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Abstract
To acquire a snapshot spectral image, coded aperture

snapshot spectral imaging (CASSI) is proposed. A core
problem of the CASSI system is to recover the reliable and
fine underlying 3D spectral cube from the 2D measure-
ment. By alternately solving a data subproblem and a prior
subproblem, deep unfolding methods achieve good perfor-
mance. However, in the data subproblem, the used sensing
matrix is ill-suited for the real degradation process due to
the device errors caused by phase aberration, distortion; in
the prior subproblem, it is important to design a suitable
model to jointly exploit both spatial and spectral priors.
In this paper, we propose a Residual Degradation Learn-
ing Unfolding Framework (RDLUF), which bridges the gap
between the sensing matrix and the degradation process.
Moreover, a MixS2 Transformer is designed via mixing pri-
ors across spectral and spatial to strengthen the spectral-
spatial representation capability. Finally, plugging the
MixS2 Transformer into the RDLUF leads to an end-to-end
trainable neural network RDLUF-MixS2. Experimental re-
sults establish the superior performance of the proposed
method over existing ones. Code is available: https:
//github.com/ShawnDong98/RDLUF_MixS2

1. Introduction
With the application of coded aperture snapshot spectral

imaging (CASSI) [1, 22, 30, 34], it has become feasible to
acquire a spectral image using a coded aperture and disper-
sive elements to modulate the spectral scene. By capturing
a multiplexed 2D projection of the 3D data cube, CASSI
technique provides an efficient approach for acquiring spec-
tral data. Nonetheless, the reconstruction of an accurate
and detailed 3D hyperspectral image (HSI) cube from the
2D measurements poses a fundamental challenge for the
CASSI system.

Based on CASSI, various reconstruction techniques have
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Figure 1. Comparison of PSNR-Parameters with previous HSI re-
construction methods. The PSNR (in dB) is plotted on the vertical
axis, while memory cost parameters are represented on the hor-
izontal axis. Our proposed Residual Degradation Learning Un-
folding Framework with Mixing priors across Spatial and Spec-
tral (RDLUF-MixS2) Transformers outperforms previous meth-
ods while requiring fewer parameters.

been developed to reconstruct the 3D HSI cube from 2D
measurements. These methods range from model-based
techniques [15, 17, 18, 30, 33, 35, 38, 43], to end-to-end ap-
proaches [5, 13, 16, 22, 23], and deep unfolding methods
[14, 31, 32]. Among them, deep unfolding methods have
demonstrated superior performance by transferring conven-
tional iterative optimization algorithms into a series of deep
neural network (DNN) blocks. Typically, the deep unfold-
ing methods tackle a data subproblem and a prior subprob-
lem iteratively.

The data subproblem is highly related to the degrada-
tion process. The ways to acquire the degradation matrix
in the data subproblem can be classified into two types, the
first directly uses the sensing matrix as the degradation ma-
trix [19, 21, 32] and the other learns the degradation matrix
using a neural network [14,24,44]. However, since the sens-
ing matrix is obtained from the equidistant lasers of differ-
ent wavelengths on the sensor, it cannot reflect the device
errors caused by phase aberration, distortion and alignment
of the continuous spectrum. Thus, the earlier kind does not
take into account the gap between the sensing matrix and
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the degradation process. In the latter type, directly model-
ing the degradation process is challenging. Considering the
challenge of optimizing the original, unreferenced mapping,
it is preferable to focus on optimizing the residual mapping.
Therefore, we explicitly model the degradation process as
residual learning with reference to the sensing matrix.

For the prior subproblem, a denoiser is trained to rep-
resent the regularization term as a denoising problem in
an implicit manner, typically implemented as an end-to-
end neural network. Recently, Spectral-wise Multi-head
Self-Attention (S-MSA) has been introduced to model long-
range dependency in the spectral dimension. However, S-
MSA may neglect spatial information that is crucial for gen-
erating high-quality HSI images, due to its implicit model-
ing of spatial dependency. To this end, the integration of
Convolutional Neural Networks (CNNs) with S-MSA can
provide an ideal solution as CNNs have the inductive bias of
modeling local similarity, thus enhancing the spatial mod-
eling capabilities of S-MSA. To achieve this, we propose
a multiscale convolution branch that processes visual in-
formation at multiple scales and then aggregates it to en-
able simultaneous feature abstraction from different scales,
thereby capturing more textures and details.

In this paper, we first unfold the Proximal Gradient De-
scent (PGD) algorithm under the framework of maximum a
posteriori theory for HSI reconstruction. Then, we integrate
the residual degradation learning strategy into the data sub-
problem of PGD, which briges the gap between the sensing
matrix and the degradation process, leading to our Resid-
ual Degradation Learning Unfolding Framework (RDLUF).
Secondly, a multiscale convolution called Lightweight In-
ception is combined with spectral self-attention in a paral-
lel design to address the problem of weak spatial modeling
ability of S-MSA. To provide complementary clues in the
spectral and spatial branches, we propose a bi-directional
interaction across branches, which enhance the modeling
ability in spectral and spatial dimensions respectively, re-
sulting in our Mixing priors across Spatial and Spectral
(MixS2) Transformer. Finally, plugging the MixS2 Trans-
former into the RDLUF as the denoiser of the prior sub-
problem leads to an end-to-end trainable neural network
RDLUF-MixS2. Equipped with the proposed techniques,
RDLUF-MixS2 achieves state-of-the-art (SOTA) perfor-
mance on HSI reconstruction, as shown in Fig. 1.

2. Related Work
2.1. Deep Unfolding HSI Reconstruction

Generally, when attempting to reconstruct HSI, model-
based techniques [1, 10, 15, 18, 29, 30, 35, 38, 43] adopt a
Bayesian perspective and cast it as an optimization problem
of maximizing the posterior probability (MAP). The opti-
mization algorithms commonly used are HQS [11], ADMM
[4], and PGD [2]. Typically, such techniques disentangle

the data fidelity and the regularization terms in the objective
function, leading to an iterative procedure that alternates be-
tween solving a data subproblem and a prior subproblem.

The main idea of deep unfolding methods is that model-
based iterative optimization algorithms can be implemented
equivalently by a stack of recurrent DNN blocks. Such
design was originally applied in deep plug-and-play meth-
ods [20, 26, 39, 41, 42], which utilize a trained denoiser to
implicitly express the prior subproblem as a denoising prob-
lem. Inspired by plug-and-play, deep unfolding methods are
trained end-to-end by jointly optimizing trainable denois-
ers for specific tasks. GAP-net [21] unfolds the generalized
alternating projection algorithm and employs trained auto-
encoder-based denoisers. DGSMP [14] introduces an un-
folding model estimation framework, which leverages the
learned gaussian scale mixture prior to improve model per-
formance. These methods typically employ the sensing ma-
trix as the degradation matrix or a neural network is utilized
to learn the degradation matrix in the data subproblem.
2.2. Methods for Exploiting Spectral and Spatial

Priors
Model-based approaches often utilize manually crafted

priors such as the total variation prior [38]. On the other
hand, sparse-based methods [15,17,30] rely on the assump-
tion that HSIs exhibit sparse representations and use ℓ1 spar-
sity to regularize the solution. In addition to that, non-local
based techniques [18, 35, 43] take into account the strong
long-range dependency among HSI pixels to achieve more
accurate results.

Previous researchers have utilized end-to-end neural net-
works to leverage data-driven priors, as demonstrated in
[31, 32]. CNN-based methods exhibit powerful local sim-
ilarity modeling capabilities. λ-net [23] reconstructs the
HSIs via a two-step process. In [22], TSA-Net is pro-
posed to exploit spatial-spectral correlation. Despite their
effectiveness in some tasks, CNN-based techniques may
have limitations in identifying non-local similarities as a re-
sult of their inductive biases. To address these shortcom-
ings, transformer-based methods have been proposed, such
as [5, 16]. These methods utilize multi-head self-attention
mechanisms to model the long-range spatial and spectral
dependency in HSIs. For instance, S-MSA in MST [5] com-
putes dependency across spectral to generate an attention
map that encodes global context implicitly. However, this
approach may lead to a loss of significant spatial informa-
tion related to textures and structures, which is crucial in
generating high-quality HSI images.

3. Method
3.1. Problem Formulation

The degradation of CASSI system [1, 30] can be at-
tributed to various factors, including the physical mask, dis-
persive prism, and 2D imaging sensor. The physical mask,
denoted by M ∈ RH×W , acts as a modulator for the HSI
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signal X ∈ RH×W×Nλ , thereby enabling the representa-
tion of the nth

λ wavelength of the modulated image:

X ′
nλ

= M ⊙Xnλ
, (1)

where ⊙ represents the element-wise product. Conse-
quently, the modulated HSI X ′ are shifted during the dis-
persion process, which can be expressed as:

X ′′(h,w, nλ) = X ′(h,w + dnλ
, nλ), (2)

where X ′′ ∈ RH×(W+dNλ
)×Nλ , dnλ

represents the shifted
distance of the nth

λ wavelength. At last, the imaging sensor
captures the shifted image into a 2D measurement. This
process can be formulated as follow:

Y =

Nλ∑
nλ=1

X ′′
nλ

, (3)

the 3D HSI cube is degraded to 2D measurement Y ∈
RH×(W+dNλ

) after the sum operator, and the spatial dimen-
sions increased as the dispersion process. As such, consid-
ering the measurement noise, the matrix-vector form of Eq.
3 can be formulated as:

y = Φx+ n, (4)

where x is the original HSI, y is the degraded measurement,
Φ is the sensing matrix, generally consider it as all the de-
graded operators (Eq. (1, 2, 3)), and n represents the addi-
tive noise. HSI restoration aims to recover the high-quality
image x from its degraded measurement y, which is typi-
cally an ill-posed problem.

Model-based methods (e.g., [1, 10, 15, 18, 29, 30, 35, 38,
43]) usually formulate HSI reconstruction as a Bayesian
problem, solving Eq. (4) under a unified MAP framework:

x̂ = argmax
x

logP (x | y) = argmax
x

logP (y | x)+logP (x),

(5)
where logP (y | x) and logP (x) represent the data fidelity
and the regularization term, respectively. The data fidelity
term is usually defined as an ℓ2 norm, expressing Eq. (5) as
the following energy function:

x̂ = argmin
x

1

2
∥y − Φx∥22 + λJ(x). (6)

The PGD algorithm approximatively expresses Eq. (6)
as an iterative convergence problem through the following
iterative function:

x̂k = argmin
x

1

2ρ
∥x−(x̂k−1 − ρΦT (Φx̂k−1 − y))∥22+λJ(x),

(7)
where x̂k refers to the output of the k-th iteration, ρ is the
step size. Mathematically, the red part of the above func-
tion is a gradient descent operation and the blue part can

be solved by the proximal operator proxλ,J . Thus, it leads
to a data subproblem and a prior subproblem, i.e., gradient
descent (Eq. (8a)) and proximal mapping (Eq. (8b)):

vk = x̂k−1 − ρΦT (Φx̂k−1 − y), (8a)

x̂k = proxλ,J(v
k). (8b)

The PGD algorithm iteratively updates vk and x̂k un-
til convergence. The model-based algorithms mainly suf-
fer from two issues in the CASSI system. Firstly, since the
sensing matrix is obtained from the equidistant lasers of dif-
ferent wavelengths on the sensor, it cannot reflect the device
errors caused by phase aberration, distortion and alignment
of the continuous spectrum. Therefore, there exist the gap
between the sensing matrix and the degradation matrix that
used in the data subproblem. Secondly, the handcrafted pri-
ors have to tweak parameters manually, resulting in limited
representation abilities in addition to the slow reconstruc-
tion speed. To address these issues, we unfold the PGD al-
gorithm by DNNs and integrate residual degradation learn-
ing into the gradient descent step.

3.2. Residual Degradation Learning Unfolding
Framework

The whole architecture of the proposed RDLUF is pre-
sented in Fig. 2 (a), which is an unfolding framework of the
PGD algorithm based on DNNs. Our RDLUF is composed
of several repeated stages. Each stage contains a Residual
Degradation Learning Gradient Descent (RDLGD) module
and a Proximal Mapping (PM) module, corresponding to
the gradient descent (Eq. (8a)) and the proximal mapping
(Eq. (8b)) in an iteration step of the PGD algorithm, respec-
tively. Additionally, there is a stage interaction between two
stages to rich features and stable optimization in a spatial
adaptive normalization manner.

Residual Degradation Learning Gradient Descent. In
a snapshot compressive imaging system, since the sensing
matrix is obtained from the equidistant lasers of different
wavelengths on the sensor, it cannot reflect the device er-
rors caused by phase aberration, distortion and alignment
of the continuous spectrum. Therefore, there exists the gap
between the sensing matrix Φ and the degradation matrix Φ̂.
Previous methods proposed learning the degradation matrix
using a neural network. However, it is challenging to di-
rectly model the degradation process. It is easier to optimize
the residual mapping than to optimize the original, unrefer-
enced mapping. Therefore, instead of directly learning the
degradation matrix, we propose the RDLGD module to es-
timate the residual between the sensing matrix Φ and the
degradation matrix Φ̂ from the compressed measurement y
and the sensing matrix Φ. The RDLGD’s architecture is
shown in Fig. 2 (c), which is consist of several Degrada-
tion Learning Convolution Blocks (DLCBs). The DLCB is
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Figure 2. Our proposed RDLUF comprises K stages (iterations). DConv denotes the depth-wise convolution. RDLGD calculates the
degradation matrix Φ̂ by utilizing compressed data y and sensing matrix Φ, and executes the gradient descent with a learnable step size
parameter ρk. There is a stage interaction between stages.

illustrated in Fig. 2 (d). The degradation matrix can be cal-
culated as Φ̂ = Φ+R(y,Φ), where R represents the several
cascaded DLCB, y is the compressed measurement, Φ is the
sensing matrix.

Therefore, the gradient descent step in our proposed RD-
LUF can be expressed as:

vk = x̂k−1 − ρkΦ̂⊤k

(Φ̂kx̂k−1 − y), (9)

where ρ is a learnable parameter, k represents the number
of stage.

Proximal Mapping. For the solution of Eq. (8b), it is
known that, from a Bayesian perspective, it corresponds to
a denoising problem [7, 39]. In this context, we have de-
signed the MixS2 Transformer as the PM module, which
effectively mixes priors across spectral and spatial, as pre-
sented in Fig. 3 (a). More details will be illustrated in the
next section.

Stage Interaction. To reduce the loss of information,
enrich the features of each stage and ease the network opti-
mization procedure, we propose the stage interaction mod-
ule, which generates modulation parameters from the pre-
vious stage features to normalize the current stage features
in a spatial adaptive normalization manner [24, 25]. More
details can be found in Appendix.

3.3. Mixing priors across Spectral and Spatial
Transformer

In this section, we explain the proposed model MixS2

Transformer in detail.
Network Architecture. As shown in Fig. 3 (a), the

MixS2 Transformer adopts a U-shaped structure consists
of several basic unit MixS2 blocks. There are up- and

down-sampling modules between MixS2 blocks. We intro-
duce the block interaction to reduce the loss of information
caused by up- and down-sampling operations. Different
scale features are interpolated to the same scale in block in-
teraction. Firstly, the MixS2 Transformer uses a Conv3×3

to map vk into shallow features X0 ∈ RH×Ŵ×C , where
Ŵ = W+dNλ

. Secondly, X0 passes through all the MixS2

blocks and block interactions to be embedded into deep fea-
tures Xd ∈ RH×Ŵ×C . Finally, a Conv3 × 3 operates on
Xd to generate the denoised image xk.

Mixing priors across Spectral and Spatial Block. The
most important component of the MixS2 Transformer is the
MixS2 block as shown in Fig. 3 (b), which consists of
two layer normalization, a spectral self-attention branch and
a lightweight inception branch in a parallel design with a
bi-directional interaction, and a gated-Dconv feed-forward
network [40] that is detailed in Fig. 3 (e). The up- and
down-sampling modules are both a Conv3 × 3 and a bi-
linear interpolation with different scale factors. The details
of the spectral self-attention branch, the lightweight incep-
tion branch, and the bi-directional interaction are described
following.

Spectral Self-Attention Branch. The spectral self-
attention branch is following [40], which query(Q), key(K)
and value(V) are embedded with a Conv1 × 1 and a
DConv3 × 3 different from [5]. The key component of
the spectral self-attention branch is S-MSA. Fig. 3 (c)
shows the spectral self-attention branch. The input Xin ∈
RH×W×C is first embedded, yielding Q = WQ

d WQ
p X,

K = WK
d WK

p X and V = WV
d WV

p X. Where W
(·)
p is the

422265



Figure 3. Diagram of the MixS2 Transformer. (a) MixS2 Transformer adopts a U-shaped structure with block interactions. (b) The basic
unit of the MixS2 Transformer, MixS2 block. (c) The structure of the spectral self-attention branch. (d) The structure of the lightweight
inception branch. (e) The components of the gated-Dconv feed-forward network (GDFN).

.
Conv1×1 and W

(·)
d is the DConv3×3. Next, the S-MSA

reshapes the query and key projections such that their dot-
product interaction generates a transposed attention map A
of size RC×C . Overall, the S-MSA process is defined as:

X = WpAttention(Q,K,V),

Attention(Q,K,V) = VSoftmax(KQ/α),
(10)

where Q ∈ RHW×C ; K ∈ RC×HW ; and V ∈ RHW×C

matrices are obtained after reshaping tensors from the origi-
nal size RH×W×C . Here, α is a learnable scaling parameter
to control the magnitude of the dot product K and Q before
applying the softmax function.

Lightweight Inception Branch. Corresponding to the
multiscale convolution, the structure of the lightweight in-
ception branch follows [27, 28], but the difference is that
we use DConv3 × 3 instead of Conv3 × 3, as illustrated
in Fig. 3 (d). The visual information is processed at var-
ious scales and then aggregated so that the next layer can
abstract features from different scales simultaneously and
hence capture more textures and details.

Figure 4. Detailed design of the bi-directional interaction.
The spatial/spectral interaction provides spatial/spectral context
extracted by Spectral Self-Attention/Lightweight Inception to the
other path.

.
Bi-directional Interaction. Familiar with [8], we intro-

duce the bi-directional interaction across spectral and spa-
tial branches. For the spatial interaction, the output fea-
tures of the lightweight inception module pass through a
Conv1 × 1 with a sigmoid activation to get a spatial atten-
tion map, applying to the query(Q), key(K) and value(V)
in a spatial attention manner. For the spectral interaction,
the output features of the spectral self-attention module are
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fed into a spectral attention module [12] to obtain a spec-
tral attention weight, appling to the output features of the
lightweight inception module in a spectral attention man-
ner. More details are shown in Fig. 4.

4. Experiments
4.1. Experimental Settings

We conducted both simulation and real experiments by
adopting 28 wavelengths ranging from 450 nm to 650 nm
for HSIs. These wavelengths were derived through spectral
interpolation manipulation, inspired by the approach used
in previous works [5, 14, 22].

Simulation HSI Data. In our simulation experiment,
we used two HSI datasets that are widely used in the field,
including CAVE and KAIST [9, 37]. The CAVE dataset
comprises of 32 HSIs, with a spatial dimension of 512 ×
512, while the KAIST dataset has 30 HSIs with a spatial
dimension of 2704 × 3376. Following prior works [5, 13,
14, 16, 22], we used a real mask with a size of 256 × 256
during the training process. For the purpose of evaluation,
we selected a total of 10 scenes from the KAIST dataset.

Real HSI Data. In our real experiment, we utilized the
HSI dataset acquired through the SD-CASSI system pro-
posed by [22]. This system captures real-world scenes using
28 wavelengths ranging from 450 to 650 nm and a 54-pixel
dispersion. The spatial dimensions of the captured measure-
ments are 660× 714.

Evaluation Metrics. The performance of HSI restora-
tion methods will be assessed through the application of
performance measures such as PSNR and SSIM [36].

Implementation Details. The RDLUF-MixS2 model
was implemented using the PyTorch framework and trained
using the Adam optimizer with hyperparameters β1 = 0.9
and β2 = 0.999. The training process was performed for
a total of 300 epochs using the cosine annealing scheduler
with a linear warm-up. The values of the learning rate and
the batch size were configured as 2 × 10−4 and 1, respec-
tively. During training, 3D HSI datasets were randomly
cropped to generate patches of size 256 × 256 × 28 and
660 × 660 × 28, which were used as labels for the simula-
tion and real experiments respectively. The dispersion shift
steps were set to 2. Data augmentation techniques such as
random flipping and rotation were employed. The objective
of the model was to minimize the Charbonnier loss.
4.2. Quantitative Results

In our study, we performed a comprehensive compara-
tive analysis of the proposed RDLUF-MixS2 method and
SOTA HSI restoration techniques. The techniques included
three model-based methods (TwIST [3], GAP-TV [38], and
DeSCI [18]), as well as seven deep learning-based meth-
ods (HSSP [31], DNU [32], DGSMP [14], HDNet [13],
MST [5], CST [16], and DAUHST [6]). All the techniques
were trained using the same datasets and evaluated under
the same settings as DGSMP [14] to ensure fair compar-

isons. The effectiveness of different methods was evaluated
based on the measures of PSNR and SSIM, and the cor-
responding outcomes for 10 simulated scenes are demon-
strated in Table 1. It is noteworthy that while CNN-based
and Transformer-based techniques exhibit superior perfor-
mance than model-based methods, the proposed method
surpasses them all. Compared to DGSMP [14], HDNet
[13], MST-L [5], CST-L∗ [16] and DAUHST-9stg [6], the
proposed method with 9stage achieves improvements over
these methods, which are 6.94 dB, 5.23 dB, 4.39 dB, 3.45
dB and 1.21 dB on average, respectively. Additionally, the
proposed method requires cheaper memory costs as shown
in Fig. 1.

4.3. Qualitative Results
Simulation HSI Reconstruction. We provide a com-

parison of the proposed RDLUF-MixS2 method for HSI re-
construction, using 4 of 28 spectral channels of Scene 5,
with the simulation results obtained from seven SOTA ap-
proaches. As illustrated in Fig. 5, our method produces vi-
sually smoother and cleaner textures, while preserving the
spatial information of the homogeneous regions. The re-
sults demonstrate that our method is effective in generating
high-quality HSIs with improved texture characteristics and
spatial information preservation. Specifically, our approach
leverages the spectral self-attention branch and the multi-
scale convolution branch to effectively model long-range
dependency and enhance the ability to capture detailed tex-
tures respectively. Furthermore, we conducted an evalua-
tion to verify the spectral consistency of our approach by
comparing the spectral density curves of the reconstructed
areas to the ground truth. As illustrated in the bottom-left
of Fig. 5, our method achieved the highest correlation co-
efficient, which highlights the effectiveness of our residual
degradation learning strategy.

Real HSI Reconstruction. To conduct real experiments,
we retrain our model on the CAVE [37] and KAIST [9]
datasets and test on real measurements, following the set-
tings of previous works [5,14,16,22]. To simulate real mea-
surement conditions, we introduced 11-bit shot noise during
the training process. As shown in Fig. 6, we compared the
reconstructed images of two real scenes (4 of 28 spectral
channels of Scene 3 and Scene 4) using our RDLUF-MixS2

method and seven SOTA approaches. Our model achieves
competitive results with SOTA methods. In Scene 3, the
proposed method is able to restore more texture and detail,
especially in the cactus areole area. In Scene 4, the pro-
posed method restores the clearer right eye than other meth-
ods. Unfortunately, we find that some artifacts were intro-
duced in the real results. This suggests that there are some
challenges involved in transferring the trained network from
simulated data to real data. As part of future work, we aim
to analyze the factors contributing to the artifacts and devise
effective measures to mitigate their impact.
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Algorithms Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg

TwIST [3]
25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

GAP-TV [38]
26.82
0.754

22.89
0.610

26.31
0.802

30.65
0.852

23.64
0.703

21.85
0.663

23.76
0.688

21.98
0.655

22.63
0.682

23.10
0.584

24.36
0.669

DeSCI [18]
27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

HSSP [31]
31.48
0.858

31.09
0.842

28.96
0.823

34.56
0.902

28.53
0.808

30.83
0.877

28.71
0.824

30.09
0.881

30.43
0.868

28.78
0.842

30.35
0.852

DNU [32]
31.72
0.863

31.13
0.846

29.99
0.845

35.34
0.908

29.03
0.833

30.87
0.887

28.99
0.839

30.13
0.885

31.03
0.876

29.14
0.849

30.74
0.863

DGSMP [14]
33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

HDNet [13]
35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST-L [5]
35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

CST-L∗ [16]
35.96
0.949

36.84
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

DAUHST-9stg [6]
37.25
0.958

39.02
0.967

41.05
0.971

46.15
0.983

35.80
0.969

37.08
0.970

37.57
0.963

35.10
0.966

40.02
0.970

34.59
0.956

38.36
0.967

Ours 3stage 36.67
0.953

38.48
0.965

40.63
0.971

46.04
0.986

34.63
0.963

36.18
0.966

35.85
0.951

34.37
0.963

38.98
0.966

33.73
0.950

37.56
0.963

Ours 5stage 37.30
0.960

39.39
0.971

42.06
0.975

46.89
0.988

35.74
0.969

37.03
0.971

37.05
0.959

35.18
0.968

40.64
0.973

34.58
0.957

38.59
0.969

Ours 7stage 37.65
0.963

40.45
0.976

43.00
0.978

47.40
0.990

36.78
0.974

37.56
0.974

38.25
0.967

35.86
0.971

41.71
0.978

34.83
0.959

39.35
0.973

Ours 9stage 37.94
0.966

40.95
0.977

43.25
0.979

47.83
0.990

37.11
0.976

37.47
0.975

38.58
0.969

35.50
0.970

41.83
0.978

35.23
0.962

39.57
0.974

Table 1. The PSNR (upper entry in each cell) in dB and SSIM (lower entry in each cell) results of the test methods on 10 scenes. RDLUF-
MixS2 significantly surpasses other competitors.

Figure 5. Comparisons of reconstructed HSIs use 4 out of 28 spectral channels in Scene 5. We evaluated 7 SOTA methods alongside the
proposed approach RDLUF-MixS2 with 9stage. Our method’s results are most clear. The region within the green box was chosen for the
analysis of the reconstructed spectra. Zoom in for a more detailed examination.

Visualization of the Residual Gradient Learning. We
have visually demonstrated the learned degradation matrix
and the residual between the sensing matrix and the degra-
dation matrix in Fig. 7. It is observed that the residuals
capture useful information such as object contours and mi-
norly correct the sensing matrix.

4.4. Ablation Study
Break down ablation study. To investigate the specific

impact of the different components of RDLUF-MixS2 on
its overall performance, we conducted an ablation study,

and the detailed results are presented in Table 2. We
first established a baseline model by exclusively employing
the spectral branch with a plain gradient descent module,
achieving results of 36.49 dB. Subsequently, applying the
residual degradation learning strategy resulted in a signifi-
cant improvement of 0.61 dB. Incorporating both the spec-
tral and spatial branches lead to a further improvement of
0.20 dB. Even with few parameters, the bi-directional inter-
action managed to boost results by 0.11 dB. Additionally,
block interaction and stage interaction yielded improve-
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Figure 6. Real HSI reconstruction comparison of Scene 3 and Scene 4. 4 out of 28 spectra are randomly selected.

Figure 7. The results of the reconstruction, the visualizations of
Φ, the residual R(y,Φ), and the corrected Φ̂ are presented. Please
note that the visualizations are normalized and the residual re-
sponse is actually small.

ments of 0.09 dB and 0.06 dB, respectively. By utilizing
all components jointly, the method gained a total boost of
1.07 dB, showcasing the effectiveness of RDLUF-MixS2.

PSNR SSIM

1 Baseline(Spectral Branch) 36.49 0.950
2 1 + Residual Degradation Learning 37.10 (+0.61) 0.955
3 2 + Spatial Branch 37.30(+0.20) 0.958
4 3 + Bi-directional Interaction 37.41(+0.11) 0.959
5 4 + Block Interaction 37.50(+0.09) 0.961
6 5 + Stage Interaction 37.56(+0.06) 0.963

Table 2. Break-down ablation studies of every component.

Number of stages. Our model shares parameters except
for the first and last stages. We investigate the benefits of
different numbers of stages, namely 3, 5, 7, and 9 stages.
As demonstrated in Tab. 3, it can be found that the per-
formance of the network improves with an increase in the
number of stages, indicating the efficacy of the iterative net-
work design. Based on a trade-off between reconstruction

performance and computational complexity, we find that the
7-stage approach is the optimal choice. Interestingly, we
observed that sharing parameters can achieve better perfor-
mance. It may suggest that a well-trained RDLGD module
boosts more than multiple unshared RDLGD modules.

Number of stages PSNR SSIM

3 37.56 0.963
5 38.59 0.969
7 39.35 0.973
9 39.57 0.974
9∗ 39.03 0.971

Table 3. Ablation of number of stages. * notes all parameters is
independent.

5. Conclusion and Limitation
In this paper, we first propose the RDLUF, which bridges

the gap between the sensing matrix and the degradation pro-
cess. Then, to strengthen the spectral-spatial representa-
tion capability in HSI, a MixS2 Transformer is designed via
mixing priors across spectral and spatial. Finally, plugging
the MixS2 Transformer into the RDLUF leads to an end-
to-end trainable neural network RDLUF-MixS2. The pro-
posed method is demonstrated to outperform existing SOTA
algorithms on simulation datasets and achieves comparable
results to prior works on real datasets.

Although the proposed method achieves a large margin
improvement in simulation data, the artifacts in real data
suggest that transferring the trained network from simula-
tion to real data could be a challenge. Besides, with the in-
troduction of the convolution branch, more computational
complexity is also included. Therefore, we will analyze
the causes of the artifacts and make corrections and exploit
some efficient implementations in future research.

822269



References
[1] Gonzalo R Arce, David J Brady, Lawrence Carin, Henry

Arguello, and David S Kittle. Compressive coded aperture
spectral imaging: An introduction. IEEE Signal Processing
Magazine, 31(1):105–115, 2013. 1, 2, 3

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009. 2
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