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Abstract

Although current deep learning techniques have yielded
superior performance on various computer vision tasks, yet
they are still vulnerable to adversarial examples. Adversar-
ial training and its variants have been shown to be the most
effective approaches to defend against adversarial exam-
ples. A particular class of these methods regularize the dif-
ference between output probabilities for an adversarial and
its corresponding natural example. However, it may have
a negative impact if a natural example is misclassified. To
circumvent this issue, we propose a novel adversarial train-
ing scheme that encourages the model to produce similar
output probabilities for an adversarial example and its “in-
verse adversarial” counterpart. Particularly, the counter-
part is generated by maximizing the likelihood in the neigh-
borhood of the natural example. Extensive experiments on
various vision datasets and architectures demonstrate that
our training method achieves state-of-the-art robustness as
well as natural accuracy among robust models. Further-
more, using a universal version of inverse adversarial ex-
amples, we improve the performance of single-step adver-
sarial training techniques at a low computational cost.

1. Introduction
Deep learning has achieved revolutionary progress in nu-

merous computer vision tasks [24, 40, 55] and has emerged
as a promising technique for fundamental research in mul-
tiple disciplines [31, 35, 52]. However, a well-established
study has demonstrated that Deep Neural Networks (DNNs)
are extremely vulnerable to adversarial examples [42],
which are indistinguishable from natural examples in hu-
man vision. In other words, a visually undetectable per-
turbation to the original example can lead to a significant
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(a) Natural Training
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(b) Adversarial Training [25]

Figure 1. Average accuracy under different attack strengths for
two networks trained on natural and adversarial samples. We rank
test examples based on the cross-entropy loss value in increasing
order and divide them into two equal halves. Note that the negative
ϵ denotes the strength of inverse adversarial perturbation. (a) Nat-
urally trained models are extremely susceptible to perturbations.
(b) For adversarially trained models, the adversarial effect is ex-
acerbated on examples that are more possibly to be misclassified.
The green line corresponds to natural examples.

disruption of the inference result of DNNs. The impercep-
tibility of these tailored examples also makes them easy to
bypass manual verification [3, 15], posing a potential secu-
rity threat to the safety of deep learning-based applications.

Various defense methods have been proposed to improve
adversarial robustness of DNNs [21,46,48]. As the primary
defense method, adversarial training [10, 25, 42] improves
intrinsic network robustness via adaptively augmenting ad-
versarial examples into training examples. State-of-the-art
adversarial training methods mainly focus on the distribu-
tion alignment between natural and adversarial examples to
preserve the consistency of the DNN prediction [7, 44, 53].
However, there still exists an undesirable decrease in the
standard accuracy for adversarially trained models due to
limited data and restricted model capacity. The misclassifi-
cation of natural examples can further undermine the distri-
bution alignment during adversarial training.

The natural intuition is that: adversarial examples corre-
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sponding to misclassified natural examples are more likely
to be misclassified. In other words, adversarial examples
exhibit higher loss values compared to their corresponding
natural examples. Contrary to adversaries that are harm-
ful to DNNs, we introduce inverse adversarial examples1

that are created via minimizing the objective function as an
inverse procedure of adversary generation. Specifically, in-
verse adversarial examples are beneficial to DNNs, which
can be more possibly to be correctly classified. To sup-
port this claim, we study the accuracy of trained classifi-
cation models on two groups of samples (see Figure 1). We
present the accuracy of adversarial examples and their in-
verse counterparts under different attack strengths. Even
a small adversarial perturbation can induce a drastic accu-
racy decrease for the naturally trained model. For the ad-
versarially trained model, the robust accuracy of examples
with higher loss values (Bottom 50%) suffers from a heavier
drop than that of examples with lower loss values (Top 50%)
under larger attack strengths. This indicates that the adver-
sarial counterparts of low-confidence or even misclassified
examples are also misclassified. Therefore, the distribution
alignment [7, 44, 53] between two misclassified examples
might have an unnecessary or even harmful effect on the
adversarial robustness establishment.

In this paper, to mitigate the unnecessary or even harm-
ful matching manner between misclassified examples, we
propose a novel adversarial training framework based on an
inverse version of adversarial examples, dubbed Inverse Ad-
versarial Training (IAT), which implicitly bridges the dis-
tribution gap between adversarial examples and the high-
likelihood region of their belonging classes. Adversarial ex-
amples of a certain category can thus be pulled closer to the
high-likelihood region instead of their original examples.
Specifically, we propose an inverse procedure of the stan-
dard adversary generation to reach the high-likelihood re-
gion. The generated inverse adversaries can also be viewed
as the rectification of original examples for reducing pre-
diction errors. Considering the multi-class decision surface
and computational cost, we further design a class-specific
inverse adversary generation paradigm as opposed to the
instance-wise version. Furthermore, we establish a momen-
tum mechanism for the prediction of inverse adversaries to
stabilize the training process. A one-off version of our in-
verse adversarial training is also proposed for improving
time efficiency.

Comprehensive experiments demonstrate the superiority
of our method in comparison with state-of-the-art adversar-
ial training approaches. We also show that our method can
be adapted to larger models with extra generated data for
robustness enhancement. Besides, the robustness of single-
step adversarial training methods can be further improved
at a low cost by incorporating our method.

1The formal definition will be given in the following sections.

The main contribution of this paper can be summarized
as follows:

• By analyzing the unnecessary, or even harmful, align-
ment between misclassified examples, we propose a
novel adversarial training framework based on the in-
verse version of adversarial examples, which promotes
the aggregation of adversarial examples to the high-
likelihood region of their belonging classes.

• Based on our Inverse Adversarial Training (IAT)
paradigm, we design a class-specific universal inverse
adversary generation method to mitigate the individ-
ual bias of different examples with high efficiency.
We also propose a one-off strategy to reduce compu-
tational costs with a negligible performance loss.

• Extensive experiments demonstrate the effectiveness
and generalizability of our method compared to state-
of-the-art adversarial training methods. Our method
can also be combined with single-step adversarial
training methods as a plug-and-play component for
boosting robustness at a low cost.

Related works. The lethal vulnerabilities of deep neural
networks against adversarial examples have been witnessed
in [4, 10, 28, 42]. A myriad of attempts have been made to
defend against these tailored examples, including adversar-
ial training [17,25,44,53], adversarial detection [14,43], and
input transformation-based methods [37, 48, 49]. Among
them, adversarial training consistently remains to be the
most effective method [2] to improve intrinsic network ro-
bustness via augmenting the training data with adversarial
examples. In addition, most existing works generally in-
corporate a regularization term to narrow the distribution
difference between natural examples and their adversarial
counterparts [7, 44, 53], which has been demonstrated to be
beneficial for robustness enhancement. This matching man-
ner seems natural but might be misguided by misclassified
natural examples, as we showed in Figure 1. Several efforts
have been devoted to resolving such an issue by assigning
weights on losses in terms of the intensity of adversarial
examples [23, 54]. However, they mainly concentrate on
mitigating the imbalance of disturbance effect among ad-
versarial examples, while our primary focus is to alleviate
the harmful alignment between misclassified examples by
incorporating inverse adversarial examples.

Inverse adversarial examples were first formally de-
scribed in [36], where Salman et al. studied them in vi-
sion systems to enhance in-distribution performance against
new corruptions. In comparison, we investigate the rectifi-
cation effect of inverse adversarial examples on the distri-
bution alignment during adversarial training for robustness
enhancement. A concurrent work [22] also exploits the in-
verse version of adversarial examples for adversarial robust-
ness by incorporating different distance metrics. However,
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we built on class-specific universal inverse adversaries for
adversarial training with more efficiency and robustness.
Furthermore, we show how our method can be combined
with single-step adversarial training techniques to improve
both the natural performance and robustness.

2. Background
We consider a DNN classifier fθ : X → RC with pa-

rameters θ, which predicts probabilities of C classes. Also,
we denote the input feature representation of the last fully-
connected layer as Fθ(x) for a given example x ∈ X .
Adversarial training can be an effective way to enhance
the robustness of DNNs against adversarial perturbations,
which adaptively involves adversarial examples in train-
ing as strong data augmentation. For a specific dataset
(x, y) ∼ D, the standard adversarial training [25] against
attacks under ℓ∞-norm threat model can be formulated as
the following min-max optimization problem:

min
θ

E(x,y)∼D

[
max

∥δ∥∞<ϵ
LCE (fθ (x+ δ) , y)

]
, (1)

where LCE is the cross-entropy loss and δ is the adversarial
perturbation under the ℓ∞-norm bound ϵ. The outer mini-
mization is to optimize empirical adversarial risk over the
network parameters θ. The inner maximization of adver-
sarial training can be viewed as searching for the worst-
case adversarial examples x̂ = x + δ, which can be sim-
plified as an iterative Projected Gradient Descent (PGD) al-
gorithm [25] on the negative loss function.

Besides standard adversarial training, TRADES [53] and
MART [44] proposed to utilize Kullback–Leibler (KL) di-
vergence for distribution matching between natural exam-
ples and their adversarial counterparts. The objective func-
tion of TRADES [53] can be defined as follows:

min
θ

E(x,y)∼D

[
LCE (fθ (x) , y)+

ω · max
∥δ∥∞<ϵ

LKL (fθ (x) ∥fθ (x+ δ))
]
,

(2)

where LKL denotes KL divergence and ω is the balancing
parameter for the trade-off of natural accuracy and adver-
sarial robustness. Generally, KL divergence encourages the
predictions of benign examples and adversarial examples to
share the same distribution. Nevertheless, this distribution
alignment can further undermine the adversarial robustness
when benign examples are misclassified, resulting in the
wrong guidance during adversarial training. A major draw-
back in adversarial training is that it costs more consider-
able computing resources than natural training [1, 38, 47],
which hinders robust establishment on larger models. In
addition, adversarial training can suffer from more severe
overfitting than the natural training paradigm [34]. Later
in this paper, we will provide some insights related to the
above-mentioned challenges regarding adversarial training.

3. Method
In this section, we first formally define the inverse adver-

sarial example and introduce its class-specific (universal)
variant. We then propose a new adversarial training scheme,
coined as Universal Inverse Adversarial Training (UIAT),
via a regularizer that encourages the prediction alignment
between adversarial examples and the high-likelihood re-
gion of their corresponding classes. Furthermore, the in-
verse adversary momentum is also proposed for the stabi-
lization of the training process. To boost time efficiency, we
design a one-off version of our UIAT by computing inverse
adversaries only in one of the training epochs without losing
much performance.

3.1. Inverse Adversarial Examples

For the image classification task, the adversary gener-
ation can be viewed as a process of crossing the decision
boundary for misclassification. On the contrary, generat-
ing inverse adversarial examples can be regarded as mov-
ing away from the decision boundary to the high-likelihood
region of a certain class. Specifically, this process can be
obtained by iteratively minimizing the classification loss
values of inverse adversarial examples. Formally, inverse
adversarial examples are inputs to machine learning mod-
els, which are tailored to cause the model to obtain more
accurate predictions than corresponding natural examples.
Similar to adversarial examples, inverse adversaries are ob-
tained by adding visually tiny perturbations to natural ones.
We here focus on ℓ∞-norm bound B(x, ϵ′) with radius ϵ′

around natural examples on inverse adversaries. One can
use PGD to generate inverse adversarial perturbations:

x̌t+1=ΠB(x,ϵ′)
(
x̌t−α′ · sign

(
∇x̌tLInv

(
x̌t, y

)))
, (3)

where α′ is the gradient descent step size, x̌t represents tth

iteration update, and LInv denotes the loss function for the
inverse adversary generation. Generally, the cross-entropy
loss can be a good choice for guiding the inverse adversary
generation. Nevertheless, the high-likelihood region of a
certain class is far away from any adjacent decision bound-
aries [18, 45], which means that inverse adversaries are far
away from adversarial examples at the feature level. Mean-
while, natural feature embeddings are also desired to lie on
the high-likelihood region from the geometric perspective.
We thus append a feature-level regularization during the in-
verse adversary generation for supplementary supervision.
Therefore, given a sample x and its adversarial counterpart
x̂, our inverse adversarial loss can be written as follows:

LInv (x̌, y) =LCE (fθ (x̌) , y)

+β · [L1 (Fθ (x̌) ,Fθ (x))− L1 (Fθ (x̌) ,Fθ (x̂))],
(4)

where β denotes the weighting factor. Similar to insights
from adversarial feature space analysis [26], our triplet term
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on latent representations can further prevent the overfitting
of inverse adversaries from extremely high predictions for
better guidance. The obtained inverse adversarial examples
can then be incorporated into the adversarial training for
robustness enhancement.

3.2. Class-specific Inverse Adversaries
We have introduced the instance-wise inverse adversar-

ial example in the previous section, which is effective in
approximating the high-confidence region in the decision
surface. However, the inverse adversary generation suffers
from a high computational cost due to iterative gradient
computation. In general, the instance-wise inverse adver-
sary generation can take almost the same time as the origi-
nal adversary generation. To reduce the computational cost
of inverse adversary generation, we further design a Class-
Specific Universal inverse adversary generation strategy in-
spired by [27, 39]. The universal strategy allows examples
of the same class to share a universal adversarial perturba-
tion. In other words, each class owns a universal inverse ad-
versarial perturbation that can be effective in approaching
its high-likelihood region (lower the objective loss). In this
way, we can find a shared direction to reach high-likelihood
regions, which can also mitigate the individual noise be-
tween different examples. The class-specific universal ad-
versarial perturbation zc for class c can be defined as:

LInv
(
ΠB(xc,ϵ′) (x

c + zc) , y
c
)
< LInv (x

c, yc)

for “most” xc ∼Dc.
(5)

We sample natural examples xc and corresponding labels yc

from dataset Dc of category c. The class-specific universal
inverse perturbation zc is effective in most of the examples
from the same class c for reducing the loss. Note that we
keep updating class-specific inverse perturbations through-
out the whole training stage. For a certain batch of data,
we can obtain the updated universal inverse perturbation by
solving the following optimization problem:

min
∥zc∥∞<ϵ

1

Nc

Nc∑
i=1

LInv (x
c
i + zc, y

c
i ) , (6)

where Nc is the number of training samples belonging to
class c of a batch. Specifically, we can further use PGD
to solve the above optimization problem to obtain class-
specific inverse adversarial perturbation zc. For time effi-
ciency, we only conduct a single-step PGD to update the
universal inverse perturbation for a certain category.

3.3. Universal Inverse Adversarial Training

We here show how the universal inverse adversaries can
be used to devise an effective adversarial training algorithm.
The universal inverse adversarial example x̌ can be obtained
by adding the class-specific inverse perturbation to the orig-
inal example x. Recall that we obtain adversarial examples

x̂ by maximizing the cross-entropy loss during adversarial
training. The loss function of Universal Inverse Adversarial
Training (UIAT) can be formulated as:

LUIAT=LCE (fθ (x̂) , y)+λ · LKL

(
p(t)∥fθ (x̂)

)
, (7)

where t denotes the current training epoch number. To mit-
igate the oscillations of noisy predictions throughout the
training process, we design a momentum mechanism on
the predicted probability of inverse adversaries via incor-
porating predictions from previous epochs. The momentum
mechanism to obtain aggregate predicted probability p(t)

can thus be described as:

p(t) =

{
fθ (x̌) , if t < T

γ · p(t−1) + (1− γ) · fθ (x̌) , if t ≥ T
(8)

where γ is the momentum factor. Note that we start to en-
able the inverse adversary momentum at epoch T to stabi-
lize the training process. The main reason is that the learned
representation is unstable during the early training period.
Our UIAT method can thus bridge the gap between adver-
sarial examples and the high-likelihood region of their be-
longing classes for robustness enhancement. The pseudo-
code of our UIAT is provided in Algorithm 1. We can eas-
ily obtain standard IAT by replacing universal inverse ad-
versaries with instance-wise ones. (Details can be found in
the supplementary material)

To further reduce the computational overhead, we pro-
vide a one-off strategy, which only conducts the inverse ad-
versary generation in a certain epoch T ′ instead of generat-
ing inverse adversaries throughout the whole training pro-
cess. Before epoch T ′, we replace p(t) in Equation (7) with
fθ (x) for adversarial training, which is similar to [44]. Af-
terward, we keep replacing p(t) with the temporary proba-
bility p(T ′) in following epochs t > T ′. More details of our
one-off strategy are given in the supplementary material.

4. Experiments
In this section, we conduct extensive experiments to

demonstrate the effectiveness and generalizability of our
method. We first introduce our experimental settings, in-
cluding datasets and implementation details. Next, we com-
pare our method with state-of-the-art adversarial training
methods in various settings, demonstrating the superiority
of our inverse adversarial training. Moreover, we show that
our method can be combined with single-step adversarial
training methods, which meaningfully increases their per-
formance at only a small additional cost.

4.1. Experimental Setups

Datasets. We conduct experiments on three standard
datasets: CIFAR-10, CIFAR-100 [20], and SVHN [30]. De-
tails of datasets are provided in the supplementary material.
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Algorithm 1 Universal Inverse Adversarial Training (UIAT)

Input: DNN classifier fθ; dataset D = {(x, y)} with C classes; batch size m; learning rate τ ; radius for adversaries ϵ
and inverse adversaries ϵ′; step size α′ for inverse adversary generation; weighting factors λ; momentum factor γ.

1: Randomly initialize the network parameter θ. Initialize zc ∼ 0.001 · N (0, 1), for 1 ≤ c ≤ C
2: while not at end of training do
3: for each mini-batch {(xj , yj)}mj=1 do
4: Initialize lcInv ← 0, for 1 ≤ c ≤ C
5: for j = 1, 2, . . . ,m do
6: x̂j ← PGDATTACK(xj , yj , fθ,LCE) ▷ Find PGD adversarial example
7: x̌j ← xj + zyj

8: l
yj

Inv ← l
yj

Inv + LInv(x̌j , yj)
9: end for

10: for c = 1, . . . , C do
11: zc ← Π∥zc∥∞≤ϵ′ (zc − α′ · sign (∇zc l

c
Inv)) ▷ Update class-specific inverse adversaries

12: end for
13: Obtain p

(t)
j , for 1 ≤ j ≤ m, by Eq. (8) according to current epoch number t ▷ Inverse adversary momentum

14: θ ← θ − τ · ∇θ

{∑
j LCE (fθ (x̂j) , yj) + λ · LKL

(
p
(t)
j ∥fθ (x̂j)

)}
15: end for
16: end while
17: return Inverse adversarially trained model fθ.

Table 1. Comparison of our methods (UIAT) using ResNet-18 trained on CIFAR-10, CIFAR-100, and SVHN with other adversarial training
methods. The ℓ∞-norm adversarial perturbations are restricted in ϵ = 8/255. We report both natural accuracy (%) and robust accuracy
(%). The best result in each column is in bold.

Method CIFAR-10 CIFAR-100 SVHN

Natural PGD CW AA Natural PGD CW AA Natural PGD CW AA

SAT [25] 83.80 51.40 50.17 47.68 57.39 28.36 26.29 23.18 92.46 50.55 50.40 46.07
TRADES [53] 82.45 52.21 50.29 48.88 54.36 27.49 24.19 23.14 90.63 58.10 55.13 52.62

MART [44] 82.20 53.94 50.43 48.04 54.78 28.79 26.15 24.58 89.88 58.48 52.48 48.44
HAT [32] 84.86 52.04 50.33 48.85 58.73 27.92 24.60 23.34 92.06 57.35 54.77 52.06

UIAT 85.01 54.63 51.10 49.11 59.55 30.81 28.05 25.73 93.28 58.18 55.49 52.45
UIAT (One-off) 84.98 54.79 51.29 49.05 60.01 30.49 27.56 25.45 93.14 58.30 55.45 52.49

Implementation details. Following the setting on Ro-
bustBench [5], we adopt ResNet-18 [12], Pre-activation
ResNet-18 (PRN-18) [13], and Wide-ResNet-28-10 (WRN-
28-10) [51] as the target networks. For training without ex-
tra data, we set the batch size to 128 and the total number
of epochs to 100 for CIFAR10/100 [20], and 30 for SVHN
[30]. We adopt Stochastic Gradient Descent (SGD) opti-
mizer with Nesterov momentum factor of 0.9 [29], cyclic
learning rate schedule [41] with a maximum learning rate
of 0.1, and a weight decay factor of 5×10−4. We adopt the
PGD method [25] on the cross-entropy loss with 10 itera-
tion steps for adversary generation during the training stage.
The maximum ℓ∞-norm of adversarial perturbation is ϵ =
8/255, while the step size α is set as 2/255 for CIFAR-
10/100 and 1/255 for SVHN following common practices.
We set the inverse adversary radius as ϵ

′
= 4/255. We

adopt λ = 3.5 for CIFAR10/100 and λ = 3.0 for SVHN.
The regularization hyper-parameters β and γ are set to 1.0
and 0.9 in Equation (4) and Equation (8). More experimen-
tal details are included in the supplementary material.

4.2. Results
Performance of UIAT. We compare our proposed UIAT
method with state-of-the-art adversarial training schemes,
as shown in Table 1. We report the accuracies on natural ex-
amples as well as adversarial examples obtained using three
strong adversarial attacks: PGD [25] with 20 steps (step size
α = 2/255), CW [4], and Auto Attack (AA) [6] for a rig-
orous robustness evaluation. Note that AA is a reliable and
powerful ensemble attack that contains three types of white-
box attack as well as a strong black-box one. Not only does
our method enhance robust accuracy on these three datasets,
but it also achieves a better clean accuracy, hence a smaller
robustness gap. For CIFAR-100, our method significantly
boosts the AA robust accuracy by nearly 2% whilst im-
proving the natural accuracy. Our superior performance on
CIFAR-100 also represents the generalizability of UIAT on
a more complicated dataset with more classes. In addition,
we demonstrate that our UIAT with one-off inverse adver-
sary generation can also obtain a similar performance as the
standard version of UIAT. In other words, the freezing of
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Table 2. Time cost comparison of adversarial training methods on
CIFAR-10 dataset with different network architectures. We report
the average training time (min/epoch) of these methods.

Method ResNet-18 WRN-28 WRN-34
Natural Training 0.35 0.93 1.22
TRADES [53] 2.57 14.13 16.60

HAT [32] 4.02 16.88 18.95
IAT 2.83 15.37 17.82

UIAT 2.20 11.90 14.77
UIAT (One-off) 1.96 10.74 13.36

Table 3. Adversarial robustness results under different attack con-
figurations using ResNet-18 on CIFAR-10. We present natural ac-
curacy and (Auto-Attack) robust accuracy of different attack radii.

ϵ Method Natural Robust

10/255

TRADES [53] 82.28 38.55
HAT [32] 81.94 40.12

UIAT 82.79 40.61
UIAT (One-off) 82.76 41.16

12/255

TRADES [53] 79.37 31.84
HAT [32] 79.43 33.28

UIAT 79.50 34.32
UIAT (One-off) 79.30 34.61

16/255

TRADES [53] 74.89 18.70
HAT [32] 74.45 19.42

UIAT 74.29 21.82
UIAT (One-off) 74.86 21.96

well-learned class-specific perturbations can still facilitate
the distribution alignment for robustness improvement.

Computational cost comparison. In addition to outper-
forming state-of-the-art adversarial training methods on
natural accuracy and robustness, our UIAT method also has
a faster training speed. We compare the average training
time (min/epoch) of our methods against other adversar-
ial training methods, as presented in Table 2. For a fair
comparison, we conduct all the training experiments on a
single NVIDIA Tesla A100 GPU with the same batch size
m = 128 on the CIFAR-10 dataset using three different
network architectures. It can be seen that our one-off UIAT
method has an additional 51% time efficiency gain with re-
spect to the state-of-the-art adversarial training method, i.e.,
HAT [32] with ResNet-18. Note that the major time gap be-
tween IAT and UIAT comes from the difference in iteration
times. IAT requires an instance-wise iterative inverse adver-
sary generation manner, whilst UIAT only performs a single
gradient descent step on each example.

Adversarial training on large ϵ. Besides the frequently-
used attack configuration, we also train ResNet-18 with our
UIAT method for larger ϵ. Specifically, we report the ro-
bustness results of the one-off version of the UIAT method
on CIFAR-10 under different ℓ∞-norm radii: 10/255;

Table 4. Comparison of adversarial training methods using differ-
ent networks on CIFAR-10/CIFAR-100 with extra training data.
We report natural accuracy and (Auto-Attack) robust accuracy.

Dataset Architecture Method Natural Robust

CIFAR-10

PRN-18

Rebuffi et al. [33] 83.53 56.66
HAT [32] 86.86 57.09

UIAT 87.34 58.46
UIAT (One-off) 87.10 58.15

WRN-28-10

Rebuffi et al. [33] 85.97 60.73
HAT [32] 88.16 60.97

UIAT 88.93 61.32
UIAT (One-off) 88.50 61.40

CIFAR-100

PRN-18
Rebuffi et al. [33] 56.87 28.50

HAT [32] 61.50 28.88
UIAT 62.20 29.40

UIAT (One-off) 61.54 28.90

WRN-28-10
Rebuffi et al. [33] 59.18 30.81

HAT [32] 62.21 31.16
UIAT 63.26 31.18

UIAT (One-off) 62.45 31.43

12/255; 16/255. As shown in Table 3, we observe that our
UIAT method can achieve better robustness results while
preserving a comparable natural accuracy as HAT [32]
when facing stronger adversarial attacks.

Adversarial training with additional data. Following
the experimental settings of [11, 32, 33], we also conduct
several experiments to measure the generalizability of our
method with extra data. Particularly, we present the ro-
bustness results using different model architectures trained
on CIFAR-10 and CIFAR-100 with 1M synthetic images
produced by the Denoising Diffusion Probabilistic Model
(DDPM) [16] as the additional data. We compare our UIAT
method and its one-off variant version with state-of-the-
art approaches in Table 4. Note that we do not apply the
CutMix operation [50] following [32]. As observed, our
method obtains better robust accuracy while maintaining
the same or even better natural accuracy.

4.3. Single-Step Adversarial Training

The computational cost for multi-step adversarial train-
ing is expensive, which has become prohibitive to adversar-
ially train on larger models/datasets. In comparison, single-
step methods try to approximate the most harmful adversar-
ial examples with a single gradient ascent step [1, 8, 19, 47]
during training. Nevertheless, there still exists a consider-
able robustness gap between single-step adversarial training
methods and multi-step ones.

In this section, we combine the one-off version of our
UIAT method with state-of-the-art single-step adversarial
training approaches to demonstrate the generalizability and
the low time cost of our methods. For time efficiency, we
set β = 0 for Equation (4), which means that we only use
cross-entropy loss for inverse adversary generation. More
details about how to combine our UIAT method with single-
step adversarial training can be found in the supplementary
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Table 5. Robustness results of single-step adversarial training methods combined with our one-off UIAT approach on CIFAR-10. We
conduct single-step adversarial training with various adversarial radii for comprehensive evaluation. We present the natural accuracy,
(Auto-Attack) robust accuracy, and the average time for training an epoch.

Method ϵ = 6/255 ϵ = 8/255 ϵ = 10/255 Time(s)
Natural Robust Natural Robust Natural Robust

N-FGSM [8] 84.66 56.36 80.29 48.24 75.59 41.54 48.4
N-FGSM + UIAT 85.53 58.21 81.85 49.84 77.85 42.77 57.3

RS-FGSM [47] 86.72 55.28 84.07 46.15 86.32 0.00 32.4
RS-FGSM + UIAT 87.60 55.85 85.18 46.31 88.29 0.00 40.7

GradAlign [1] 83.85 55.25 80.17 46.57 76.46 39.85 96.0
GradAlign + UIAT 85.52 55.46 82.31 46.74 79.11 39.56 107.8

Table 6. Ablation study using ResNet-18 of three component mod-
ules of UIAT for adversarially robust accuracy (%) on CIFAR-10.

UAG FR IAM Natural PGD-20 AA

1 83.97 53.98 48.33
2 ✓ 85.19 53.56 47.63
3 ✓ ✓ 85.11 54.13 48.47
4 ✓ ✓ 84.85 54.29 48.83

5 ✓ ✓ ✓ 85.01 54.63 49.11
UAG: Universal Adversary Generation.
FR: Feature-level Regularization.
IAM: Inverse Adversary Momentum.

material. As shown in Table 5, we can observe that UIAT
can serve as a plug-and-play component for boosting both
natural and robust accuracy. Moreover, we show that our
method can effectively adapt to various adversarial training
radii for better performance. The additional computational
cost for the UIAT method is also acceptable. For instance,
in the case of N-FGSM [8], our method can further improve
nearly 1.5% for both natural accuracy and adversarially ro-
bust accuracy (ϵ = 8/255) with only about an additional 9
seconds time cost for each training epoch.

5. Analysis

5.1. Ablation Study

In this section, we thoroughly investigate the contribu-
tions of three components in our UIAT method: 1) Uni-
versal Adversary Generation (UAG) in Equation (6), 2)
Feature-level Regularization (FR) in Equation (4), and 3)
Inverse Adversary Momentum (IAM) in Equation (8). We
report both natural accuracy and robust accuracy on CIFAR-
10 using ResNet-18 during the ablation study in Table 6.

Our baseline method (The first row in Table 6) is the
instance-wise Inverse Adversarial Training (IAT), which
has already achieved a competitive robustness performance
compared to other methods. It can be seen that the univer-
sal inverse adversary generation can effectively improve the
performance on natural accuracy, while the robust accuracy
slightly drops. Both the feature-level regularization and the
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Figure 2. The learning curves show the natural and robust accuracy
(under PGD-20) on the training/test set of CIFAR-10. Note that (a)
represents PGD-AT [25], while (b) is our one-off UIAT method.

inverse adversarial momentum contribute to enhancing the
adversarially robust accuracy. We can obtain our UIAT
method by integrating these three components, which can
effectively improve natural accuracy and robustness.

5.2. Robust Overfitting

Recent research has demonstrated that adversarial train-
ing methods primarily suffer from the robust overfitting is-
sue [34], resulting in the robustness plunge. The robust
overfitting induces an irreversible robustness drop (on the
test set) after adversarial training for several epochs, espe-
cially after the learning rate decay operation. We illustrate
the learning curves of standard adversarial training and our
one-off version of UIAT in Figure 2.

For better visualization, we increase the number of train-
ing epochs to 200. We can easily observe that the PGD-
based Adversarial Training (PGD-AT) [25] severely suffers
from the robust overfitting issue. In comparison, our one-
off UIAT method can largely mitigate the robust overfit-
ting issue, which means our method does not suffer from
a sharp robustness reduction during adversarial training. It
can potentially be explained by the observation made in [9],
which demonstrates that the robust overfitting comes from
the large-loss data during adversarial training. However,
our UIAT method implicitly regularizes the large-loss data,
a.k.a., misclassified examples to obtain the high-likelihood
region of their true classes, which can thus mitigate the ro-
bust overfitting problem. Furthermore, our inverse adver-
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Figure 3. Parameter sensitivity of our one-off UIAT method by
tuning the hyper-parameter λ. We report both natural accuracy
and (Auto-Attack) robust accuracy.
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(b) UIAT (One-off)
Figure 4. Average accuracy under different attack strengths (per-
formed by PGD-20). Note that the experimental settings are the
same as Figure 1. We further annotate the robust accuracy gap be-
tween two groups under the attack strength ϵ = 8/255.

sary momentum can also stabilize the training stage by mit-
igating the oscillations of noisy predictions.

5.3. Trade-off
The trade-off between natural accuracy and robust accu-

racy during adversarial training has been widely explored
[32, 53]. We study the effect of hyper-parameter λ, which
can further induce a trade-off between robustness and natu-
ral accuracy, as shown in Figure 3. We can observe that the
robust accuracy improves when λ increases, while the natu-
ral accuracy decreases. Oppositely, the natural accuracy im-
proves when we lower the λ value. Note that our trade-off
is different from [53] that balances the importance of cross-
entropy of natural examples and KL divergence, whilst our
UIAT method optimizes the cross-entropy of adversarial ex-
amples and the regularized distribution matching. We also
provide an analysis of the effect of other hyper-parameters
in the supplementary material.

5.4. Why is Our Method Effective?
In this section, we mainly discuss the underlying reason

why our method is effective. In other words, we would like
to explore what we have gained from inverse adversarial
training. Similar to the setting in Figure 1, we also pro-
vide the average accuracy under different attack strengths
of our UIAT method compared to TRADES [53], as shown
in Figure 4. It can be seen that our method can bridge the ro-
bust accuracy gap more effectively compared to TRADES.
Precisely, our UIAT can effectively enhance the robust ac-
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Figure 5. Difference of Auto-Attack (AA) robust accuracy under
different attack strengths between our UIAT (One-off) method and
TRADES [53]. The red lines are used for reference.

curacy of the bottom 50% group. In addition, we observe
that the inverse adversarial examples of UIAT are prone to
be classified correctly, which means that our robust model
is easily affected by inverse adversaries. On the contrary,
our robust model is less susceptible to adversarial examples
compared to TRADES.

Furthermore, we present the comparison of Auto-Attack
(AA) robust accuracy under different attack strengths be-
tween our UIAT (One-off) method and TRADES [53], as
shown in Figure 5. It can be easily observed that our
method outperforms TRADES at weak attack strengths
(ϵ ≤ 8/255). However, TRADES obtains better robustness
than our method when confronted with strong adversarial
perturbations (ϵ > 8/255). In other words, our method sac-
rifices the adversarial robustness against larger visual per-
turbations to enhance the robustness against smaller ones.
This is also in line with the definition and intuition that ad-
versarial perturbations are visually undetectable. Recall that
we can also obtain better robustness against larger perturba-
tions when training with larger ϵ as discussed in Section 4.2.

6. Conclusion
In this paper, we explore the unnecessary or even harm-

ful alignment between misclassified examples and propose
a new adversarial training paradigm by incorporating the
inverse adversarial examples. Furthermore, we design a
class-specific universal inverse adversary generation strat-
egy to mitigate the individual bias of different examples
and accelerate our method. Extensive experiments demon-
strate that our method can efficiently obtain better robust-
ness results without compromising much natural accuracy
in diverse settings on larger datasets. Moreover, we can
obtain a trade-off between natural accuracy and adversar-
ial robustness to adapt to various scenarios. Our method
can also be combined with state-of-the-art single-step ad-
versarial training methods for robustness enhancement at a
low cost. Finally, we analyze the reason why our method is
effective and verify that our method can potentially bridge
the accuracy gap between high-accuracy examples and low-
accuracy examples, thus benefiting the robustness.
Acknowledgments. This project is supported by NSFC
(U22A2095, 62072482, 61573387).
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