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Abstract

This paper presents a simple yet effective framework
MaskCLIP, which incorporates a newly proposed masked
self-distillation into contrastive language-image pretraining.
The core idea of masked self-distillation is to distill repre-
sentation from a full image to the representation predicted
from a masked image. Such incorporation enjoys two vital
benefits. First, masked self-distillation targets local patch
representation learning, which is complementary to vision-
language contrastive focusing on text-related representa-
tion. Second, masked self-distillation is also consistent with
vision-language contrastive from the perspective of train-
ing objective as both utilize the visual encoder for feature
aligning, and thus is able to learn local semantics getting
indirect supervision from the language. We provide specially
designed experiments with a comprehensive analysis to vali-
date the two benefits. Symmetrically, we also introduce the
local semantic supervision into the text branch, which further
improves the pretraining performance. With extensive exper-
iments, we show that MaskCLIP, when applied to various
challenging downstream tasks, achieves superior results in
linear probing, finetuning, and zero-shot performance with
the guidance of the language encoder. Code will be release
at https://github.com/LightDXY/MaskCLIP.

1. Introduction

Vision-language (VL) contrastive learning [31, 51] has

shown remarkable success in pretraining for various tasks.

With large-scale image-text pairs available on the Internet,

the model composed of a simple dual encoder design learns

*Equal contribution, † Corresponding Author
†Work done during an internship at Microsoft Research Asia

strong semantic prior by aligning between image and text.

The resulting visual encoder not only exhibits excellent lin-

ear probing and finetuning performance, but also enables

impressive zero-shot performance with the guidance of the

language encoder, showing the generality of natural language

and its ability to supervise a wide range of visual concepts.

Nonetheless, the associated language description, though

providing richer information than mere class labels, still

can hardly describe all the information in the corresponding

image, as images are continuous signals with fine-grained de-

tails and complex semantics. As a result, the VL contrastive

by aligning global representations may only focus on the

text-described objects and ignore the rest which might be

useful for downstream tasks.

In this paper, we are interested in how to fully leverage

the image itself to facilitate the VL contrastive to further

improve the transfer capability. (1) Firstly, the learned fea-

ture representation shall characterize local patches, serving

as a complementary for global representation in VL con-

trastive. Inspired by the recent success of masked image

modeling [4, 19, 26, 51, 60, 61] in learning patch representa-

tions, we also randomly mask the input image with a large

portion to force the visual encoder to focus on the remaining

visible patches. (2) Secondly, the learned representation for

local patches shall possess semantic meanings, being consis-

tent with the global representation receiving semantic text

supervision. We bring mean teacher self-distillation [25, 57]

to supervise the learned patch representations with the vi-

sual feature representations, enabling implicit supervision

from natural language. The resulting objective is denoted

as masked self-distillation where the student model and the

teacher model come from the same neural networks and the

knowledge is distilled from the full image (fed to the teacher

model) to the masked image (fed to student model). To this

end, we introduce MaskCLIP by incorporating masked self-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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distillation into VL contrastive to advance the transferable

visual encoder.

There are several recent attempts [49, 68] also exploring

the capability of the visual encoder under natural language

supervision. The common approach is to introduce con-

trastive learning or masked image modeling on the vision

side together with contrastive language-image pretraining.

However, the performance indeed improves based on CLIP

but does not as well as our masked self-distillation. We argue

that (1) the contrastive learning objective based on central

crop augmentation actually learns global representations for

salient objects while lack of attention on the surrounding

backgrounds [11]; and (2) masked image modeling usually

needs to remap the learned representation to pixels [26] or

discrete tokens [4]. Such low-level prediction target is inef-

ficient for semantic feature learning and thus also conflicts

with high-level language supervision in VL contrastive. A

brief illustration is presented in Figure 1. In the experiments,

we conduct comprehensive ablations to analyze the differ-

ence and provide numerical and visual evidence for better

understanding.

Symmetrically, we argue that local semantic supervision

on the text branch is also helpful for the text encoder and

eventually beneficial for zero-shot performance. So we intro-

duce the same mask-data-modeling format supervision into

the text branch as well. Different from images where the

pixel is low-level signal, the words crafted by human beings

are already highly semantic, so we use the tokenized word

piece as the prediction target directly, following the well-

studied mask language modeling method BERT. Meanwhile,

to reduce the output conflicts between contrastive learning

and mask language modeling, we introduce a small decoder

for the mask language modeling branch.

We train our MaskCLIP on a subset of a publicly avail-

able image-text pairs dataset, YFCC [58], and thoroughly

evaluate the transfer ability of visual representations on sev-

eral vision benchmarks: ImageNet-1K [17] for classification,

ADE20K [69] for semantic segmentation, MS-COCO [40]

for detection and segmentation, as well as a batch of other

classification benchmarks. When it comes to ImageNet-

1K [17] classification, MaskCLIP achieves +6.9%, +7.2%,

+1.3% higher than CLIP for zero-shot transfer, linear prob-

ing, and finetuning respectively. For vision downstream

tasks, we reach +2.7 mIoU on ADE20K [69] and +1.8 APb,

+1.4 APm on MS-COCO [40]. For vision-language tasks,

MaskCLIP achieves +6.1% average zero-shot accuracy on

20 datasets, and +17.2%, +12.8% rank@1 improvement on

the Flickr30K [67] image-test retrieval. In the recent Im-

age Classification in the Wild challenge academic track, our

MaskCLIP gets the 1st result with 48.9% TOP-1 average

accuracy, surpassing the second team with 3.4%.

In summary, the major contributions of this work are:

1. We present a novel vision-language pretraining

framework MaskCLIP, by introducing masked self-

distillation objective to facilitate VL contrastive for

better transferable visual models.

2. We present extensive ablation studies on MaskCLIP

variants and provide in-depth analysis numerically and

visually to help understand how the proposed masked

self-distillation assists VL contrastive.

3. We demonstrate our MaskCLIP on tens of benchmarks,

showing the superiority under all three settings: zero-

shot, linear probing, and finetuning.

2. Related Work
Vision-language pretraining Recent years have seen rapid

progress made in vision-language pretraining [15, 18, 33, 35–

39, 44–46, 50, 55, 56, 72]. Several multiple cross-modality

loss functions have been proposed for the training objective,

such as image-text matching [15, 37, 44, 56, 64], masked

language modeling [15, 37, 44, 55, 56], masked image mod-

eling [15, 44, 55, 56], contrastive loss [35, 38, 39]. These

objects are often mixed with each other to form a com-

pound objective. While a variety of approaches have been

proposed, few works investigate the performance on visual

representation learning for image classification. Recently,

CLIP [51] and ALIGN [31] show that the image-text con-

trastive learning objective achieves promising performance

for visual representation learning. There are many following

works proposed to further improve the pretraining perfor-

mance, DeCLIP [70], SLIP [49], COTS [43], ViCHA [54],

CYCLIP [24] use additional uni/multi-modality supervision

to improve the model capability, and PyramidCLIP [23],

KLITE [53], IDEA [30] seek to external knowledge from

pre-trained models or datasets as the additional guidance.

FILIP [66] and LOUPE [34] introduce fine-grained align-

ment to the model. Focusing on this research direction, we

analyze the desired properties of supervision which could

be complementary to CLIP, and propose the masked self-

distillation objective incorporated with the image-text con-

trastive loss to further improve pretraining performance for

various visual understanding tasks.

Self-supervised learning Self-supervised visual representa-

tion learning has attracted increasing attention over the past

few years. The objective of the self-supervised learning is

mainly divided into two categories: contrastive and genera-

tive [41]. The contrastive methods, such as MOCO [12, 27],

SimCLR [9, 10], BYOL [25], SimSiam [13], and DINO [6]

measure the similar and dissimilar samples by contrastive

loss. Their success heavily depends on the strong data

augmentation. The generative methods, such as BEiT [4],

MAE [26], PeCo [19], BEVT [60], BootMAE [20] and

MaskFeat [61] leverage masked image modeling to recon-

struct the remaining masked part of its original input from

the given visible parts. The generative methods show more
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(a) CLIP (b) + Contrastive Learning (d) MaskCLIP

Mask

(c) + Mask Image Modeling

Contrastive 
Loss

Contrastive 
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Contrastive 
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Feature-wise
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Figure 1. Pipeline comparison between combination CLIP with different vision self-supervised learning methods. (a) Vanilla CLIP. (b) CLIP

+ contrastive learning. (c) CLIP + pixel prediction mask image modeling. (d) CLIP + mask self-distillation, i.e. MaskCLIP. The ET , EI is

the text encoder and image encoder respectively, and all the EI , ET within each pipeline share the weight. ĒI is the mean-teacher model,

whose weight is updated by the exponential moving average of EI and does not require gradient.

promising transfer performance than the contrastive methods,

as generative objective learns patch representations while

contrastive objective focuses on learning centric global rep-

resentations [11].

Self-knowledge distillation Self-knowledge distillation [32]

aims to distill the knowledge in a model itself and uses it for

training the model. Instead of distilling knowledge from a

pretrained teacher model [29], self-knowledge distillation

regards a temporal ensemble of the student model as the

teacher. It means that a student model becomes a teacher

model itself, which gradually utilizes its own knowledge

for softening the hard targets to be more informative during

training. Self-knowledge distillation has been explored in

semi-supervised learning [57], contrastive learning [16, 35],

self-supervised learning [3, 7]. In this paper, we use vi-

sual features supervised by natural language for guidance in

masked self-distillation which naturally fit VL contrastive to

learn more transferable visual representations.

3. MaskCLIP
We introduce MaskCLIP, a novel framework that learns

visual representations. The core part of MaskCLIP is its

backbone image encoder, denoted by EI as shown in Figure

1. It obtains the transferable capability during pretraining

that could benefit downstream vision tasks. Following recent

self-supervised approaches [4, 14, 26, 49], we implement the

backbone EI as a Vision Transformer (ViT) [22]. The pre-

diction results from EI given an input image I then should

be a collection of visual feature tokens, represented as

EI(I) = {fcls, f1, f2, . . . , fN}. (1)

Here cls is short for class token. 1, . . . , N are the indexes of

the non-class tokens.

The rest of this section starts with the utilization of lan-

guage supervision. More shall be emphasized on the masked

self-distillation, which we deem crucial for visual pretrain-

ing.

3.1. Vision-language Contrastive

Following [31, 51], we introduce a Transformer-based

text encoder ET to leverage language knowledge. It aims to

align the global feature representations of an image and a text

with respect to some forms of similarity. Precisely, consider

a given image-text pair {I, T}, besides extracting the visual

feature representation EI(I) using the vision backbone as

shown by Equation 1, we additionally use the text encoder

ET to extract linguistic features from the text T .

The mean feature of the two branches are regarded as the

global representations and are fed into a projection head (im-

plemented as a fully-connected layer) respectively to obtain

the metric embeddings eT and eI . Image-text contrastive

loss is employed to align them during pretraining. The loss

can be formulated as LT + LI , with

LI = − 1

B

B∑
i=1

log
exp(eIi e

T
i /σ)∑B

j=1 exp(e
I
i e

T
j /σ)

LT = − 1

B

B∑
i=1

log
exp(eTi e

I
i /σ)∑B

j=1 exp(e
T
i e

I
j/σ)

, (2)

where B stands for the number of image-text pairs within

a training mini-batch, i, j are indexes within the batch; σ
stands for the temperature for the loss functions, which is

learned together with all other parameters during training.
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3.2. Masked Self-distillation for Visual Encoder

Knowledge distillation is a learning paradigm where a stu-

dent model is trained to match the output of a given teacher

model, so that the student model can be improved by the

teacher. Instead of bringing in an external teacher, self-

distillation methods such as [7, 25, 57] proposes using a

mean teacher model that is derived from the student itself.

In specific, the teacher shares the same structure with the

student, while the parameters of the teacher are exponential

moving averages (EMA) of the parameters from the student.

In the following, we would use the term “EMA model” to

represent such mean teacher model constructed from the

student.

MaskCLIP leverages the mean teacher self-distillation

to enhance its vision representations. Let ĒI be the EMA

model of the backbone encoder EI . θt and θ̄t are the param-

eters of EI and ĒI at training step t. θ̄t is updated with

θ̄t = αθ̄t−1 + (1− α)θt, (3)

where α is a hyper-parameter for smoothing updates. We

propose to incorporate masked image modeling into self-

distillation, resulting in masked self-distillation with asym-

metric input for student model and teacher model.

In specific, considering a given input image I , we first

feed it to the EMA model ĒI (teacher model) to obtain the

distillation targets. These target features can be represented

as

ĒI(I) = {f̄cls, f̄1, f̄2, . . . , f̄N}. (4)

In the meantime, we randomly mask a large portion of the

input image patches and then feed it into the original back-

bone EI (student model). Following [26], we only feed the

visible (unmasked) patches, denoted by I ′, into the original

backbone EI to speed up computation and save memory. Let

M be the indexes of all the masked tokens. These encoded

features corresponding to visible tokens can then be denoted

as EI(I
′) = {f ′

cls}
⋃{

f ′
k �∈M

}
. They are then joined with

a shared and learnable feature vector, denoted as m, that

represents mask tokens, to form a complete set of features

{f ′
cls, f

′
1, f

′
2, . . . , f

′
N}, with f ′

i∈M = m. We attach posi-

tional embeddings onto all these tokens, and append a small

Transformer D as a decoder to predict features of the masked

region from the visible tokens, which could be formulated as

(D ◦ EI)(I
′) = D ({f ′

cls, f
′
1, f

′
2, . . . , f

′
N})

= {f ′′
cls, f

′′
1 , f

′′
2 , . . . , f

′′
N} . (5)

Inspired by [71], we use an online quantizer h() to transform

the output features into a soft codewords distribution, and

minimize the cross-entropy between the target features and

the predicted features. Formally,

LDist =
1

|M|
∑
k∈M

−h̄(f̄k)
T log h(f ′′

k ). (6)

here the parameter of the teacher quantizer h̄() is also EMA

updated by the online quantizer, similar to the teacher model.

3.3. Local Semantic Learning for Text Encoder

Besides the local semantic supervision for the visual

encoder, we argue it is also helpful for the text encoder.

So we introduce the BERT pretraining into the text branch.

For the text T = {tsos, t1, t2, ..., tM , teos}, we denote the

masked input as T ′ = {t′sos, t′1, t′2, ..., t′M , t′eos}, where

t′i∈MT
= mt and t′i/∈MT

= ti, and MT be the indexes

of all the masked text tokens. The output feature of the

encoder is ET (T
′).

To reduce the output conflict between the global image-

text contrastive learning and the local mask language model-

ing, we further introduce a small text decoder, which shares

the same architecture as the encoder but with only a few

layers. So that the global prediction and local prediction are

conducted at different layers. We denote the output feature

as: (DT ◦ET )(T
′) = {t′′sos, t′′1 , t′′2 , ..., t′′M , t′′eos} and the loss

could be formulated as:

LMLM =
1

|MT |
∑

k∈MT

−tTk log t
′′
k . (7)

3.4. Overall Loss Functions

Finally, we pretrain MaskCLIP with all these losses com-

bined:

LI + LT + λLDist + βLMLM, (8)

with λ, β being the hyper-parameter weighting between VL

contrastive loss and self-supervised learning loss. All the

components of MaskCLIP are trained from scratch, includ-

ing the visual backbone EI , the visual decoder D, the text

encoder ET , as well as the text decoder DT .

4. Experiments
4.1. Setup

Model architecture. Our framework consists of the visual

encoder EI , the text encoder ET , the visual decoder D, and

the text decoder DT . We adopt the widely used Transformer

ViT-B/16 [22] for a fair comparison. It is composed of 12

layers, 768 width, and 12 head. The input image is 224×224
resolution and is further split into 14× 14 patches with size

16 × 16. A learnable cls token is prepended to the 196

embeddings. For the text encoder, we adopt a 12-layer, 512-

width, and 8-head Transformer following CLIP [51], and the

text decoder has 4 layers. The number of text tokens is fixed

to 77 with necessary truncations or paddings. For the image

decoder, we directly use a one-layer Vision Transformer.

Pretraining details. We train our proposed MaskCLIP from

scratch for 25 epochs, the batch size is fixed to 4096 for all

the experiments. The masks used in the mask self-distillation
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Fake Snow

MaskCLIP
(Ours)

CLIP

SledTeddy bears Full Caption

CLIP
+

SimCLR

CLIP
+ 

MAE

Figure 2. Visualization of the similarity between text and image features. The images and captions are from the MS-COCO val set. Here we

show the image feature similarity with both full caption and different objects in it. The caption is “Three teddy bears sit in a sled in snow”.

More results could be found in the supplemental materials.

Training IN-1K Flicker30K

Memory Time 0-shot Linear Finetune I2T T2I

CLIP 14G 1.00× 37.6 66.5 82.3 52.9 32.8

CLIP+SimCLR 30G 2.67× 42.8 72.1 82.6 58.6 41.3

CLIP+MAE 16G 1.30× 42.1 68.5 83.2 57.3 41.1

MaskCLIP 19G 1.75× 44.5 73.7 83.6 70.1 45.6

Table 1. Results of boosting CLIP with different kinds of vision

self-supervised learning methods.

branch and mask language modeling branch are random

mask with a mask ratio of 75% and 20%. We pretrain all the

models with the commonly used YFCC15M dataset, which

is flited from the YFCC100M [58] dataset by [51].

Downstream details. We evaluated MaskCLIP on sev-

eral downstream datasets, including ImageNet-1K [17],

ADE20K [69], MS-COCO [40], Flicr30K [67] et al. For

ImageNet-1K, we report zero-shot, linear probing, and fine-

tuning performance. The zero-shot is conducted following

the label prompt setting in SLIP [49]. For linear probing,

we fix the backbone and train a new linear classifier for 90

epochs. For finetuning, we follow the setting in BEiT [4]

and finetune the model for 100 epochs with a layer-decayed

learning rate. See supplemental materials for more details.

4.2. Analysis

We first present our analysis by studying different ways

of boosting CLIP. The baseline is CLIP [51] trained on the

YFCC-15M. Besides the introduced masked self-distillation,

we consider two other popular methods: (1) SimCLR [9],

a representative contrastive method; and (2) MAE [26] the

state-of-the-art masked image modeling approaches. All the

compared methods are trained on the YFCC-15M for a fair

comparison. We have the following observations.

Vision self-supervision helps VL contrastive. We evaluate

the models on both vision task ImageNet-1K [17] classi-

fication and vision-language task image-text retrieval on

Flicker30K [67] and present the comparison in Table 1. All

the added vision self-supervision, regardless of contrastive

or generative, improves the baseline CLIP. Among them, our

proposed MaskCLIP achieves the best results in terms of

all the evaluation metrics, outperforming CLIP with +6.9%,

+7.2%, + 1.3% on ImageNet-1K classification for zero-shot,

linear probing, and finetuning respectively, and +17.2%,

+12.8% on Flicker30K for image-to-text retrieval and text-

to-image retrieval. We also report the training GPU memory

usage and time-consuming cost in Table 1. It is worth noting

that the contrastive model (CLIP+SimCLR) compares two

additional views of the input image, resulting in larger GPU

memory usage and longer training time.

Masked image modeling is able to learn representations
for local patches. We argue that the image encoder only

pays attention to the text-described objects under VL con-

trastive due to sparse text description and to the centric ob-

jects under image contrastive due to central-crop augmenta-
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Method Objective
ADE20K Pascal

mIoU mIoU

CLIP Global 7.2 13.5

CLIP + SimCLR Global + Global 6.3 11.9

CLIP + MAE Global + Pixel-wise Local 8.3 16.4

MaskCLIP Global + Token-wise Local 10.2 17.2

Table 2. Annotation-free zero-shot segmentation results on

ADE20K and Pascal Context.

tion. In contrast, masked image modeling forces the image

encoder to focus on local patches using token-wise objec-

tives by mandatorily masking a large portion of patches.

Here, we provide numerical comparisons for evidence. We

conduct an “Annotation-free zero-shot segmentation” experi-

ment to test the zero-shot segmentation. The results on such

a dense prediction task would better reveal the ability of

local patch representations than global classification. Fol-

lowing the design in DenseCLIP [70], we use the prompted

label feature as the linear classification weight to realize

segmentation, without any training procedure. We evaluate

the performance on two widely used datasets: ADE20K [69]

and Pascal Context [48]. The results are shown in Table.2.

We can see that equipped with masked image modeling, our

MaskCLIP as well as CLIP+MAE achieves better results

than CLIP and CLIP+SimCLR, validating our hypothesis.

Masked self-distillation learns semantic representations
for local patches. Our masked self-distillation predicts vi-

sual features dynamically outputted by the visual encoder

and thus implicitly gets supervision from the text side via

VL contrastive. While MAE predicts fixed low-level pixels,

making it inefficient to learn semantic representations (as

the objective may force the representation to memorize low-

level details) and thus causing conflict with VL contrastive.

To show this, we select images from MS-COCO [40] and

calculate the feature similarity between image features and

their corresponding caption features. We also select objects

in the caption, prompt it to a new caption, such as “a photo

of teddy bears”, and calculate the similarities. An example

is shown in Figure 2 (More can be found in the supplemen-

tary material). Comparing MaskCLIP with CLIP+MAE in

the fourth column, we can see that CLIP+MAE uses color

as evidence and fails to distinguish the white teddy bear

from the white snow. While our MaskCLIP successfully

differentiates the two objects, suggesting ours learn more

semantic features. On the other hand, the superior results of

MaskCLIP shown in Table 1 and Table 2 also validate this.

It is worth mentioning that CLIP and CLIP+SimCLR fail to

have a correct response partition for different single objects

like MaskCLIP, further justifying our second observation.

4.3. Comparison with Previous Methods
To show the effectiveness of MaskCLIP as a general

vision-language pretrain method, we conduct experiments

on both vision tasks and vision-language tasks. For vision

Method Epoch
IN-1K ADE20K MS-COCO

0-Shot Lin FT mIoU APb APm

DeiT [59] 300* – – 81.8 47.4 44.1 39.8

SimCLR [9] 25 – 64.0 82.5 48.0 44.6 40.2

MAE [26] 25 – 56.2 82.5 46.5 43.2 39.1

CLIP [51] 25 37.6 66.5 82.3 47.8 43.6 39.5

SLIP [49] 25 42.8 72.1 82.6 48.5 44.0 40.3

MaskCLIP 25 44.5 73.7 83.6 50.5 45.4 40.9

Table 3. Comparison with previous methods, including supervised

baselines, self-supervised pretraining methods, and vision-language

pretraining methods. * is the epoch of the supervised baseline on

ImageNet-1K.

tasks, we report results on ImageNet-1K [17] classification,

MS-COCO [40] object detection, and ADE20K [69] se-

mantic segmentation. For vision-language tasks, we report

zero-shot results on recent challenging ICinW 20 datasets

benchmark and image-text retrieval results on Flickr30K [67]

and MS-COCO [40]. In the following, we compare with

the supervised baseline DeiT [59], self-supervised meth-

ods SimCLR [9] and MAE [26], and vision-language meth-

ods CLIP [51] and SLIP [49]. For a fair comparison, we

train SimCLR and MAE on YFCC-15M [58] with the same

epochs.

Classification on ImageNet-1K. As shown in Table 3,

MaskCLIP benefits from the advantages of both VL pretrain-

ing and image mask self-distillation that shows strong per-

formance on all the metrics. For zero-shot tasks, MaskCLIP

outperforms CLIP by +6.9% with 25 epoch training and

achieves +1.7% higher than the recent work SLIP. When it

comes to finetune, MaskCLIP reaches 83.6% top-1 accuracy,

and outperforms CLIP by +1.3%.

Semantic segmentation on ADE20K. Then we apply our

MaskCLIP to the semantic segmentation task. Here we use

the UperNet [63] framework with 512× 512 input and end-

to-end training for 160K iterations. The evaluation metric

is the mean Intersection of Union (mIoU) and we report

single-scale evaluation results here. The results are given in

Table 3. Our method achieves 50.5 mIoU, +2.7 mIoU than

our baseline method CLIP, and +2.0 mIoU than SLIP. This

verifies the effectiveness of our introduced incorporation.

Object detection and instance segmentation on MS-
COCO. We further investigate our transfer performance

on object detection and instance segmentation in Table.3.

Here we use Mask-RCNN [28] framework with single-scale

input and 1× schedule (12 epochs). Our method achieves

45.4 box AP and 40.9 mask AP, +1.8/1.4 better than CLIP,

and +1.4/0.6 better than SLIP.

Zero-shot on small datasets. We also report zero-shot per-

formance on 20 small datasets under the ICinW setting (see

the introduction below) in Table 4. We find that all the meth-

ods perform poorly on some datasets such as Aircraft(1%

acc for random guessing, we omit the description in the
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Pretraining on YFCC-15M
CLIP 34.0 58.6 68.5 36.9 10.8 21.4 30.5 16.9 5.1 51.6 6.5 51.1 25.9 5.0 52.7 28.6 51.7 52.5 22.4 4.5 79.1
SLIP 37.8 70.9 82.6 48.6 11.8 26.6 19.8 18.1 5.6 59.9 12.6 51.8 29.4 9.8 56.3 31.4 55.3 51.5 28.5 5.4 80.5
MaskCLIP 40.1 72.0 80.2 57.5 12.6 27.9 44.0 20.3 6.1 64.9 8.5 52.0 34.3 4.9 57.0 34.3 50.1 49.9 35.7 6.7 82.1

Pretraining on ICinW Academic Track Stting: YFCC-15M , GCC3M+12M, ImageNet-21K(ImageNet-1K is removed)
1st MaskCLIP 48.9 86.4 95.3 78.3 11.6 33.0 57.7 18.8 8.0 78.9 17.3 52.8 16.0 7.3 74.2 74.4 52.1 46.2 54.3 26.5 82.3
2nd KLITE* 45.5 87.4 92.7 68.8 8.2 32.2 27.9 17.4 4.3 72.4 11.4 48.4 31.1 12.8 75.6 65.9 50.6 52.9 44.4 10.2 82.3
3rd YT-CLIP 44.5 77.8 83.5 58.4 11.9 31.9 40.7 27.1 6.9 68.7 18.8 52.3 9.1 18.8 53.1 69.3 51.5 50.3 52.7 19.7 79.3
4th UniCL† 44.0 84.8 90.2 67.8 6.7 25.4 35.3 30.8 3.5 68.3 11.1 51.0 17.9 11.3 71.7 44.9 52.1 49.5 41.4 24.2 81.3
5th Gramer* 43.2 83.9 92.9 69.5 7.3 25.5 24.4 30.4 2.7 71.0 9.0 52.6 12.4 10.1 70.4 52.4 50.6 50.1 44.8 13.8 81.3

Table 4. Zero-shot evaluation on ICinW classification benchmarks. Best results in bold. * indicates using Swin-B as the backbone, †
indicates using Focal-B as the backbone.

Flickr30K MS-COCO

Training Image-to-text Text-to-image Image-to-text Text-to-image

Epoch R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP [51] 25 52.9 79.6 87.2 32.8 60.8 71.2 27.5 53.5 65.0 17.7 38.8 50.5

SLIP [49] 25 58.6 85.1 91.7 41.3 68.7 78.6 33.4 59.8 70.6 21.5 44.4 56.3

MaskCLIP 25 70.1 90.3 95.3 45.6 73.4 82.1 41.4 67.9 77.5 25.5 49.7 61.3

Table 5. Results of zero-shot image-text retrieval on Flickr30K and MS-COCO datasets. Best results in bold.

following), Fer(24.7%), Country211(0.5%), GTSRB(5.9%),

Cars(0.8%). This might be caused by the data domain gap

that the YFCC-15M contains few related images and de-

scriptions. For the rest of the datasets, all the methods get

reasonable performance and our MaskCLIP gets the best

performance on most datasets.

Image Classification in the Wild (ICinW) Challenge The

ICinW challenge [1] is a newly proposed visual pretraining

benchmark, which contains 20 diverse downstream classifica-

tion datasets, measuring the ability of pre-training models on

both the prediction accuracy and their transfer efficiency in a

new task. The pretraining is limited to three datasets: YFCC-

15M [58], GCC3M [52]+12M [8] and ImageNet-21K [17]

(ImageNet-1K data is excluded). We pretrain our MaskCLIP

on it and get the 1st result in the zero-shot track [2] (we sub-

mit the results anonymously). As shown in Table 4, the 2nd
team KLITE uses a strong Swin-B [42] as the backbone and

additional knowledge from GPT-3 [5] and Wiktionary [47],

and the 4th use the strong Focal-B [65] as the backbone,

while our MaskCLIP greatly outperforms these methods

with a simple ViT-B backbone and no additional knowledge.

Zero-shot on text-image retrieval. We further report the

zero-shot text-image retrieval results on two benchmark

datasets, Flicr30K [67] and MS-COCO [40]. We find that

the text without any prefixes or suffixes works well for all

the models. Table 5 shows the results. We can see that

MaskCLIP exhibits a strong zero-shot performance. For

example, with 25 epochs training, MaskCLIP reaches 41.4%

Rank@1 image-to-text accuracy on MS-COCO, outperform-

ing CLIP with 13.9%, and 25.5% Rank@1 text-to-image

accuracy, +7.8% higher than CLIP.

4.4. Ablations
We compare our default settings with other alternatives

to justify the efficacy of our model designs.

Training objectives ablation. As shown in Table.6a, when

we remove the mask language modeling loss LMLM, the

performance of the image-text task drops, including the zero-

shot accuracy and retrial performance. While benefiting from

the distillation loss, the finetuning performance on ImageNet-

1K is not influenced. When we remove the distillation loss

LDis, we observe a performance drop on all tasks, especially

the finetuning results.

Distillation loss format. Different from previous meth-

ods [3, 21, 26] that calculate the per-element distance as the

loss function, we use an online tokenizer to map the feature

to soft codewords and use the cross-entropy loss as the super-

vision. Here we study their difference in Table.6b. We find

that although they get similar fine-tuning performance, the

CE loss gets better zero-shot and linear probing performance.

The reason may be that the per-element MSE loss leads the

model to fit some unnecessary details of the target feature,

while the CE loss with soft tokenizer helps the model to

focus more on the important feature.

Distillation & MLM loss weight. Here we set the loss

weight of the CLIP branch as 1 and study the loss weight

of the two additional branches. As shown in Table.6e and

Table.6f, setting λ = 1 or β = 1 emphasize too much on

new tasks, which mislead the model to a wrong converge
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Model 0-Shot FT I2T/T2I

MaskCLIP 44.5 83.6 70.1/45.6

w/o LMLM 42.8 83.6 65.0/41.6

w/o LDis 42.0 82.4 65.4/40.5

(a) Training Objectives ablation. Both is nec-

essary for MaskCLIP.

Loss 0-Shot Lin FT

MSE 43.8 73.2 83.6

CE 44.5 73.7 83.6

(b) Distillation loss format. The online tok-

enizer with cross-entropy loss works slightly

better than MSE loss.

Depth 0-Shot Lin FT

1 44.5 73.7 83.6

2 43.7 72.9 83.4

4 43.5 72.5 83.3

(c) Visual decoder Depth. A shallow decoder

gets better performance.

Depth 0-Shot I2T/T2I

0 43.5 65.2/44.1

1 44.3 70.4/45.3

2 44.3 70.2/45.4

4 44.5 70.1/45.6

8 44.2 67.5/44.7

(d) Text decoder depth. The decoder is neces-

sary and a shallow one works better.

Weight 0-Shot Lin FT

1 38.5 68.2 82.5

0.1 44.4 73.5 83.5

0.05 44.5 73.7 83.6

0.01 43.6 73.0 83.4

(e) Distillation loss weight. A small loss

weight works well for MaskCLIP.

Weight 0-Shot I2T/T2I

1 36.5 51.7/32.1

0.1 44.3 69.2/45.9

0.05 44.5 70.1/45.6

0.01 43.2 70.6/45.6

(f) MLM loss weight. A small loss weight

works better.

Table 6. MaskCLIP ablation experiments with YFCC-15M dataset. We report zero-shot(0-Shot), fine-tuning (FT), and linear probing (Lin)

accuracy (%) for image-encoder-related ablation. And zero shot image-to-text, text-to-image retrieval (I2T/T2I) for text encoder-related

ablations. Default settings are marked in gray .

direction, resulting in poor performance. When we reduce

the loss weight by 10×, the two additional tasks are helpful

for the model and show a consistent gain on all the met-

rics. We suspect this is because the CLIP loss requires two

different capabilities: understanding the input content and

aligning them into a shared feature space. And the goal of the

two additional self-supervised learning tasks is to facilitate

understanding.

Image & Text decoder depth. Then we study the influence

of the decoder depth for both image and text decoders. As

shown in Table.6c, we find the image decoder with only

one layer works well, increasing the decoder depth leads

to worse performance on all metrics. Similarly, Table.6d

shows that the text branch benefits from a shallow decoder

design. We argue that a too-deep decoder would make the

encoder lazy, relying on the strong decoder to resolve the

challenging mask feature/language modeling tasks. And the

different depth choice between the image and text branches

is caused by the framework difference: the image branch

sees the mask tokens at the decoder, while the text branch

takes the mask tokens as the encoder input. Note that if

we remove the text decoder, the performance gets worse.

We think this is largely caused by the output conflict that

the global recognition feature aggregation and local word

prediction are conducted at the same layer.

Single-Stage v.s. two-Stage. Our MaskCLIP learns the VL

contrastive and masked self-distillation simultaneously and

jointly in a single stage. One possible variant is to first train

CLIP and then use CLIP feature from the first stage to train

masked image modeling as in [61, 62]. We report results on

three datasets in Table 7. We can see that the second stage

achieves better finetuning results compared with results from

the stage one, showing the effectiveness of masked image

modeling. Nonetheless, such two-stage training requires

longer training time and loses the transfer capability in a zero-

Method Epoch
IN-1K Flicker30K ADE20K

0-shot FT I2T T2I 0-shot FT

Two-Stage

Stage1 25 37.6 82.3 52.9 32.8 7.2 47.8

Stage2 25 — 83.4 — — — 48.2

MaskCLIP 25 44.5 83.6 70.1 45.6 10.2 50.5

Table 7. Comparison between two-stage method and our single-

stage MaskCLIP.

shot setting. In contrast, our MaskCLIP achieves superior

results under all settings with fewer epochs.

5. Conclusion
We present MaskCLIP, a new VL pretraining framework

that incorporates masked self-distillation into VL contrastive.

We point out that masked self-distillation learns local seman-

tics, fitting nicely to the VL contrastive that aims to learn

global semantics, and this is supported with comprehen-

sively designed experiments. We also utilize mask language

modeling to enhance the text encoder which is critical for

zero-shot performance. The resulting visual encoder shows

strong transfer capability across widely adopted benchmarks

for linear probing, fine-tuning, and also zero-shot evaluation.
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