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Abstract

Knowledge distillation (KD) is an effective training strat-
egy to improve the lightweight student models under the
guidance of cumbersome teachers. However, the large ar-
chitecture difference across the teacher-student pairs lim-
its the distillation gains. In contrast to previous adap-
tive distillation methods to reduce the teacher-student gap,
we explore a novel training-free framework to search for
the best student architectures for a given teacher. Our
work first empirically show that the optimal model un-
der vanilla training cannot be the winner in distillation.
Secondly, we find that the similarity of feature semantics
and sample relations between random-initialized teacher-
student networks have good correlations with final distil-
lation performances. Thus, we efficiently measure similar-
ity matrixs conditioned on the semantic activation maps to
select the optimal student via an evolutionary algorithm
without any training. In this way, our student architec-
ture search for Distillation WithOut Training (DisWOT) sig-
nificantly improves the performance of the model in the
distillation stage with at least 180× training acceleration.
Additionally, we extend similarity metrics in DisWOT as
new distillers and KD-based zero-proxies. Our experiments
on CIFAR, ImageNet and NAS-Bench-201 demonstrate that
our technique achieves state-of-the-art results on different
search spaces. Our project and code are available at
https://lilujunai.github.io/DisWOT-CVPR2023/.

1. Introduction
Despite the remarkable achievements of Deep Neural

Networks (DNNs) in numerous visual recognition tasks [52,
64–68], they usually lead to heavy costs of memory, com-
putation, and power at model inference due to their large
numbers of parameters. To address this issue, Knowledge
Distillation (KD) has been proposed as a means of trans-
ferring knowledge from a high-capacity teacher model to
a low-capacity target student model, providing a more op-
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Figure 1. Left: Ranking correlation of proxies in zero-cost NAS
with vanilla and distillation accuracy. Right: Vanilla accuracy, dis-
tillation accuracy, prediction scores of DisWOT for ResNet[7,1,3]
and ResNet[3,3,3] on search space S0.
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Figure 2. Left: KD [22], DisWOT, DisWOT† results for ResNet20
under different teachers. Right: Comparison of distill accuracy &
training efficiency with other NAS methods on NAS-Bench-201.

timal accuracy-efficiency trade-off during runtime [4,7,76].
The original KD method [22] utilizes the logit outputs of the
teacher network as the source of knowledge. Subsequent
studies [2, 21, 24, 26, 54, 61, 73] have focused on extract-
ing informative knowledge based on intermediate feature
representations. However, as the gap in capacity between
students and teachers increases, existing KD methods are
unable to improve results, particularly in tasks that depend
on large-scale visual models such as VIT and GPT-3 [5,16].
For example, as shown in Figure 2 (Left), the large teacher
(e.g., ResNet110) lead to worse performance for the fixed
student than the relatively smaller one (e.g., ResNet56).

To solve this issue, adaptive KD methods have been pro-
posed in terms of training paradigms (e.g., early stop [10])
and architectural adaptations (e.g., assistant teacher [43]
and architecture search [40]), respectively. However, they
are ineffective in improving distillation performance or in-
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volve enormous training costs in the additional model train-
ing and search process. In sharp contrast to these methods,
we tackle this challenging problem from a new perspective
regarding training-free architecture search. To achieve this
goal, we construct a search space S0 for ResNet-like mod-
els with different depth configurations and obtain vanilla
and distill performance for each candidate in S0 by indi-
vidual training. Then, we evaluate the ranking correlation
between predicted scores of training-free search methods
and the actual performance of each student model. Surpris-
ingly, as shown in Figure 1 (Left), there are common rank-
ing correlation loss (10% ↓∼ 20% ↓) for these methods
in predicting distillation accuracy than vanilla accuracy. To
clarify this, we carefully analyze the disparities in vanilla
and distillation performance for each model: (1) for overall
search space, vanilla accuracy only preserves 85% correla-
tions with actual distillation performance. (2) for a particu-
lar instance, as shown in Figure 1 (Right), ResNet20 with
3 res-blocks in each stage (i.e., ResNet[3,3,3]) has more pa-
rameters and better standalone performance but is weaker
than ResNet[7,1,3] in the distillation process. Considering
that ResNet[7,1,3] has more layers than ResNet20, we seek
to understand the above phenomenon regarding the vanilla-
distillation accuracy gap from the perspective of semantic
matching [37]. ResNet[7,1,3] enjoys a larger effective re-
ceptive field and more excellent matched knowledge with
teacher, resulting in significant distillation gains. Encour-
aged by this understanding, we strive to design a new zero-
proxy regarding the semantic matching of teacher-student.
As a result, we find that the similarity scores of feature se-
mantics and sample relations can outperform conventional
zero-cost NAS in predicting final distillation accuracy (see
the comparison of ranking correlation on search space S0 in
Table 8). As shown in Figure 1(Right), similarity scores are
also consistent with distillation performance.

Drawing on the aforementioned observations, we intro-
duce DisWOT, a simple yet effective training-free frame-
work that finds the best student architectures for distilling
the given teacher model. For better semantic matching in
distillation, DisWOT leverages novel zero-cost metrics re-
garding the feature semantics and sample relations to select
better student model. For the feature semantic similarity
metric, we remark that randomly initialized models can lo-
calize objects well [6] and generate localization heatmaps
via Grad-CAM [56] as reliable semantic information. Then,
we measure the channel-wise similarity matrix of localiza-
tion heatmaps and take the L2 distance of the similarity
matrix for the teacher-student model as the metric. For in-
put samples, different models have diverse abilities to dis-
criminate their relationships. To improve relational knowl-
edge matching ability, we use the L2 distance of sample-
relation correlation matrix as a relation similarity metric.
Finally, we search for student architectures using an evo-

lutionary algorithm with semantic and relations similarity
metrics. Then, the distillation process is implemented be-
tween the searched student and the pre-defined teacher. In
addition, we leverage these metrics directly as new distillers
to enhance the student, as the DisWOT†. Equipped with
our train-free search and distillation design, our DisWOT
and DisWOT† framework significantly improve the model’s
accuracy-latency tradeoff in inference with at least 180×
training acceleration.

In principle, our DisWOT use higher-order statistics of
teacher-student models to optimize the student architecture
to fit a given teacher model. Its merits can be highlighted
in three aspects: (1) In contrast to training-based student ar-
chitecture search requires the individual or weight-sharing
training, our DisWOT does not require the training of stu-
dent models in the search phase. In addition, DisWOT is ef-
ficient to compute and easy to implement as it uses only the
mini-batch data at initialization. (2) DisWOT is a teacher-
aware search for distillation, which has better predictive dis-
till accuracy than conventional NAS. (3) DisWOT exploits
the distance of higher-order knowledge between the neural
networks, bridging knowledge distillation and zero-proxy
NAS. We further demonstrate the competitive ranking corre-
lation of DisWOT among 10 knowledge distances in KD as
zero-proxy for predicting vanilla accuracy in NAS-Bench-
201. We anticipate that our work on KD-based zero-proxy
can offer some assistance in furthering research endeavors
related to KD and NAS.

We conduct extensive experiments on CIFAR-100, Im-
ageNet, and the NAS-Bench-201 [14] dataset, demonstrat-
ing the superiority of our proposed approach. In contrast
to experiments in traditional architectural search, we focus
on final distillation accuracy instead of the vanilla accuracy
for the student. The results show that our DisWOT can
achieve better accuracy than traditional Zero-shot NAS in
the same search space. Besides, by switching to a larger
space, our DisWOT can obtain new state-of-the-art architec-
tures. For example, in the same ResNet-like search space,
we significantly improved 1.62% Top-1 accuracy over KD
for ResNet50-ResNet18 pair under the same training set-
tings. We also conducted comprehensive ablation studies
to investigate how our method can use the predictability of
zero-cost metrics to boost the distillation performance.
Main Contributions:

• By analyzing and exploring the discrepancy between
teacher-student capability, we empirically show that
their semantic similarities have a stronger correlation
with the final distillation accuracy. This motivates us
to propose a new student architecture search for the
Distillation without Training (DisWOT) framework to
reduce the teacher-student capability gap, which, to the
best of our knowledge, is not achieved in the area of
knowledge distillation.
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• DisWOT proposes novel zero-cost metrics on similar-
ity of feature semantics and sample relations and en-
semble these metrics to select the optimal student via
an evolutionary algorithm at the initial time. In the dis-
tillation stage, DisWOT achieves state-of-the-art per-
formances in multiple datasets and search spaces.

• We further expand 10 kinds of knowledge distances
including DisWOT as new universal KD-based zero
proxies, which enjoy competitive predictive power
with actual performance of models. We hope that our
contributions in this endeavor may aid to some degree
in advancing future research on KD and NAS.

2. Related Work and Background
In this section, we summarize existing knowledge dis-

tillation and architecture search methods and clarify their
differences to our method.

2.1. General Formulation of Knowledge Distillation

The fundamental concept underlying Knowledge Distil-
lation (KD) involves utilizing acquired knowledge (e.g., log-
its [31], feature values [30, 32, 33, 35, 70], and sample re-
lations [45, 59]) from a high-capacity teacher to guide the
training of a student model. The training dataset (X,Y )
comprises training samples X = xi

n
i=1 and their corre-

sponding labels Y = yi
n
i=1. Let fT be the output logits

of the fixed teacher T and let fS be the output of student
S, respectively. In KD, the student network fS is trained by
minimizing:

LS = LCE(fS , Y ) + LKL (fS , fT ) +Df

(
ϕS(x), ϕT (x)

)
, (1)

where LCE is the regular cross-entropy loss. LKL repre-
sents Kullback-Leibler (KL) divergence. Df (·, ·) is the dis-
tance function measuring the difference of intermediate fea-
ture representations (see Table 1 for particular distillers).

Table 1. Comparison of recent distillers.

Method Knowledge Distance Df (·, ·)
FitNets [54] Feature representation L2

AT [73] Attention maps L2

CC [49] Instance relation L2

NST [24] Neuron selectivity patterns LMMD

PKT [46] Similarity probability distribution LKL

Comparison with Other Adaptive KDs for Distillation
Gap. DisWOT is the first train-free architecture search solu-
tion to reduce the teacher-student gap. Unlike training man-
ners [10] and KD-loss designs , DisWOT utilizes the classic
KD training configurations and distillers. In addition, Dis-
WOT is free from the assistant teacher in ATKD [43], which
involves a complex training routine and budget. AKD [40]
searches student via reinforcement learning based on feed-
back from individual training of lots of models. As a com-
pletely alternative technical route to these training-based

Table 2. Formulation of NAS methods. A is the search space. A
candidate architecture in the search space is denoted as α ∈ A,
which corresponds to a neural architecture S(α,w) with weight
w. W is the weight of the supernet. train and val are the loss
functions on the training and validation sets, respectively.

Type Evaluation Formula

Training-
based

Multi-trial
Training

α∗ = argmin
α∈A

val(S(α,wα)),

s.t. wα = argmin
w

train(S(α,w))

Weight
sharing

α∗ = argmin
α∈A

val(S(α,WA(α))),

s.t. WA = argmin
W

train(S(A,W))

Training-
free

Zero-cost
Proxy

α∗ = ZeroProxy
α∈A

(S(α,w))

NAS [18], our training-free DisWOT builds on new zero-
proxy and achieves 180× ∼ 1000× training acceleration,
which greatly improves its easy-to-use and flexibility.

Table 3. Comparison with different training-free NAS.

Type Method Teacher-aware Objective

Prune-based SNIP [28], Fisher [1], Synflow [58] 7 Vanilla acc.
Activation-based NWOT [42], Zen-NAS [36] 7 Vanilla acc.
KD-based DisWOT (ours) 3 Distill acc.

2.2. Revisiting Architecture Search Methods

Neural Architecture Search (NAS) is emerged to re-
duce human efforts in architecture design and automate
the discovery of high-performance networks. As formal-
ized in Tab. 2, Multi-trial NAS methods [40, 79] train a
large number of candidates individually, which leads to
extensive resource consumption. To alleviate this, many
NAS [8,12,23,51] methods adopt a weight-sharing strategy
within a single supernet to facilitate the simultaneous train-
ing of candidates. The supernet is trained for hundred of
epochs by path sampling [11,19] or compound optimization
with architecture representations [39,69]. As an orthogonal
direction, zero-cost NAS methods [42,71] focus on identify-
ing well-performed architectures with training-free metrics.
For example, NWOT [42] calculates the architecture score
based on the kernel matrix of binary activations between
small batches of samples.
Comparison with NAS with Teacher. Some training-
based NAS [29,50,77] employ a teacher model to supervise
supernet training to improve predictive ability in the search
stage. However, these methods aim to improve vanilla ac-
curacy, not for distillation, and they do not use the teacher
model in the full training stage. In addition, without any
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Figure 3. A schematic overview of our DisWOT, including (a) detailed calculation of the DisWOT scores and (b) evolution of the student
architecture via the DisWOT scores. In search phase, DisWOT use semantic similarity metrics and relations similarity metrics to select
good student for a given teacher. The semantic similarity metric is measured by l2 distance of the channel-wise correlation matrix for
Grad-cam activation maps. Similarly, the relation similarity matrix statistics the sample-wise correlation matrix distance of the randomly
initialized teacher-student pairs. With the feedback from these metrics, the evolutionary search in DisWOT automatically imitates good
student from weak ones. In distillation phase, this searched student is distilled via teacher model and achieves superior gains.

training costs, our training-free DisWOT enjoys obvious dif-
ferences than these methods and advantages in efficiency.
Compared to Other Training-free NAS. Table 3 clearly
summarizes the differences between DisWOT and other
zero-cost methods [1, 28, 36, 42, 58]. Moreover, DisWOT
outperforms these methods on distillation performance pre-
diction and boosting in our sufficient experiments dealing
with diverse datasets and search spaces.

3. Methodology

Figure 3 provides an overview of the DisWOT frame-
work, which is comprised of two main stages: optimal stu-
dent network search and distillation with high-order knowl-
edge. In the search stage, we employ the neural architec-
ture search technique to obtain an optimal student network
for a pre-defined teacher network. Notably, we propose a
training-free proxy called DisWOT to accurately rank enor-
mous student networks and prevent expensive evaluation
processes with high efficiency. In the distillation stage, the
searched student network is retrained with distillation to im-
itate high-order knowledge in the teacher network. We give
the details of these two designs in the following sections.

3.1. Search for Optimal Student Network

We first present the training-free metrics we designed
to score a student architecture, which indicates its final ac-
curacy when distilled with a pre-defined teacher network.
Then we depict the details of the evolutionary process to
obtain an optimal student candidate.
Semantic Similarity Metric. The semantic information is
meaningful for neural networks to perceive as humans. In

distillation, the teacher network always has more convolu-
tional operations than the student, resulting in a teacher fea-
ture map with a larger receptive field and greater richness
of semantic information. In contrast to distiller designs to
alleviate semantic gaps, we aim for train-free student ar-
chitecture to better match the teacher model with compu-
tational constraints. We notice that the network with ran-
dom initial weights also has some semantic localization ca-
pability. Thus, we start to analyze the localization perfor-
mance of the randomly initialized teacher-student model.
Specifically, we utilize Grad-CAM maps [78] to localize
semantic object regions, which explains the model deci-
sions using gradient information. Given a mini-batch of
input images, we define the high-level feature map before
the Global Average Pooling (GAP) layer of the teacher net-
work T as AT ∈ RB×CT×HT×WT , where B represents
the batch size, CT denotes the number of output channels,
and HT and WT are the spatial dimensions. Additionally,
we introduce Ac

T ∈ RN×HT×WT as the c-th spatial map
along the channel dimension. For the student network Si,
we have feature map Ac

Si
∈ RB×CS×HS×WS and spatial

map Ac
Si

∈ RB×HS×WS , respectively. To compute the
Grad-CAM maps of the n-th class for both the teacher and
student networks, we can use the following formulations:

GT =

CT∑
c=1

wT
n,cA

c
T , GSi =

CS∑
c=1

wS
n,cA

c
Si
, (2)

where wT ∈ RN×CT and wS ∈ RN×CS are weights of
the last fully-connected layer in the teacher and student net-
work. N represents the number of classes. wT

n,c and wS
n,c

refer to the element located in the n-th row and c-th column
of weight matrices wT and wS , respectively. To quantify
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the intersection of class-discriminative localization maps,
we formulate semantic similarity metric Ms as the inter-
correlation on the accumulated Grad-CAM maps for both
teacher and student networks as follows:

GT =
(GT ) · (GT )

⊤

∥(GT ) · (GT )⊤∥2
,GS =

(GS) · (GS)
⊤

∥(GS) · (GS)⊤∥2
, (3)

Ms =
∥∥GT − GSi

∥∥
2
. (4)

Relation Similarity Metric. The relationships between
input samples are non-trivial for knowledge transfer. To
reduce the teacher-student gap and improve the relation-
distillation performance, we use the correlation matrix as
the sample-wise metric to search for an optimal student net-
work. For the random teacher network T and student net-
work Si with activation maps AT ∈ RN×CT×HT×WT and
Ai

S ∈ RN×Ci×Hi×Wi , the correlation matrix of the mini-
batch samples in the teacher network is formulated as fol-
lows:

AT =
(ÃT ) · (ÃT )

⊤∥∥∥(ÃT ) · (Ã ⊤
T )

∥∥∥
2

,ASi =
(ÃS) · (ÃS)

⊤∥∥∥(ÃS) · (Ã ⊤
S )

∥∥∥
2

, (5)

where ÃT ∈ RN×CHW is a reshaping of AT , and MT is a
N×N matrix. Thus, the (i, j) entry in matrix CT represents
the similarity between the i-th and j-th images within the
mini-batch. Based on this, the sample similarity metric Mr

for a potential student model Si is defined as follows:

Mr =
∥∥AT −ASi

∥∥
2
. (6)

Training-Free Evolutionary Search. Based on the above
metric, we conduct a training-free evolutionary search al-
gorithm to efficiently discover the optimal student α∗ from
search space A, as:

α∗ = argmin
α∈A

(Ms +Mr). (7)

Theoretical Understanding. According to the VC theory
[63], the classification error of the vanilla teacher-student
network can be decomposed as follows:

R(fs)−R(fr) ≤ O
(

|Fs|C
nαsr

)
+ ϵsr;R(ft)−R(fr) ≤ O

(
|Ft|C
nαtr

)
+ ϵtr, (8)

where fs ∈ Fs is the student function, ft ∈ Ft is the
teacher function, and fr ∈ Fr is the target function. R is
the error. O(·) and ϵsr terms are the estimation and approx-
imation error, respectively. O(·) is related to the statistical
procedure when given the number of data points. In con-
trast, ϵsr is the approximation error of the student function
class Fs for fr ∈ Fr. |·|C is an function class capacity mea-
sure, and n is the number of data point. During distillation,

the student network is supervised purely with the teacher
network as follows:

R(fs)−R(ft) ≤ O

(
|Fs|C
nαst

)
+ ϵst, (9)

where αst and ϵst are associated to student learning from
teacher. By combining Equations 3.1 and 9, we obtain:

R(fs)−R(fr) ≤ O
(

|Ft|C
nαtr

)
+ ϵtr +O

(
|Fs|C
nαst

)
+ ϵst. (10)

When student obtains gains in KDs, its upper bound of
error in distillation is smaller than vanilla training, which
satisfies the following inequality:

O
(

|Ft|C
nαtr

+ |Fs|C
nαst

)
+ ϵtr + ϵst ≤ O

(
|Fs|C
nαsr

)
+ ϵsr. (11)

Based on the assumption in [22] that ϵtr + ϵst ≤ ϵsr holds
consistently, we focus on minimizing O

(
|Ft|C
nαtr

+ |Fs|C
nαst

)
to improve the distillation performance. As noted in Lopez-
Paz et al [41], a better representation allows for a faster
learning rate with a fixed amount of data. Hence, when
there is a larger gap between the capacities of the student
and teacher networks, the value of αst tends to be lower.
Thus we aim to search for an optimal student network that
meets the requirement of αsit ≤ αsot, where si is all can-
didate student networks, and so is our searched student net-
work. In this case, the inequality becomes more effective,
and we improve the knowledge distillation by injecting a
larger αsot. Specifically, we present the overall procedure
for discovering optimal student in algorithm 1.
Effects of Search Strategies. We compare the evolution
search algorithm and the random search algorithm in search
space S2 with the same number of iterations, as shown in
Figure 4. We find that the evolution search algorithm can
consistently find architectures with lower DisWOT, espe-
cially when the search space is relatively large, and the evo-
lutionary search can explore better architectures.

3.2. Distillation with High-order Knowledge
In the distillation stage, teacher model T is employed

to distill the optimal student network fS . To verify the su-
periority of our search architecture, we adopt the existing
distillers (e.g., KD) as the default distillation setting. In
addition, we observe that the metrics we searched for ac-
tually serve as minimization optimization goals in the distil-
lation process to transfer the teacher’s privileged semantic
and sample relational knowledge as the semantic distillation
and sample distillation:

LMs =
1

c2

∥∥∥GT − GS
∥∥∥
2
,LMr =

1

b2

∥∥∥AT −AS
∥∥∥
2
, (12)

Finally, we involve these advanced distillers in our frame-
work, called DisWOT†. The total loss for DisWOT and
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Algorithm 1 Evolution Search for DisWOT
Input: Search space S, population P , architecture constraints C,
max iteration N , sample ratio r, sampled pool Q, topk k, teacher
network T .
Output: Highest DisWOT score architecture.

1: P0 := Initialize population(Pi, C);
2: sample pool Q := ∅;
3: for i = 1 : N do
4: Clear sample pool Q := ∅;
5: Randomly select r × P subnets P̂i ∈ P to get Q;
6: Candidates {Ai}k := GetTopk(Q, k);
7: Parent Ai := RandomSelect({Ai}k);
8: Mutate P̂i := MUTATE(Ai);
9: if P̂i do not meet the constraints C then

10: Do nothing;
11: else
12: Get DisWOT-Score z := DisWOT(P̂i, T );
13: Append P̂i to P;
14: end if
15: Remove network of smallest DisWOT-score;
16: end for
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Figure 4. Left: comparison of random search and evolution search.
Right: ranking correlation of different distillation methods on
NAS-Bench-201.

Table 4. Spearman correlation ρ (%) on NAS-Bench-201.

Type Method ρ Method ρ

Zero-cost
Proxies

Grad_Norm [1] 58.70±0.11 Synflow [58] 74.61±0.08
SNIP [28] 58.17±0.15 Jacob [57] 73.42±0.03
Fisher [1] 35.91±0.09 Zen-NAS [36] 41.36±0.06
NWOT [42] 64.41±0.08 FLOPs [1] 63.38±0.06

KD-based
Proxies

KD [22] 54.43±0.09 PKT [47] 52.65±0.09
FitNets [55] 56.18±0.09 CC [48] 65.90±0.08
SP [62] 51.24±0.08 NST [25] 72.35±0.09
RKD [44] 25.71±0.17 DisWOT 72.36±0.02

DisWOT† as:

LDisWOT = LCE(fS , Y ) + LKL (fS , fT ) ,

LDisWOT† = LDisWOT + LMs
+ LMr

.
(13)

3.3. Bridging Distiller and Zero-proxy

In our DisWOT framework, we use the semantic and re-
lational similarity metrics as a distillation performance pre-
dictor and distiller. In addition, DisWOT also enjoys good
performance for vanilla performance predictions. Encour-

aged by this intriguing observation, we employ the knowl-
edge function in of different KDs as zero-proxies and eval-
uate their ranking consistency with vanilla accuracy. As
shown in Table 4, these KD-based zero-proxies enjoy com-
petitive rankings with other NAS methods. Detailed results
in Figure 4 illustrate that our DisWOT and NST [24] are
the winners in the family of KD-based proxies. These at-
tempts reveal the close connections between KD and NAS,
and augment 10+ new universal proxies from the teacher-
student learning perspective for training-free NAS research.

4. Experimental results

In this section, we present the experimental results of our
DisWOT on different datasets. First, we describe the four
datasets used in our experiments and three search spaces
S0, S1, S2 in Sec. 4.1. Then, we conduct a comprehensive
set of experiments to evaluate the effectiveness of DisWOT.

4.1. Experimental Setup

We perform experiments on four datasets, namely
CIFAR-10, CIFAR-100, ImageNet-16-120, and ImageNet-
1k. In the search process, we only use one batch of training
data to get the statistic at nearly no cost. Following previ-
ous works, our experiments are conducted on the following
three search spaces:
Search Space S0: Following cifar-ResNet [20], the search
space consists of three residual blocks and is based on
CIFAR-100 datasets. The depth of each residual block is
searched in set {1,3,5,7}.
Search Space S1: Following NAS-Bench-201 [14], this
Darts-like search space is a cell-based search space consist-
ing of stacked directed acyclic graphs. S1 is conducted on
CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets.
Search Space S2: Following NDS [53], this search space
consists of residual and bottleneck blocks defined in ResNet.
S2 is based on CIFAR-100 and ImageNet-1k dataset.

4.2. Experiments on CIFAR-100

Implementation Details. We compare distillation gains
with other zero-nas on search space S1. In the search phase,
we configure 48k evolution iters with 512 population sizes.
In distillation, All searched student networks are trained via
CRD’s settings [59] with ResNet56 as the teacher model.
Distillation Results of Zero-cost Proxies. We conduct de-
tailed experiments on other zero-cost proxies with differ-
ent knowledge distillation methods. Note that we search
the student network under constraints of 1M parameters.
The results in Table 5 demonstrated that our proposed Dis-
WOT achieved superior results compared with other zero-
cost proxies with different knowledge distillation methods.
The DisWOT outperforms its counterparts vanilla networks
by around 2%, while achieving consistent improvements
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Table 5. Distillation results (%) of different zero-cost proxies with
knowledge distillation methods under 1M parameters.

Method Random FLOPs Synflow NWOT DisWOT

Baseline 69.52 71.37 72.88 71.80 73.12
KD 70.45 72.13 73.72 72.57 74.73
FitNets 70.12 72.40 73.55 72.72 74.85
AT 70.16 72.97 73.52 72.08 74.50
SP 70.46 72.14 73.50 72.16 74.95
RKD 71.19 72.22 73.69 72.63 74.62
CRD 71.59 72.78 73.99 73.12 75.25

among different distillation methods, such as KD [22], Fit-
Nets [55], AT [74], SP [62], RKD [44], and CRD [60].

Table 6. Distillation results(%) of zero-cost proxies under
{0.5,1,2}M parameters.

Param. FLOPs NWOT DisWOT DisWOT†
0.5M 69.88 70.38 72.89 73.75
1M 72.13 72.57 74.23 75.25
2M 73.27 73.86 75.95 76.67

Table 7. Distillation results(%) of zero-cost proxies under
{50,100}M FLOPs on space S1.

FLOPs NWOT Synflow DisWOT FLOPs NWOT Synflow DisWOT

50M 63.19 64.28 65.98 100M 70.38 72.12 72.89

Table 8. Ranking correlation (%) of zero-cost proxies on S0 space
on CIFAR-100.

Method Kendall’s Tau Spearman Pearson

FLOPs [1] 51.61 72.92 76.40
Fisher [1] 62.86 81.37 20.90
Grad_Norm [1] 63.75 82.35 39.35
SNIP [28] 67.22 85.07 51.09
NWOT [42] 31.87 45.66 48.99
DisWOT (ours) 73.98 91.38 84.83

Analysis on Varying Parameter Constraints. We analyze
the performance of student models under different param-
eter constraints obtained by DisWOT on CIFAR-100. As
shown in the Table 7, we compared our method with two
zero proxies, a.k.a. FLOPs [1] and NWOT [42], under the
parameter constraints of 0.5, 1, and 2M, respectively, and
the results demonstrate that our method still achieves ex-
cellent results. As shown in Tab. 7, DisWOT also outper-
forms previous SOTA methods with 0.8%∼1.7%↑ gains un-
der same FLOPs constraints,

Ranking Correlation with Distill Accuracy. Based on
search space S0, we perform vanilla training and distilla-
tion for each candidate with CRD’s settings [59]. Then, we
collect these vanilla results as GT and analyze the different
zero-proxy’s correlation with them. As shown in Table 8,
the results illustrate that our DisWOT achieves higher than
Fisher, GradNorm, SNIP,FLOPs, and NWOT by a large
margin, and achieve results that are on par with the best
zero-cost proxy, a.k.a. Zen-NAS and Synflow, on Kendall’s
Tau, Pearson, and Spearman coefficient.

4.3. Experiments on NAS-Bench-201

Implementation Details. For search trials, we first adopt
ResNet110/56 as the teachers and then Conduct an evolu-
tion search with the DisWOT metric and get the best student
network. We randomly sampled 50 candidate architectures
to evaluate sequencing consistency. The distillation settings
are the same as the Sec.4.2
Comparison results As shown in Table 9, some training-
free methods can achieve good results with much faster
speedups, such as NWOT and TE-NAS. Our proposed
method DisWOT achieves a speedup ratio of 180×, where
if semantic similarity metric is removed, we can achieve a
300× speedup ratio at the expense of some accuracy.

4.4. Experiments on ImageNet

Implementation Details. We searched the ResNet18 level
network regarding the search space in NDS [53]. Specifi-
cally, we limit the number of parameters to less than 13M
and the depth of the network to up to 20 layers and find the
optimal network by evolution algorithm with the DisWOT
metric. As shown in Table 10, guided by three different
sizes of networks, we used DisWOT to find the optimal stu-
dent network. We trained the student network obtained by
the search using the distillation strategy in DisWOT. Imple-
mentation details are available in supplementary materials.
Comparison Results. Table 10 reports the performance
of DisWOT on ImageNet with ResNet34/50 as teacher net-
work. The results demonstrate that the student architecture
of the ResNet18-level obtained by DisWOT under different
teacher guidance and using different distillation strategies
yielded significantly better results than its counterparts.

4.5. Ablation Studies of DisWOT

We perform ablation experiments to verify the validity of
each component of DisWOT in search space S0. As shown
in Table 11, for semantic knowledge, similarity matrix ob-
tains a more robust ranking improvement than simple Fit-
Net [54]. For Mr, similarity matrix performs better on
relational knowledge than RKD [45]. DisWOT integrates
semantic and relational knowledge to obtain an additional
ranking improvement than stand-alone scores. The weight
initialization scheme plays an important role in zero-proxy.
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Table 9. Distillation results on CIFAR-10, CIFAR-100, and ImageNet-16 in NAS-Bench-201 [13]. Dis. Acc. (%) represents the accuracy
of the searched architecture after distillation training. Time (s) denotes the time cost (GPU-seconds) during the search phase. The results
of NWOT and TE-NAS come from their original papers. Our DisWOT achieves competitive results with the lowest costs.

Type Model CIFAR-10 CIFAR-100 ImageNet-16-120
Dis. Acc(%) Time (s) Speed-up Dis.Acc(%) Time (s) Speed-up Dis. Acc(%) Time (s) Speed-up

Multi-trial

RS 93.63 216K 1.0× 71.28 460K 1.0× 44.88 1M 1.0×
RL [3] 92.83 216K 1.0× 71.71 460K 1.0× 44.35 1M 1.0×

BOHB [17] 93.49 216K 1.0× 70.84 460K 1.0× 44.33 1M 1.0×
RSPS [34] 91.67 10K 21.6× 57.99 46K 21.6× 36.87 104K 9.6×

Weight-sharing GDAS [15] 93.39 22K 12.0× 70.70 39K 11.7× 42.35 130K 7.7×
DARTS [38] 89.22 23K 9.4× 66.24 80K 5.8× 43.18 110K 9.1×

Training-free NWOT [42] 93.73 2.2K 100× 73.31 4.6K 100× 45.43 10K 100×
TE-NAS [9] 93.92 2.2K 100× 71.24 4.6K 100× 44.38 10K 100×

DisWOT Ms & Mr 93.55 1.2K 180× 74.21 9.2K 180× 47.30 20K 180×
Mr 93.49 0.72K 300× 73.62 18.4K 300× 45.63 40K 300×

Table 10. The accuracy (%) of ResNet18 on ImageNet-1k with various teachers. Results of other KD methods refer to the papers of
CRD [60] and ESKD [10]. ATKD AR34 [43] denotes ResNet34 used as the assistant teacher. N/A means no available results. Our DisWOT
obtains better performance than other methods and improves students’ performance positively correlated with that of the teacher.

Teacher Student Acc. Teacher Student KD [22] ESKD [10] ATKDAR18 [43] ONE [27] DML [75] CRD [60] DisWOT

ResNet34 ResNet18
Top-1 73.40 69.75 70.66 70.89 70.78 70.55 71.03 71.17 72.08
Top-5 91.42 89.07 89.88 90.06 89.99 89.59 90.28 90.32 90.38

Teacher Student Acc. Teacher Student KD [22] ATKDAR18 [43] ATKDAR34 [43] Seq. ESKD [10] ESKD [10] SRRL [72] DisWOT

ResNet50 ResNet18
Top-1 76.16 69.75 70.68 70.65 70.85 70.65 70.95 71.20 72.30
Top-5 92.86 89.07 N/A N/A N/A N/A N/A N/A 90.51

Table 11. Spearman correlation ( ”mean±std”) of DisWOT on
search space S0.

Knowledge Metric Spearman (%)

Ms FitNets [54] 64.06±6.11
Ms Similarity matrix 73.68±5.45
Mr RKD [59] 13.52±11.51
Mr Similarity matrix 72.36±3.42
Ms & Mr Similarity matrix 77.51±2.76

We verify the effect of the initialization strategy of the net-
work on the ranking consistency. The results in Tab. 12
demonstrate that the Gaussian initialization strategy is detri-
mental to Ms, but beneficial to Mr.

5. Conclusion

In this paper, we present DisWOT, a new teacher-aware
student architecture search without training framework for
distillation. Based on key observations about the difference
between vanilla and distillation accuracy, DisWOT mea-
sures the new zero-cost proxy conditioned on the similarity
of feature semantics and sample relations between random-
initialized teacher-student network. Then, DisWOT search
for the best student architectures for the given teacher us-

Table 12. “mean±std %” Spearman of proxies via Kaiming and
Gaussian initialization on search space S0 and NAS-Bench-201
with various seeds.

Space Initial Fisher GradNorm NWOT DisWOT

S0
Kaim. 81.37±0.01 82.35±0.01 45.66±0.05 84.08±0.03
Gauss. 80.99±0.01 75.50±0.01 45.36±0.03 91.38±0.03

NB-201
Kaim. 54.63±0.15 58.70±0.11 64.41±0.08 65.57±0.02
Gauss. 45.91±0.09 45.70±0.11 62.24±0.07 72.36±0.02

ing an evolutionary algorithm with these metrics. Thor-
ough evaluations are performed on diverse datasets and
search spaces, and DisWOT achieves significant perfor-
mance gains in various neural networks with at least 180×
training acceleration. We experimentally and theoretically
explained the relationship between similarity difference and
distillation performance. In addition, we also extend Dis-
WOT to new distillers and general zero proxy to predict the
performance of models. By doing this, we bridge the higher-
order knowledge bewteen distillation and network architec-
ture search. This approach represents an elegant and practi-
cal solution, which we hope will inspire future research on
knowledge distillation and architecture search design.
Limitations. Following most zero-cost NAS, we evaluate
DisWOT in classification tasks. In the future work, we
will make efforts to expand the DisWOT for downstream
tasks (e.g., object detection and semantic segmentation).
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