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Abstract

Vision and Language (VL) models have demonstrated re-
markable zero-shot performance in a variety of tasks. How-
ever, some aspects of complex language understanding still
remain a challenge. We introduce the collective notion
of Structured Vision & Language Concepts (SVLC) which
includes object attributes, relations, and states which are
present in the text and visible in the image. Recent stud-
ies have shown that even the best VL models struggle with
SVLC. A possible way of fixing this issue is by collecting
dedicated datasets for teaching each SVLC type, yet this
might be expensive and time-consuming. Instead, we pro-
pose a more elegant data-driven approach for enhancing
VL models’ understanding of SVLCs that makes more ef-
fective use of existing VL pre-training datasets and does
not require any additional data. While automatic under-
standing of image structure still remains largely unsolved,
language structure is much better modeled and understood,
allowing for its effective utilization in teaching VL models.
In this paper, we propose various techniques based on lan-
guage structure understanding that can be used to manipu-
late the textual part of off-the-shelf paired VL datasets. VL
models trained with the updated data exhibit a significant
improvement of up to 15% in their SVLC understanding
with only a mild degradation in their zero-shot capabilities
both when training from scratch or fine-tuning a pre-trained
model. Our code and pretrained models are available at:
https://github.com/SivanDoveh/TSVLC

1. Introduction
Recent Vision & Language (VL) models [19, 31, 43, 44,

47, 57] achieve excellent zero-shot performance with re-
spect to various computer-vision tasks such as detection,
classification, segmentation, etc. However, recent stud-
ies [68, 82] have demonstrated that even the strongest VL
models struggle with the compositional understanding of
some basic Structured VL Concepts (SVLC) such as ob-
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Figure 1. Teaching language structure to VL models. (a) Stan-
dard contrastive text-to-image loss (e.g. CLIP [57]) tends to under-
emphasize SVLC content of the text, likely due to the random na-
ture of the training batches; (b) We generate modified versions of
corresponding texts and use them to add losses to explicitly teach
language structure (SVLC) to VL models.

ject attributes, inter-object relations, transitive actions, ob-
ject states and more. Collecting specialized large scale data
to teach VL models these missing ‘skills’ is impractical, as
finding specialized text-image pairs for each kind and pos-
sible value of the different attributes, relations, or states, is
both difficult and expensive.

Another important challenge in training VL models with
new concepts is catastrophic forgetting, which is a com-
mon property to all neural models [7, 34, 37, 49, 58] and
has been explored for VL models in a recent concurrent
work [14]. Large VL models such as CLIP [57] and Cy-
CLIP [19] have exhibited excellent zero-shot learning abil-
ities in many tasks. Therefore, even given a large dataset
with new concepts, it is important not to lose these abilities
when performing the adaptation to the new data.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Teaching structured image understanding to VL models via structured textual data manipulation harnessing the power of language
modeling. (1) Generating Rule-Based negative texts (Sec. 3.1.1); (2) Generating negatives using Large Language Model (LLM) unmasking
(Sec. 3.1.2); (3) Generating analogies (positives) via LLM prompting (Sec. 3.1.3).

In this paper, we propose a way to leverage existing (off-
the-shelf) VL pre-training data sources in order to improve
the SVLC understanding skills of a given model, while at
the same time maintaining its zero-shot object recognition
accuracy. Naturally, succeeding in this goal would lead to
potential improvement w.r.t. SVLC understanding in a wide
variety of downstream tasks building upon pre-trained VL
models, such as zeros-shot detection, segmentation, image
generation, and many more.

Recent research [68, 82] has shown that VL models ex-
hibit an ‘object bias’ partially due to the contrastive text-
to-image loss used in their pre-training. For example, the
popular CLIP-loss [57] is computed over a random batch
of text-image pairs sampled from a large-scale and diverse
VL dataset with the chance of two images in the same batch
containing the same set of objects being very low. For such
a loss, representing just a ’bag of objects’ in each image or
text is sufficient for matching the corresponding pairs. In-
tuitively, this leads to the ‘object bias’ where SVLCs like
attributes, states, and relations are being underrepresented
(e.g. having a much smaller amplitude in the resulting
feature superposition), consequently causing the aforemen-
tioned issues with SVLC understanding.

Based on this intuition, we propose a simple data-driven
technique that harnesses existing language parsing and
modeling capabilities to enhance the importance of SVLCs
in the VL model training losses. For each text in the train-
ing batch, we automatically generate alternative negative
or positive text by manipulating its content to be opposite
or equivalent to the original text. Using the newly gener-
ated texts, we explicitly teach SVLC to the model via ad-
ditional losses (see Fig. 1) that enforce differentiating be-

tween different (original and generated) SVLC texts and are
no longer satisfiable by the ’bag of objects’ representation.

Towards this end, we propose several techniques for im-
plementing this approach, including (i) rule-based priors
based on classical NLP parsing and word substitution vo-
cabulary according to attribute/relation type; (ii) prompting
a Large Language Model (LLM) (e.g. [53]) for analogous
text; (iii) generating different meaning (negative) alterna-
tives by LLM-based unmasking of parsed text entities of
different kinds; (iv) combinations of these methods.

We demonstrate that all these techniques can lead to sig-
nificant improvements of up to 15% percent when measur-
ing the VL models’ SVLC understanding. We verify this on
5 datasets: VG [39], HAKE [48], VAW [54], SWIG [55],
and all combined, using the protocol recently proposed in
VL-Checklist [82]. In addition, we show that the resulting
VL models largely preserve their zero-shot object recogni-
tion performance. For the latter, we also propose a variant of
efficient LLM fine-tuning using low-rank residual adapters
(LoRA) [27] adjusted to VL models. Finally, we show
that our framework allows better harnessing of the standard
available VL data, e.g. CC3M [62] and LAION [61]. This
is exhibited by the aforementioned gains, both in new VL
models trained from scratch, as well as in models fine-tuned
using strong available VL models such as CLIP [57] and
CyCLIP [19].

To summarize, we offer the following contributions:
(i) We propose a data-driven approach for better harness-
ing the standard available VL data to improve VL models’
SVLC understanding skills, such as understanding object
attributes, inter-object relations, transitive actions, object
states, and more, without sacrificing zero-shot object recog-
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VL-Checklist 21 Zero-Shot
Dataset Model Pre Arch Object Attribute Relation Tasks Average

CC3M

CLIP [57] ✓ Vit-B/32 81.58% 67.60% 63.05% 56.37% (a)

CLIP + LoRA ✓ Vit-B/32 80.93% (-0.66%) 66.28% (-1.32%) 55.52% (-7.53%) 56.41% (+0.04%)

CLIP + Ours RB Neg ✓ Vit-B/32 83.89% (+2.30%) 73.35% (+5.75%) 75.33% (+12.28%) 54.32% (-2.05%)

CLIP + Ours LLM Neg ✓ Vit-B/32 84.44% (+2.85%) 71.63% (+4.03%) 74.82% (+11.77%) 55.60% (-0.77%)

CLIP + Ours RB+LLM Negs ✓ Vit-B/32 85.09% (+3.50%) 73.90% (+6.30%) 78.72% (+15.67%) 54.66% (-1.71%)

CLIP + Ours Combined ✓ Vit-B/32 85.00% (+3.42%) 71.97% (+4.37%) 68.95% (+5.90%) 54.77% (-1.60%)

CLIP [57] ✓ Vit-B/16 82.91% 67.32% 61.80% 60.00% (b)

CLIP + Ours RB+LLM Negs ✓ Vit-B/16 85.82% (+2.91%) 73.92% (+6.6%) 77.40% (+15.6%) 59.37% (-0.63%)

CLIP + Ours Combined ✓ Vit-B/16 84.75% (+1.84%) 71.18% (+3.86%) 69.68% (+7.88%) 59.87% (-0.13%)

CLIP ✗ Vit-B/32 71.17% 57.86% 45.20% 21.96% (c)
CLIP + Ours Combined ✗ Vit-B/32 71.79% (+0.62%) 63.29% (+5.43%) 58.13% (+12.93%) 20.96% (-1.00%)

CLIP [57] ✗ Vit-B/16 64.01% 54.27% 41.57% 15.49% (d)

CLIP + Ours RB+LLM Negs ✗ Vit-B/16 73.11% (+9.1%) 65.32% (+11.05) 71.93% (+30.36) 20.78% (+5.29%)

CLIP + Ours Combined ✗ Vit-B/16 72.99% (+8.98%) 63.01% (+8.74%) 62.95% (+21.38) 20.61% (+5.12%)

CyCLIP [19] ✓ R50 73.49% 59.33% 53.83% 26.00% (e)

CyCLIP + LoRA ✓ R50 73.30% (-0.19%) 58.89% (-0.44%) 53.03% (-0.80%) 26.30% (+0.30%)

CyCLIP + Ours Combined ✓ R50 74.20% (+0.71%) 63.52% (+4.20%) 59.47% (+5.63%) 26.31% (+0.31%)

CyCLIP ✗ R50 69.41% 57.59% 53.70% 21.02% (f)
CyCLIP + Ours Combined ✗ R50 71.50% (+2.09%) 65.69% (+8.10%) 70.20% (+16.50%) 20.44% (-0.42%)

LAION
CLIP [57] ✓ Vit-B/32 81.58% 67.6% 63.05% 56.37% (g)

CLIP + LoRA ✓ Vit-B/32 82.18% (+0.60%) 68.48% (+0.88%) 62.72% (-0.33%) 57.15% (+0.78%)

CLIP + Ours Combined ✓ Vit-B/32 82.54% (+0.96%) 69.64% (+2.04%) 66.05% (+3.00%) 56.71% (+0.34%)

Table 1. VL-Checklist and Zero-Shot classification evaluation (ImageNet + 20 datasets). Finetuned models (for 5 epochs as detailed
in Sec. 3.3, starting from officially released CLIP [57] and CyCLIP [19] weights) are marked with ✓in the Pre-trained (Pre) column, while
models trained from scratch (for 10 epochs) are marked with ✗. The gains and losses of our approach (+Ours) are in color and are computed
w.r.t. to corresponding baselines in each section. CLIP/CyCLIP + LoRA indicate finetuning in the same way and on the same data, but
without our approach. Finetuning without LoRA on the same data yields significantly worse performance in all metrics. Sections are
separated by bold horizontal lines. (a) CC3M fine-tuning - CLIP - Vit-B/32: we significantly improve the SVLC understanding, observing
only small ZS performance drops, 0.77%; (b) CC3M fine-tuning - CLIP - Vit-B/16: we can observe similar improvements as in (a), with an
even smaller impact on ZS performance; (c) CC3M from scratch - CLIP - Vit-B/32: we significantly improve SVLC understanding with only
a small (1%) decrease in ZS performance; (d) CC3M from scratch - CLIP - Vit-B/16: compared to (c), even greater SVLC understanding
improvement is observed (up to 30.36%), at no cost in ZS performance, and even improvement of over 5%; (e) CC3M fine-tuning -
CyCLIP: we use CyCLIP original code (with LoRA integration) and losses, as can be seen - adding our techniques improves CyCLIP
SVLC performance considerably without sacrificing ZS performance; (f) CC3M from scratch - CyCLIP: observing even largergains in
SVLC understanding compared to (e) (up to 16.5%), with small reduction in ZS performance of 0.42%; (g) LAION fine-tuning - CLIP -
Vit-B/32: we improve SVLC understanding without any decrease in ZS performance.

nition performance; (ii) More specifically, we propose to
leverage the well-understood and well-modeled structure of
language, through classical NLP parsing and/or use of the
modern pre-trained LLMs, for manipulating the text part
of the standard VL paired datasets to regularize VL train-
ing and teach SVLC understanding to VL models. (iii) We
further propose an adaptation of efficient LLM fine-tuning
technique of [27] for fine-tuning VL models, allowing for
only minimal reduction in zero-shot object recognition per-
formance after fine-tuning, while still obtaining the afore-
mentioned SVLC understanding gains. (iv) Empirically, for

the popular CLIP [57] and its most recent extension Cy-
CLIP [19], we demonstrate SVLC understanding average
improvements of up to 13% when training from scratch, and
15% when fine-tuning from a pretrained model.

2. Related Work
Vision-language (VL) Models. (e.g., CLIP [57] and
ALIGN [31]) show significant advances in diverse zero-shot
downstream tasks. They are pre-trained using contrastive
image-text alignment on a large-scale noisy dataset of text-
image pairs collected from the web. Several methods [9,46,
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65] additionally employ off-the-shelf object detectors to ex-
tract region features. In order to relax this limitation, some
methods [31,36,43,76] propose to use cross-attention layers
with self-supervised learning objectives including image-
text matching and masked/autoregressive language model-
ing. BLIP [43] generates synthetic captions from the lan-
guage modeling head and filters noisy captions based on the
image-text matching score. Recently, there have been at-
tempts to learn finer-level alignment and relations between
image and text [15, 17, 19, 47, 77]. FILIP proposes fine-
grained contrastive learning to maximize the token-wise
similarity between visual and textual tokens. CyClip [19]
imposes additional geometrical consistency on the image
and text embeddings. DeCLIP [47] introduces additional
positives from the nearest neighbors. While these methods
improve image-text retrieval tasks on the existing bench-
marks, such as ImageNet [60] and MS-COCO [50], recent
studies such as VL-CheckList [83] and the Winoground
Challenge [68], show that these models cannot distinguish
fine-grained language details or understand structured con-
cepts (SVLCs) such as object attributes and relations. In
this paper, we focus on the latter and propose orthogonal
data-driven techniques that have the potential to improve
the SVLC understanding for all VL models.

Learning Structured Representations. A full understand-
ing of the semantics of rich visual scenes requires the abil-
ity to understand visual concepts, such as detecting indi-
vidual entities and reasoning about their interactions and
attributes. Structured representations have played an im-
portant role in achieving this goal, having been successfully
applied to a wide range of computer vision applications: vi-
sion and language [10, 45, 46, 66], scene graphs [25, 29, 38,
56, 75], relational reasoning [4, 5], human-object interac-
tions [16,33,74], action recognition [1,2,23,24,30,52,70],
and even image & video generation from graphs [3, 22, 32].
However, most of these works rely on detailed, manually
curated, supervision, often involving annotation of location
information and structural details, which are very expensive
to collect and scale, resulting in limited-size or synthetic
data sources for training. In contrast, in our work, we fo-
cus on methods for teaching SVLC understanding to large
VL models while only leveraging the available large-scale
noisy VL data sources collected from the web without any
use of expensive manual curation.

Data Augmentation. Augmentation plays a key role
in many computer vision applications [8, 63]. Sev-
eral advanced image augmentation methods (CutMix [78],
mixup [79], AutoAugment [11], RandAugment [12], etc)
have been proposed and greatly improved computer vi-
sion task performance. Text augmentation has been tackled
trough back-translation [73], word and frame-semantic em-
bedding augmentations [69], word replacement [81], ran-
dom word insertion/deletion/swap [71], or using a text gen-

erative model [41] in diverse NLP applications. In VL tasks,
previous work explores machine translation between differ-
ent languages [6, 35], generating synthetic captions [43],
adversarial/synthetic data augmentation for VQA [59, 67]
or mixup for VL [20]. We focus on leveraging the well-
understood and modeled language structure for manipulat-
ing text in a way that explicitly targets teaching SVLC se-
mantics to VL models. To the best of our knowledge, this
has not been attempted before.

3. Method
In this section, we discuss the proposed framework for

improving SVLC performance of VL models using already
available VL data. Sec. 3.1 and Sec. 3.2 present our main
techniques for teaching SVLC to VL models. These ap-
proaches can be effectively applied both for fine-tuning ex-
isting strong VL Pre-trained models, as well as for training
VL models from scratch. In both cases, they exhibit sig-
nificantly improved SVLC performance as demonstrated in
our experiments in Sec. 4. Sec. 3.3 presents our strategy for
fine-tuning VL models on SVLC-enhanced VL data, while
at the same time being parameter efficient and significantly
reducing forgetting, thus, maintaining the VL model Zero-
Shot (ZS) performance. Qualitative examples showing im-
provements attained by our proposed approach, as well as
some examples of failure cases, are provided in the supple-
mentary material.

3.1. Teaching SVLC Using NLP and LLMs
In this section, we present several ways in which the data

of existing VL pre-training paired datasets can be enhanced
to emphasize SVLC in the texts, and teaching them to the
VL model. We propose two kinds of data enhancements
- generating negative and positive text alternatives. When
generating negative examples, only one word of the sen-
tence is changed such that the semantic meaning of the sen-
tence changes. We propose two methods for the generation
of the negatives: (i) rule-based (Sec. 3.1.1); and (ii) LLM-
based (Sec. 3.1.2). Positive alternatives are generated as
sentences with semantically similar meanings, but differ-
ent wording (Sec. 3.1.3). We then present the losses which
properly take these two types of generated textual data into
account during training in Sec. 3.2.

3.1.1 Generating Rule-Based (RB) Negatives

One simple yet effective method for negative text generation
is using a collection of pre-defined language rules which
match and replace words of a specific entity type or a pat-
tern, such as color, material, size, etc. This method is es-
pecially useful when one has prior knowledge of a specific
aspect of the language that needs to be taught. For example,
if we know that our model lacks the ability to understand the
colors of objects, we can easily create a rule for detecting
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and replacing color words in the text, for generating nega-
tive text that does not correspond to its paired image. To
employ the generation of the rule-based negative, for each
taught SVLC we define a list of words belonging to its char-
acteristic. We then scan the VL data texts searching for the
words within these lists. If a word is located, we simply re-
place it with a randomly selected word from the same list to
generate a negative pair. For example, applying the color-
rule to a sentence: “A big brown dog” can lead to “A big
yellow dog”. If a text has multiple candidates of words to be
replaced, one of them is chosen randomly. We perform this
process multiple times for the full list of SVLC characteris-
tics of interest such as color, size, material, spatial relations,
etc. These generated negative texts are SVLC specific and
differ from the original text in only one word. For a detailed
description and more examples of the RB negative genera-
tion, please refer to the supplementary material.

3.1.2 LLM-based Negative Generation via Unmasking

A natural extension of rule-based negatives technique is
the generation of negatives using Large Language Models
(LLMs) unmasking. Recent LLMs are explicitly trained in
a self-supervised manner with the objective of “unmasking”
parts of the text. Given a sentence with one missing word,
models such as BERT [13], can suggest multiple words that
fit the context of the sentence. Using this useful property
of LLMs, we can therefore automatically create plausible
negative examples without the need for prior knowledge of
the SVLC characteristics of interest. In order to focus the
randomly selected masked words to be likely to belong to
SVLCs of interest, we use common NLP parsing techniques
(such as spacy [26]) to parse the sentence into its compo-
nents such as nouns, verbs, adjectives, adverbs, etc. We then
randomly choose a type of sentence part and a word belong-
ing to this part type, mask out the selected word and replace
it with one of the options suggested by the LLM’s unmask-
ing. These negative examples, when used properly in the
loss function (Eq. (3)) focus the network on the important
details that affect the SVLC understanding. As we show
in Sec. 4, this method is extremely useful and can signifi-
cantly improve the VL model’s understanding of different
SVLCs. Further details and examples of the LLM negative
generation are provided in the supplementary material.

3.1.3 Generating Text Analogies via LLM Prompting

While the goal of the negative text generation (Sec. 3.1.1
and Sec. 3.1.2) was to make minor perturbations to a given
text such that the meaning changes, the goal here is exactly
the opposite. We would like to make major changes to the
text, while still keeping the same semantic meaning. For
example “A woman standing left to a sitting cat” and “A
cat sitting to the right of a standing woman” are two very

different texts describing the exact same scene. One effec-
tive way to generate such semantically similar texts is by
prompting the foundational LLMs. Specifically, we use the
open access BLOOM [53] model. In the spirit of recently
popular in-context learning [18], we present the model with
a textual prompt with examples of semantically similar texts
(see Fig. 2). We then append the current image caption and
retrieve the BLOOMs prediction of a semantically similar
text. For a detailed description, we refer the reader to the
supplementary material.

3.2. Losses
All of our evaluated models (CLIP [57] and CyCLIP

[19]) admit a text & image pair (T, I) and are comprised of
two parts: (i) image encoder eI = EI(I); (ii) text encoder
eT = ET (T ). In this notation, the text-to-image similarity
score is therefore computed as:

S(T, I) = exp

(
τeTT eI

||eT ||2||eI ||2

)
, (1)

where τ is a learned temperature parameter.
Contrastive Loss. As most contemporary VL models, we
employ the contrastive CLIP-loss [57] as one of our losses
for each batch B.

Lcont =
∑
i

log

(
S(Ti, Ii)∑
j S(Ti, Ij)

)
+log

(
S(Ti, Ii)∑
k S(Tk, Ii)

)
.

(2)
Negatives Loss. In our ablation study in Sec. 5, we show
that for a given text Ti simply adding the corresponding
generated negative text Tneg

i to the contrastive loss Lcont is
much less effective than having a separate loss individually
attending to the similarity difference of Ti and Tneg

i w.r.t.
the image Ii corresponding to Ti. We, therefore, employ the
following negatives loss:

Lneg =
∑
i

−log

(
S(Ti, Ii)

S(Ti, Ii) + S(Tneg
i , Ii)

)
. (3)

Analogy Loss. For the generated analogy texts T sim
i pro-

duced from the text Ti which corresponds to image Ii, we
employ the combination of the two following losses:

Ltext
sim =

∑
i

−log

(
S(T sim

i , Ti)∑
j S(T sim

i , Tj)

)
, (4)

where with some abuse of notation, S(T1, T2) denotes the
exponent cosine similarity between text T1 and text T2 text-
embeddings, and:

Limg
sim =

∑
i

−log

(
S(T sim

i , Ii)∑
j S(T sim

i , Ij)

)
, (5)
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which simply corresponds to the second summand of Lcont

in Eq. (2), with replacing Ti by T sim
i .

Our final loss is, therefore:

L = Lcont + α · Lneg + β · (Ltext
sim + Limg

sim). (6)

3.3. Fine-tuning Pre-trained VL Models
Each of the ET and EI networks is comprised of a mix of

non-parametric functions and two types of parametric func-
tions: linear layers and embedding layers. Roughly, each
of those functions, F lin

k (x) and Femb
k (x) where k is layer

index, is parameterized by a weight matrix Wk so that:

F lin
k (x) = Wk · x (7)

Femb
k (x) = EMB(x;Wk) (8)

where EMB is the embedding operator assuming x is a
stream of integers and picking the respective columns of
Wk. Following the idea proposed in LoRA [27] for efficient
LLM fine-tuning using low-rank residual adapters, when
adapting a pre-trained VL model M = (ET , EI) we param-
eterize the adapted weights W∗

k of the model M∗ fine-tuned
from M as:

W∗
k = Wk +Ak · Bk (9)

where for Wk of size m× l, Ak and Bk are rank-r matrices
of sizes m×r and r×l respectively. These low-rank residual
adapters can be applied efficiently as:

F∗,lin
k (x) = F lin

k (x) +Ak · (Bk · x) (10)

F∗,emb
k (x) = Femb

k (x) +Ak · EMB(x;Bk) (11)

During the fine-tuning of M∗, we freeze all the base model
M parameters ∀k, {Wk} and only the LoRA adapters
∀k, {(Ak,Bk)} are being learned. In the above notation we
disregard possible bias terms of the linear functions, if they
are present, since we keep them frozen too.

There are several interesting things to note about the pro-
posed architecture: (i) as opposed to [64], who evaluated the
use of efficient LLM fine-tuning techniques for VL mod-
els adaptation, we add our LoRA adapters everywhere, i.e
to all layers of both the text and image encoders, and not
only to the text encoder/decoder as done in [64]; (ii) as op-
posed to [80] who attach a small side network only to the
output of the adapted model, our LoRA adapters are added
to all the parametric functions inside the model and affect
all the intermediate computations; (iii) same as noted in the
original [27] paper, at inference all the LoRA adapters can
be folded back into the original weight matrices by simple
summation, thus returning the number of total parameters
to be the same as in the original model and hence have the
same inference speed; (iv) with rank r kept low, the num-
ber of extra parameters added by all the LoRA adapters can
be very low making adaptation fast and efficient; finally,

(v) such form of fine low-rank adaptation allows for sig-
nificantly mitigating the zero-shot performance forgetting
effects as demonstrated in our results and explored in the
corresponding ablation (Sec. 5).

4. Experiments

4.1. Datasets

We train the model using common Image-Text pair
datasets, namely Conceptual Captions 3M [62] and LAION
400M [61] and test using the VL-Checklist [82] datasets,
which will be described below.
Conceptual Captions 3M (CC3M) [62] is a dataset of
three million image-text pairs automatically crawled from
the internet where image descriptions are harvested from
Alt-text attributes and then processed and filtered to create
relatively clean descriptions.
LAION 400M [61] is a very large scale image-text pair
dataset which, similarly to CC3M has been automatically
harvested from the internet. One major difference between
the two, apart from the size, is that LAION examples have
been filtered using the pretrained CLIP model, such that the
CLIP image-text similarity is high by design. Recent re-
implementations of the original CLIP paper have succsefly
used LAION 400M to reproduce similar capabilites as the
original CLIP model.

VL-Checklist [82] combines images and annotations
from the Visual Genome [39], SWiG [55], VAW [54], and
HAKE [48] datasets. It is processed such that each image is
annotated with two captions, one positive and one negative.
The positive caption originates in its source dataset and cor-
responds to the image. The negative caption is constructed
from the positive caption so that only one word, correspond-
ing to the tested SVLC of interest, is changed to negate the
SVLC (e.g., color, size, material, etc.). VL-Checklist eval-
uates three main types of VL concepts further subdivided
into 7 types of SVLCs total: (1) Object: its spatial loca-
tion and size, (2) Attribute: color, material, size, state, and
action, and (3) Relation: spatial or action relation between
two objects. In the following sections we report results on
a combined VL-Checklist dataset. The results on individ-
ual comprising datasets (Visual Genome [39], SWiG [55],
VAW [54], and HAKE [48]) are provided in the supplemen-
tary material.
Zero-Shot Classification We evaluated our method on
21 classification dataset using the Zero-Shot classification
protocol described in the ELEVATER Image Classifica-
tion Toolkit [42]. The evaluation inclueds 21 different
datasets, including common classification datasets such as
ImageNet [60], CIFAR100 [40], EuroSat [21], and others.
in Tables 1-3 we report the average results over the 21 tasks.
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VL-Checklist 21 Zero-Shot Tasks
Object Attribute Relation Average

CLIP [57] 81.58% 67.60% 63.05% 56.37%

CLIP +LoRA 80.93% (-0.66%) 66.28% (-1.32%) 55.52% (-7.53%) 56.41%(+0.04%)
w/o Neg Loss 82.27% (+0.69% ) 67.58% (-0.02% ) 55.17% (-7.88% ) 55.37% (-1.00% )
Ours RB+LLM Negs 85.09% (+3.50%) 73.90% (+6.30%) 78.72% (+15.67%) 54.66% (-1.71%))

Table 2. Ablation study - separate Negative Losses (Sec. 3.2) vs adding negatives to contrastive loss.

4.2. Implementation Details
For CLIP we use the ML-Foundation Open-CLIP repos-

itory [28] and for CyCLIP [19] we use its original code
repository, which is also based on Open-CLIP. In most ex-
periments, unless stated otherwise, we train our model for
five epochs on 4 V100 NVIDIA GPUs, with a total batch
size of 512. When starting from a pre-trained model, we
use rank 4 LoRA adapters (Sec. 3.3) and the learning rate
is set to 5E − 6. When training from scratch, for CLIP
we use the default parameters set in the open-CLIP library,
and for CyCLIP the defaults of its original implementation.
For all CLIP experiments, we use VIT/32-B as the model
architecture and ResNet-50 when training CyCLIP (follow-
ing [19]). When fine-tuning we initialize with the original
model weights released by the respective authors. In all ex-
periments involving a combination of CyCLIP [19] and our
method (in Sec. 4.4-4.5), in addition to Eq. (6) loss we also
employ all the extra losses proposed in CyCLIP [19].

4.3. Baselines
We compare our method to two strong baselines under

several configurations. The first is the CLIP [57] OpenAI
pretrained model trained on 400M image-text pairs which
achieves high ZS performance. The second is the very re-
cent CyCLIP [19] method which, similarly to us, improves
over the original CLIP loss. For a fair comparison all meth-
ods use the same network architecture and the same initial-
ization from the OpenAI pretrained model. For the CyCLIP
baseline we continue training from the pretrained initializa-
tion using LoRA and the CyCLIP losses. As CyCLIP losses
are orthogonal to ours, we also show a unified version of the
two methods (CyCLIP + Ours Combined).

4.4. Fine-tuning VL Models

In the following experiments we show the effects of fin-
tuning a pre-trained VL model using our additional data en-
hancement methods and losses. All experiments are ini-
tialized from the official OpenAI CLIP. We compare our
method to two baselines on the VL-Checklist tasks, and on
the Zero-Shot image classification task. The first baseline
is the original pretrained model without any further train-
ing. The second, is the same model with the additional
LoRA parameters, trained on CC3M (Table 1a) and LAION
(Table 1g) using the original CLIP loss function. Table 1a
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41.70
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Figure 3. CC3M fine-tuning - detailed. Detailed results of the
baselines (CLIP, CLIP+LoRA) and our models (RB+LLM Neg,
RB+LLM Negs+Pos) initialized from OpenAI pretrained CLIP
ViT-32B and fine-tuned (except CLIP) on CC3M.

shows several configurations of our method compared to the
baselines. We see that our method shows significant im-
provements on all VL-Checklist tasks reaching up to 15%
improvement. Figure 3 displays the relative gains on all
tasks of the “Attribute” and “Relation” tests. It is clear that
our gains are across all tests. These improvements come
at a price of some minor degradation to the Zero-Shot per-
formance compared to CLIP. Moreover, when fine-tuning
CLIP on the LAION dataset (Table 1g) we do not see these
degradations. In Tab. 1b we show consistent gains to ones
in Tab. 1a when finetuning with a stronger (higher ZS) Vit-
B/16 CLIP [57] pre-trained image encoder, observing an
even lower drop in ZS performance. In Tab. 1e we show
significant gains in fine-tuning CyCLIP on CC3M, compar-
ing fine-tuning before and after integrating our proposed ap-
proach, this also comes at no ZS performance cost.

4.5. Training from scratch

In these experiments, we show the advantage of integrat-
ing our approach throughout the whole training procedure.
To this end, we train from scratch on CC3M - both CLIP
and CyCLIP, either on their own, or together with our pro-
posed method integrated. Tables - Tab. 1c, Tab. 1d, and
Tab. 1f show that, similar to finetining, our method signif-
icantly improves both CLIP and CyCLIP SVLC capabili-

2663



Attribute Relation 21 Zero-Shot Tasks
Method Color Material Size State Action Action Spatial Average

Ours Pos 72.35% 69.25% 69.80% 59.35% 66.08% 70.97% 39.20% 55.37%
Ours RB Neg 78.45% 83.20% 69.50% 65.95% 69.66% 75.97% 74.70% 54.66%
Ours LLM Neg 76.00% 79.70% 72.75% 61.35% 68.36% 77.23% 72.40% 55.05%
Ours RB+LLM Negs 79.25% 84.25% 72.15% 64.05% 69.82% 79.03% 78.40% 54.66%%
Ours Combined 77.45% 77.35% 73.35% 62.30% 69.39% 74.70% 63.20% 54.77%%

Table 3. Ablation study - component analysis. Detailed evaluation on Attribute & Relation SVLCs.

ties, while still keeping similar ZS performance. Figure 4
shows the detailed parsing of the “Atribute” and “Relation”
tests with consistent gains across the specific tasks. These
findings suggest that had we trained our method for many
epochs on a large dataset, such as the full LAION-9B, we
would reach similar ZS performance while greatly enhanc-
ing the SVLC performance of the model.

5. Ablations
In this section we will examine several aspects and com-

ponents of our proposed methods.

5.1. Negative Losses
Section 3.2 details our additional loss functions which

utilize our generated texts. Specifically, Eq. (3) describes
the loss which contrasts a given example only with its gen-
erated negatives. Table 2 clearly shows the importance of
this loss as opposed to simply adding the negative examples
to the original contrastive loss (Eq. (2)). Without explic-
itly forcing the network to attend to the small changes in
the text (Eq. (3)), the generated negative examples, when
inserted only to the contrastive loss (Eq. (2)) do not provide
the desired gains over the baseline.

5.2. Component analysis
In Section 3 we describe several components of our pro-

posed method. Specifically we present our RB negative
generation (Sec. 3.1.1), our LLM-based negative genera-
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Figure 4. CC3M train from scratch - detailed. Detailed results
of the baseline CLIP and our models (RB+LLM Neg, RB+LLM
Negs+Pos), all CLIP ViT-32B, trained from scratch on CC3M.

tion (Sec. 3.1.2), and our LLM-based analogy generation,
refered to here as “Pos” (Sec. 3.1.3). Tab. 3 provides a de-
tailed analysis and comparison of the contribution of each
component to the final result. Through this analysis we see
two contradicting forces between the SVLC capabilities and
the original Zero-Shot performance. We can see that each
negative generation method plays a crucial role in some of
the tasks while the use of both is usually the best performing
option. On the other hand, the LLM-based analogy genera-
tion stabilizes the Zero-Shot performance and mitigates the
drop with respect to the baseline. The joint version of all
components (“Ours Combined”) exhibits a good trade-off
between the two contradicting forces.

6. Conclusions
We have presented a data-driven technique for enhanc-

ing the performance of VL models in the important task
of SVLC understanding without sacrificing their impressive
ZS object recognition capabilities. Our proposed method at-
tains significant gains in multiple experiments on a variety
of base VL models and datasets. It builds upon the model-
ing strength and knowledge of language structure to teach
this structure to VL models in an orthogonal way, suggest-
ing wide applicability to existing or future VL models.

While attaining impressive gains in SVLC understand-
ing, we believe the small drop observed in ZS performance
could be further reduced. An additional possible extension
of our work is using more sophisticated sequence gener-
ation techniques for improving our batch data. One may
combine annotation efforts with a language model to get im-
proved data for training and evaluation [51]. Another possi-
bility is adding a corrector [72] in the training that validates
whether the VL model learns the correct concepts or not.
We leave all of these exciting directions to future work.
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