on KITTI-C in Sec. 5.1,
nuScenes-C in Sec. 5.2, and leave the results on Waymo-C
in Appendix D. We summarize the key findings in Sec. 6.

5.1. Results on KITTI-C

We show the corruption robustness of 11 3D object de-
tection models on KITTI-C in Table 2, in which we only
report the results on the car class at moderate difficulty,
while leaving full results of other classes and difficulties in
Appendix B. Overall, the corruption robustness is highly
correlated with the clean accuracy, as the models (e.g.,
PV-RCNN, Focals Conv) with higher AP ., also achieve
higher AP,,. It is not surprising due to the consistent per-
formance degradation of different models. We further show
the relative corruption error RCE of these models under
each level of corruptions in Fig. 3. Based on the evaluation
results, we provide the analyses below.

Comparison of corruption types. Based on Table 2 and
Fig. 3, we can observe that weather-level and motion-level
corruptions affect the performance of LiDAR-only and fu-
sion models most, while all corruptions cause significant
performance drop for camera-only models. For example,
Snow and Rain lead to more than 35% RCE for all models,
demonstrating the threats of adverse weathers on 3D ob-
ject detectors. Besides, Moving Object and Shear are also
challenging for all models, while Spatial Misalignment has
a great impact on fusion models. On the other hand, most
models exhibit negligible performance drop under sensor-
level and object-level corruptions, mainly due to their ubig-
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Figure 3. The relative corruption error RCE of 11 3D object de-
tectors on KITTI-C. We show the overall results under all corrup-
tions and the results under each level of corruptions.

uity in the training dataset.

Comparison of 3D object detectors. Due to the inferior
performance of camera-only models, we mainly compare
LiDAR-only and LiDAR-camera fusion models. We notice
that for corruptions that affect both modalities (e.g., Snow,
Moving Object, Shear), LIDAR-only models lead to better
performance. But for those that only corrupt point clouds
(e.g., sensor noises), fusion models are more competitive.
This is due to that the accurate image data can endow fusion
models with better robustness under point cloud noises, but
when images are also corrupted, fusion models are affected
by both inputs, resulting in inferior performance. To further
validate this, we apply sensor noises to LiDAR and camera
inputs at the same time. We show the performance of Fo-
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Corruption LiDAR-only Camera-only LC Fusion

PointPillars  SSN  CenterPoint | FCOS3D PGD DETR3D BEVFormer | FUTR3D  TransFusion = BEVFusion

None (mAP cjcan) 27.69 46.65 59.28 23.86 23.19 34.71 41.65 64.17 66.38 68.45

Snow 27.57 46.38 55.90 2.01 2.30 5.08 5.73 52.73 63.30 62.84

Weather Rain 27.71 46.50 56.08 13.00 13.51 20.39 24.97 58.40 65.35 66.13

Fog 24.49 41.64 43.78 13.53 12.83 27.89 32.76 53.19 53.67 54.10

Sunlight 23.71 40.28 54.20 17.20 22.77 34.66 41.68 57.70 55.14 64.42

Density 27.27 46.14 58.60 - - - - 63.72 65.77 67.79

Cutout 24.14 40.95 56.28 - - - - 62.25 63.66 66.18

Crosstalk 25.92 44.08 56.64 - - - - 62.66 64.67 67.32

FOV Lost 8.87 15.40 20.84 - - - - 26.32 24.63 27.17

Sensor Gaussian (L) 19.41 39.16 45.79 - - - - 58.94 55.10 60.64

Uniform (L) 25.60 45.00 56.12 - - - - 63.21 64.72 66.81

Impulse (L) 26.44 45.58 57.67 - - - - 63.43 65.51 67.54

Gaussian (C) - - - 3.96 433 14.86 15.04 54.96 64.52 64.44

Uniform (C) - - - 8.12 8.48 21.49 23.00 57.61 65.26 65.81

Impulse (C) - - - 3.55 3.78 14.32 13.99 55.16 64.37 64.30

Compensation 3.85 10.39 11.02 - - - - 31.87 9.01 27.57

Motion Moving Obj. 19.38 35.11 44.30 10.36 10.47 16.63 20.22 4543 51.01 51.63

Motion Blur - - - 10.19 9.64 11.06 19.79 55.99 64.39 64.74

Local Density 26.70 45.42 57.55 - - - - 63.60 65.65 67.42

Local Cutout 17.97 32.16 48.36 - - - - 61.85 63.33 63.41

Local Gaussian 25.93 43.71 51.13 - - - - 62.94 63.76 64.34

Object Local Uniform 27.69 46.87 57.87 - - - - 64.09 66.20 67.58

Local Impulse 27.67 46.88 58.49 - - - - 64.02 66.29 67.91

Shear 26.34 43.28 49.57 17.20 16.66 17.46 24.71 55.42 62.32 60.72

Scale 27.29 45.98 51.13 6.75 6.57 12.02 17.64 56.79 64.13 64.57

Rotation 27.80 46.93 54.68 17.21 16.84 27.28 33.97 59.64 63.36 65.13

Alignment Spatial - - - - - - - 63.77 66.22 68.39

Temporal - - - - - - - 51.43 43.65 49.02

Average (mAP.or) 23.42 40.37 49.81 10.26 10.68 18.60 22.79 56.99 58.73 61.03

Table 3. The benchmarking results of 10 3D object detectors on nuScenes-C. We show the performance under each corruption and the
overall corruption robustness mAP.,, averaged over all corruption types.
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Figure 4. The performance of Focals Conv [13] under the concur-

rence of LiIDAR and camera noises.

cals Conv [ 13] under the concurrence of LiDAR and camera
noises in Fig. 4. It can be seen that the accuracy of Focals
Conv further drops in the presence of both LIDAR and cam-
era noises, leading to worse performance than LiDAR-only
models that cannot be affected by camera noises. The re-
sults demonstrate that although fusion models are more ro-
bust to noises of one modality, they are potentially exposed
to corruptions from multiple sensors.

Comparison of LiDAR-only models. Among the six
LiDAR-only detectors, we find that SECOND [60], PointR-
CNN [48], and PV-RCNN [47] possess better relative cor-
ruption robustness than the others, whose RCE is 13.65%,
13.61%, and 13.99%. The worst model is 3DSSD, exhibit-
ing a 24.34% performance drop. In general, there does not
exist a clear margin of robustness between voxel-based and
point-based detectors, or between one-stage and two-stage

detectors, different from previous findings [32]. However,
we notice that the worst two models PointPillars [29] and
3DSSD [61] are developed for improving the efficiency of
3D object detection, which may indicate a trade-off between
corruption robustness and efficiency.

5.2. Results on nuScenes-C

We report the corruption robustness of 10 3D detectors
on nuScenes-C in Table 3 under the mAP metric, and leave
the results under the NDS metric in Appendix C. The model
performance is consistent for both metrics. We further show
the relative corruption error RCE under each level of cor-
ruptions in Fig. 5. Similar to the results on KITTI-C, mod-
els that have higher clean accuracy generally achieve better
corruption robustness. But differently, the nuScenes dataset
provides multi-view images, thus the camera-only models
achieve competitive clean accuracy with LiDAR-only mod-
els, enabling us to compare their performance. We provide
more detailed analyses below.

Comparison of corruption types. From Fig. 5, we
can observe that motion-level corruptions are significantly
more detrimental to LiDAR-only and LiDAR-camera fu-
sion models. They give rise to more than 50% performance
drop for LiDAR-only models and about 30% drop for fu-
sion models. Similar to KITTI-C, all corruptions remark-
ably degrade the performance of camera-only models. A
notable difference from KITTI-C is that most models are
resistant to weather-level corruptions. We think that the ad-
verse weathers (e.g., rain) contained in the nuScenes dataset
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Figure 5. The relative corruption error RCE of 10 3D object de-
tectors on nuScenes-C. We show the overall results under all cor-
ruptions and the results under each level of corruptions.

enable the detectors to predict robustly under weather-level
corruptions. Among all corruptions, FOV Lost and Motion
Compensation impair the models most, mainly due to the
large distortions of the LiDAR point clouds.

Comparison of 3D object detectors. For different cate-
gories of 3D object detectors, camera-only models are more
prone to common corruptions, whose performance drops
more than 40% under RCE. On the contrary, LIDAR-only
and fusion models exhibit less than 20% performance drop.
The reason is that LIDAR point clouds are inherently noisy
due to the ranging inaccuracy [7] and self-occlusion, such
that the models trained on point clouds are relatively robust
to corruptions. The results may suggest the indispensability
of LiDAR point clouds for reliable 3D object detection.

Comparison of camera-only models. Though camera-
only detectors are greatly affected by corruptions, we find
that multi-view methods outperform monocular methods in
terms of both clean and corruption accuracy. From Fig. 5,
the overall performance drop of FCOS3D and PGD is 57%
and 54%, while that of DETR3D and BEVFormer is 46%
and 45%, respectively. Since monocular methods directly
predict 3D objects from single images without consider-
ing 3D scene structure, they are more prone to noises [58]
and exhibit inferior performance. Besides, BEVFormer per-
forms better than DETR3D, especially under object-level
corruptions (e.g., Shear, Rotation), since it can capture both
semantic and location information of objects in the BEV
space with being less affected by varying object shapes [30].

Comparison of LiDAR-camera fusion models. Based
on the above analysis, fusion models demonstrate superior
corruption robustness on nuScene-C. By carefully exam-
ining their performance, we find that there exists a trade-
off between robustness under image corruptions and point
cloud corruptions. Specifically, FUTR3D suffers from the
largest performance drop (12.9% on average) under Gaus-
sian, Uniform and Impluse noises of images, compared with
2.5% of TransFusion and 5.3% of BEVFusion. However,

under Motion Compensation that significantly distorts point
clouds, FUTR3D obtains the highest mAP of 31.87% while
TransFusion only has 9.01% mAP. The reason behind this
trade-off is that fusion models have varying reliance on im-
ages or point clouds, resulting in the inconsistent robustness
under the corresponding corruptions of different sensors.

6. Discussion and Conclusion

In this paper, we systematically design 27 types of com-
mon corruptions in 3D object detection to benchmark cor-
ruption robustness of existing 3D object detectors. We es-
tablish three corruption robustness benchmarks—KITTI-C,
nuScenes-C, and Waymo-C by synthesizing the corruptions
on public datasets. By conducting large-scale experiments
on 24 diverse 3D object detection models under corruptions,
we draw some important findings, as summarized below:
1) In general, the corruption robustness of 3D object detec-

tion models is largely correlated with their clean perfor-

mance, similar to the observation in [25].

2) Among all corruption types, motion-level ones degrade
the model performance most, which pose a significant
threat to autonomous driving. Weather-level corruptions
are also influential to models trained on normal weather.

3) Among all 3D detectors, LIDAR-camera fusion models
have better corruption robustness, especially under those
that apply distortions to only one modality. However,
they are also exposed to corruptions from both sensors,
leading to degraded performance in this case. Besides,
there is a trade-off between robustness under image cor-
ruptions and point cloud corruptions of fusion models.

4) Camera-only models are more easily affected by com-
mon corruptions, demonstrating the indispensability of
LiDAR point clouds for reliable 3D detection or the ne-
cessity of developing more robust camera-only models.

5) In Appendix E, we further try several data augmentation
strategies, including those applied to point clouds [14,

] and images [64, 60]. The experiments validate that
they can hardly improve corruption robustness, leaving
robustness enhancement of 3D object detection an open
problem for future research.

We hope our comprehensive benchmarks, in-depth anal-
yses, and insightful findings can be helpful for understand-
ing the corruption robustness of 3D object detection models
and improving their robustness in future.
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