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Figure 1. Conditional Foley generation via analogy. We generate a soundtrack for a silent input video, given a user-provided conditional
example specifying what its audio should “sound like.” In the first example, we make the xylophone strikes sound like the clicks of a
mechanical keyboard. In the second, we generate a soundtrack for a video in which the drumstick striking a wooden door sounds as though
it were made of metal. Notice that the shape of the sound events in the generated audio (e.g., thin stripes in the top example) matches the
conditional audio and the onsets match the input example’s audio. For reference, we provide the input video’s (held out) sound on the right.
We encourage the reader to watch and listen to the results on our project webpage.

Abstract

The sound effects that designers add to videos are de-
signed to convey a particular artistic effect and, thus, may
be quite different from a scene’s true sound. Inspired by
the challenges of creating a soundtrack for a video that dif-
fers from its true sound, but that nonetheless matches the
actions occurring on screen, we propose the problem of con-
ditional Foley. We present the following contributions to
address this problem. First, we propose a pretext task for
training our model to predict sound for an input video clip
using a conditional audio-visual clip sampled from another
time within the same source video. Second, we propose a
model for generating a soundtrack for a silent input video,
given a user-supplied example that specifies what the video
should “sound like”. We show through human studies and
automated evaluation metrics that our model successfully
generates sound from videos, while varying its output ac-
cording to the content of a supplied example. Project site:
https://xypb.github.io/CondFoleyGen.

1. Introduction
When artists create sound effects for videos, they often

“borrow” sounds from other sources, then manipulate them
to match the on-screen actions. These artists’ aim is not
necessarily to convey the scene’s true sound, but rather to

achieve a desired artistic effect. Thus, the clunk of a coconut
shell becomes a trotting horse, or the sizzle of cooking bacon
becomes rain1.

The problem of creating sound effects for video, known
as Foley [1], has often been posed as predicting a video’s
co-occurring sound [29,42,68]. Yet the task that artists solve
is subtly different. They create a soundtrack for a video that
differs from its true sound, but that still plausibly matches
the on-screen events. Also, these prior systems largely do
not give artists control over the output sound.

To aid Foley artists while giving them artistic control,
we propose a conditional Foley problem inspired by classic
work on image analogies [27]. Our task is to generate a
soundtrack for an input silent video from a user-provided
conditional audio-visual example that specifies what the
input video should “sound like.” The generated soundtrack
should relate to the input video in an analogous way as
the provided example (Fig. 1). This formulation naturally
separates the problem of selecting an exemplar sound, which
arguably requires the artist’s judgment, from the problem
of manipulating that sound to match a video, such as by
precisely adjusting its timing and timbre.

This proposed task is challenging, since a system must

1We encourage you to watch and listen to how sound artists work:
https://www.youtube.com/watch?v=UO3N_PRIgX0
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learn to adapt the exemplar (conditional) sound to match the
timing of the visual content of a silent video while preserv-
ing the exemplar sound’s timbre. While prior methods can
predict a video’s sound [29, 42, 68], they cannot incorporate
an artist’s exemplary conditional sound. Furthermore, while
vision-to-sound methods can pose the problem as predicting
a video’s soundtrack from its images, it is less clear how
supervision for conditional examples can be obtained.

To address these challenges, we contribute a self-
supervised pretext task for learning conditional Foley, as
well as a model for solving it. Our pretext task exploits
the fact that natural videos tend to contain repeated events
that produce closely related sounds. To train the model,
we randomly sample two pairs of audio-visual clips from
a video, and use one as the conditional example for the
other. Our model learns to infer the types of actions within
the scene from the conditional example, and to generate
analogous sounds to match the input example. At test time,
our model generalizes to conditional sounds obtained from
other videos. To solve the task, we train a Transformer [58]
to autoregressively predict a sequence of audio codes for
a spectrogram VQGAN [13], while conditioning on the
provided audio-visual example. We improve the model’s
performance at test time by generating a large number of
soundtracks, then using an audio-visual synchronization
model [8, 30, 41] to select the sound with the highest degree
of temporal alignment with the video.

We evaluate our model on the Greatest Hits dataset [42],
which contains videos that require an understanding of mate-
rial properties and physical interactions, and via qualitative
examples from the highly diverse CountixAV dataset [66].
Through perceptual studies and quantitative evaluations, we
show that our model generates soundtracks that convey the
physical properties of conditional examples while reflecting
the timing and motions of the on-screen actions.

2. Related Work
Predicting sound from images and video. In early work,
Van Den Doel et al. [56] generated sound for physical sim-
ulations. More recent examples include predicting sound-
tracks for videos in which someone strikes objects with a
drumstick [42], generating music from piano [35], body mo-
tion [50], or dance videos [14, 51], and generating speech
from lip motions [12, 44]. Other work predicted natural
sounds (typically ambient sound) using an autoregressive
vocoder [68], temporal relational networks [20], and visu-
ally guided generative adversarial network [21]. Iashin and
Rahtu [29] recently used a VQGAN [13, 57] operating on
mel spectrograms to generate sounds. We adopt this archi-
tecture to perform conditioned sound generation. In contrast
to previous approaches, our goal is not simply to estimate
the sound from a silent video, but to use a user-provided
example to tailor the sound to the actions in a scene.

Sound design. The sounds that occur in a film are often not
recorded on-site, but instead are inserted by artists. Sound
designers perform a number of steps, including “spotting”
visual events that require sound, choosing or recording an
appropriate sound, and manipulating the chosen sound with
editing software [1]. Our work addresses this final manipula-
tion step. Other work has sought computational approaches
to re-target or match visual signals to audio in sound design
problems. Davis and Agrawala [10] re-targeted video to
match a soundtrack by aligning both signals at estimated
beats. Langlois and James [37] addressed the task of syn-
chronizing vision to match sounds. Other work learns to
match relevant music with videos [52]. However, they do
not address the proposed conditional Foley task.

Interactive stylization. We take inspiration from the clas-
sic work of Hertzmann et al. [27], which learned to restyle
input images from a single user-provided example of an im-
age and its stylization. Like this work, we seek to generalize
from one piece of paired data (a video and its sound) to an-
other. Zhang et al. [65] learned to colorize images with sim-
ulated user-provided hints, using a self-supervised training
procedure. In contrast, our model is given user-supplied hints
of audio-visual examples from other videos, rather than from
annotations of the input. A variety of methods have been
proposed to stylize images with user-provided conditions.
Li et al. [39] stylized input images based on user-provided
sound. Lee et al. [38] generated images from sound and
pretrained language models. Chen et al. [3] learned to alter
the acoustics of speech sound to match a visual scene. Many
recent methods have applied style transfer to audio. [55]
These include methods that separate style and content using
feature statistics [55, 60], following Gatys et al. [19], and
methods that transfer musical timbre [28] based on Cycle-
GAN [69]. In contrast, Foley generation requires generating
sound without a ground truth audio, since in general there
is no existing recorded sound [1] in Foley artists’ workflow.
Nistal et al. [40] propose to synthesize drum sounds using a
GAN [22] conditioned on audio perceptual features rather
than a complete audio-visual conditional clip.

Self-supervised and few-shot audio-visual learning. Our
work aims to learn from data without human annotations.
There has been much recent progress in learning strong
audio-visual representations from video with accompanying
audio tracks for other downstream applications [2,6,9,11,15–
17,24,41,54,63,64,67]. Example applications include using
audio-visual data for source separation [11,15,24,41,54,67]
and for converting mono sound to stereo [16, 17, 63, 64].
Our work focuses on a different application, but is related
to methods that adapt themselves using a small number of
labeled examples, such as audio event detection [61, 62],
talking head generation [5], and diarization [7].
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Figure 2. Conditional video-to-audio synthesis via Foley analogy. (a) For our pretext task, we extract two clips from a longer video and
train our model to predict the soundtrack for one, given audio-visual information from the other. Through this process, our model learns to
condition its soundtrack predictions on other videos. (b) At test time, we provide the model with a silent input video and an audio-visual clip
(taken from another video). We can use an audio-visual synchronization model to re-rank the generated soundtracks and choose the one with
the best temporal alignment.

3. Method
Our goal is to generate a soundtrack for a silent input

video, given a user-provided conditional audio-visual ex-
ample that specifies what the video should “sound like”.
We learn a function Fθ(vq,vc,ac) parameterized by θ that
generates a soundtrack from an input video vq , given a con-
ditional video vc and conditional audio ac. We now describe
our pretext task for training Fθ from unlabeled data, and our
conditional vision-to-sound model.

3.1. Pretext task for conditional prediction
We desire a pretext task that results in the model obtaining

the necessary information from each source. In particular, we
would like the input video to specify the type of action (e.g.,
hitting vs. scratching an object) and its timing, while the
conditional audio-visual example should specify the timbre
of the generated sound (e.g., the type of the materials that
are being interacted with).

We define our task as a video-to-audio prediction problem
in which another clip from the same video is provided as the
conditional example (Fig. 2a). During training, we sample
two clips from a longer video, centered at times t and t+∆t
respectively, using one as the conditional example and the
other as the input video. The model is tasked with predicting
the sound from the silent input video, using conditional clips
as an additional input.

According to this pretext task, we can define a loss L over
an audio target ag and a prediction Fθ(vq,vc,ac) given
corresponding input video vq and conditional audio-visual
clip (vc,ac):

L(ag,Fθ(vq,vc,ac)) (1)
This formulation exploits the fact that the actions within a

video tend to be closely related [66] (or “self-similar” [49]),
such as when an action is performed repeatedly. Thus ran-
domly sampled pairs of clips frequently contain related ac-
tions. When this occurs, the model can use conditional sound
to improve its prediction. However, the model cannot solve
the task by simply “copying and pasting” the conditional
sound, since it must account for the content of the timing of

actions (and the type of motion) in the input video. Since the
model is trained to assume that the conditional example is
informative about the input, we empirically find that it learns
to base its prediction on the conditional sound. This finding
allows for substituting in a conditional sound sampled from
a completely different video at test time (Fig. 2b).

3.2. Conditional sound prediction architecture
We describe our architecture of Fθ for, first, obtaining a

code representation for a target sound via VQGAN [13, 29]
and, second, predicting an output sound for a given input
video and conditional audio-visual pair.

Vector-quantized audio representation. We follow
Iashin and Rahtu [29] and represent the predicted sound as
a sequence of discrete codes, using a VQGAN [13, 57] that
operates on mel spectrograms2. We learn this code by train-
ing an autoencoder to reconstruct sounds in a dataset, using
the codes as its latent vector. After training, a predicted code
sequence can subsequently be converted to a waveform.

Given a waveform a and its mel spectrogram
MSTFT(a) ∈ RT×F , we compute embeddings ẑ =
E(MSTFT(a)) ∈ RT ′×F ′×d, where T ′ and F ′ define a
lower-resolution time-frequency grid, d is the dimensional-
ity of the embedding at each patch, and E is a CNN. Each
embedding vector is then replaced with the nearest entry in
a codebook {ck}Kk=1:

ztf = q(ẑtf ) = argmin
ck

||ẑtf − ck||, (2)

where ẑtf is the embedding at time-frequency index (t, f).
We train the model to reconstruct the input sound Ŝ =
D(q(E(MSTFT(a)))), where D is a CNN-based decoder
and q is applied to every embedding. We use the loss func-
tion from [29], which adapts the VQGAN loss [13] to spec-
trograms, jointly minimizing a mean-squared error recon-
struction loss [57], a perceptual loss [32], and a patch-based
discriminator loss [31]. We provide details in the supp.

2We use log mel spectrograms unless otherwise noted.
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Figure 3. Conditional Foley generation. (Top) We predict the soundtrack for a silent video, conditioned on an audio-visual pair sampled
from the same video. We encode and tokenize the video and audio signals, and feed them into a transformer. This transformer autoregressively
predicts a code from a VQGAN [13, 29], representing the input example’s sound. (Bottom) We generate a waveform by converting the code
to a mel spectrogram, then using a MelGAN [36] vocoder to convert it to a waveform. Here, LCE represents a cross-entropy loss.

Finally, we can obtain a code s ∈ {0, 1, · · · ,K−1}T ′×F ′

for a sound from the VQGAN by replacing each quantized
vector in z with the index of its nearest codebook entry, i.e.,
stf is the index of the selected codebook entry in Eq. (2).
Autoregressive sound prediction. With the predicted
code s, we can now formulate the likelihood of generat-
ing code s from the silent input video and the conditional
example. We order the indices of s in raster scan order [13]
and predict them autoregressively:

pθ(s|vq,vc,ac) =
∏
i

pθ(si|s<i,vq,vc,ac), (3)

where s<i are the previous indices in the sequence. Given
these probabilities, we formulate L (Eq. (1)) as the cross-
entropy loss between the predicted token si and ground-truth
token ŝi.

Having defined a code-based representation for sounds,
we describe our architecture of Fθ for conditional sound
prediction (Fig. 3). Following [13, 29], we predict the code
sequence (Eq. (3)) using a decoder-only transformer [59]
based on GPT-2 [45]. The inputs to this transformer are
tokenized versions of vq,vc, and ac. We now describe how
these signals are converted into tokens.
Input representations. We represent each video signal
using a ResNet (2+1)D-18 [53]. To preserve fine-grained
temporal information, we remove all temporal striding, so
that the final convolutional layer has the same temporal sam-
pling rate as the input video. We perform average pooling
over the spatial dimension, resulting in an embedding vector
for each frame. Each such vector becomes a token. We
denote this tokenization operation Tv(v).

We represent the conditional audio signal using its vector-
quantized embeddings. Specifically, we compute z(c) =

q(E(MSTFT(ac))) ∈ RT ′×F ′×d (Eq. (2)) and extract its d-
dimensional embedding vectors z(c)1 , z

(c)
2 , · · · , z(c)N in raster-

scan order. We denote this tokenization operation Ta(ac).
We combine these tokens into a single sequence:

S = Concat(Tv(vc), Tv(vq), Ta(ac)). Thus, we model
pθ(s|vq,vc,ac) = pθ(s|S). Following standard prac-
tice [13, 57], we generate the audio code autoregressively,
feeding the previously generated codes back into the model
using their vector-quantized representation.

Generating a waveform. Our complete model Fθ works
by first generating a code using a transformer, converting it to
a mel spectrogram using the decoder D, then converting the
mel spectrogram to a waveform. To perform this final step,
we follow [29] and use a pretrained MelGAN vocoder [36].
We found that this produced significantly better results than
standard Griffin-Lim [23].

Re-ranking based on audio-visual synchronization. In-
spired by other work in cross-modal generation, we use
re-ranking to improve our model’s predictions [47]. We gen-
erate a large number of sounds, then select the best one, as
judged by a separate classifier. Typically, these approaches
use a model that judges the multimodal agreement between
the input and output. In our case, however, such a clas-
sifier ought to consider conditionally generated sound to
be a poor match for both the input and conditional videos.
We instead propose to use an audio-visual synchronization
model [8,30,41] to measure the temporal alignment between
the predicted sound and the input video. These models pre-
dict a temporal offset that best aligns visual and audio data.

As shown in Fig. 2b, we use an off-the-shelf synchroniza-
tion model [30] to estimate the offset t between the audio
and video and the prediction’s confidence. We find the min-
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Model

Task

Material Action Onset
match mismatch overall match mismatch overall # onset onset sync.

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) AP (%)

Style transfer∗ [18, 55] 30.0 33.5 32.3 20.8 36.6 31.3 19.1 46.9
Onset transfer 54.8 51.4 52.6 69.0 44.7 52.9 24.8 71.9

Chance 5.9 5.9 5.9 50.0 50.0 50.0 – –
SpecVQGAN [29] 25.4 26.8 26.1 52.3 43.1 46.2 11.3 51.0
SpecVQGAN - finetuned [29] 29.9 25.7 27.2 70.6 58.4 62.5 25.8 59.3
Ours - No cond. 21.3 24.9 23.7 61.4 55.1 57.2 24.6 59.3
Ours - Base 41.1 41.6 41.4 67.5 59.2 62.0 26.5 60.0
Ours - w/ re-rank 43.4 45.2 44.0 78.2 61.3 66.7 25.3 54.3

Table 1. Automated evaluation metrics. We measure the rate at that generated sounds have the material properties of the conditional
examples, the actions of the input examples, and the number and the timing of the onsets in the generated sound with respect to the original
sound. We further break down the automated metrics according to whether the conditional and input examples have the matched (or
mismatched) actions and materials. The number of onsets is measured by whether the generated sound has the same number of onsets as
the original sound. We measure the average precision of onset predictions that are within 0.1 seconds of the ground truth to evaluate the
timing of the generated onsets. ∗ indicates that the model is an “oracle” and accesses the input example’s sound.

imum absolute offset min |t| among all outputs. Then the
outputs with an absolute offset greater than min |t|+ τ are
removed, where τ is the offset tolerance. Finally, we select
the sound with the highest confidence.

4. Experiments
To evaluate our method, we use a combination of auto-

matic evaluation metrics and human perceptual studies.

4.1. Experiment Setup
Dataset. We train our conditional Foley generation model
on datasets of video clips: Greatest Hits [42], which is
composed of videos of a drumstick interacting with different
objects in scenes, and CountixAV [66], which contains videos
with as much as 23 different classes of repeated actions from
in-the-wild YouTube video. These are challenging datasets
for audio generation since they require precise timing, and
varying sounds subtly based on fine-grained visual properties.
In particular, the Greatest Hits task requires an understanding
of the motion of the drumstick and the material properties of
the objects. Since this dataset is straightforward to analyze
in terms of actions and materials, we use it for our quantita-
tive evaluation, while for CountixAV we provide qualitative
results with permission to evaluate with similar videos in the
wild. We provide more information about the dataset and the
implementation details in the supplement.

Other models. We consider a variety of other models for
comparison. First, we use the SpecVQGAN model of Iashin
and Rahtu [29], a state-of-the-art vision-to-sound prediction
method based on a two-stream visual network. We use
the publicly released implementation and weight. We also
finetuned the model on the Greatest Hits [42] dataset for the
automated metrics as a fair comparison.

We also consider several ablations of our model: No con-
ditional example: We remove all conditional information
from the model. This model is a vision-to-sound prediction
method that resembles SpecVQGAN [29] after controlling

for architectural and data variations from our model. No con-
ditional video: This model is provided with the conditional
audio ac but not the video vc, and hence cannot observe how
the audio and visual events are connected in the conditional
video. No augmentation: A model trained without audio
augmentation. Random conditional examples: A model
that is trained with conditional audio-visual clips that are
unrelated to the input video, and hence uninformative. We
select these clips randomly from other videos in the dataset.
Re-ranked examples: We generate 100 outputs for each
pair of input and condition, then re-rank them.

To better understand our model’s behavior, we compare
it against two “non-generative” methods. First, we propose
a model called Onset Transfer. Instead of generating the
sound, as our model does, this model uses a hand-crafted
approach for transferring sounds from the conditional exam-
ple. We train a ResNet (2+1)-D [53] model to detect audio
onsets from video in both the conditional and input videos,
then transfer sounds extracted from random onsets in the
conditional example (see the supp. for more details). Sec-
ond, we evaluated an audio Style Transfer method. We used
the model of Ulyanov [55], which applies the stylization
method of Gatys et al. [18] to spectrograms. We note that
this method requires audio as input and is not designed for
Foley generation. To address this, we provide the model
with aq, the ground truth audio from the input video, thus
giving it oracle information.

4.2. Automated Timbre Evaluation
A successful prediction method should accurately convey

the actions in the input video but the material properties of
the conditional example. To evaluate whether this is the case,
trained classifiers to recognize the action (hit vs. scratch)
and the material (a 17-way classification problem), using
the labels in the Greatest Hits dataset [42]. We then used it
to classify the predicted, conditional, and input sounds, and
compared the estimated labels.
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Figure 4. Qualitative results. We present results from our model. We show the result for the internet videos from the model trained
on CountixAV dataset [66] (Row 1–3) and the Greatest Hits dataset [42] (Row 4–6). Rows 3 and 6 show failure cases with red crosses
on generated audio. The timing and number of hits in the generated audio largely match that of the (held out) audio for the input video,
suggesting the generated audio is matching the actions in the input video. The frequencies of the generated audio approximately match the
conditional example, indicating a similar timbre. To hear the sounds and see more examples, please refer to our project webpage.

Sound classifier. We finetune a pretrained VGGish classi-
fier [25,26] on the Greatest Hits [42] dataset to recognize the
action or the material from a mel spectrogram. To avoid am-
biguity, we only used clips that contained a single material
or action type. We provide more details in the supplement.
Evaluation metrics. We used two evaluation metrics that
capture our two criteria: action accuracy, the fraction of pre-
dicted sounds that have the same estimated action category
as the (held out) input sound, and material accuracy, the
fraction of predicted sounds that have the same estimated
material category as the conditional example.
Results. We found (Tab. 1) that our model performed sig-
nificantly better on the material metric than SpecVQGAN
and than the variation without conditional examples, both of
which are unconditional vision-to-sound prediction methods.
As expected, the onset transfer model obtains near-optimal
performance, since it simply transfers sounds from the con-
ditional sound, which (trivially) are likely to have the same
estimated category. On the other hand, this onset transfer
baseline performs poorly on the action metric, since it has no
mechanism for adapting the transferred sounds to the actions

in the video (e.g., converting hits to scratches). By contrast,
our model obtains high performance on this metric.

To further understand the source of performance differ-
ences, we broke down the results according to whether the
properties of the conditional example matched those of the
input sound or not (Tab. 1). As expected, the onset transfer
method performs strongly on material metrics, since “copy
and pasting” conditioning sounds is a trivial solution. On
the other hand, our generative approaches significantly out-
perform it when there is a mismatch between action types,
since they can adapt the sound to match the action.

Additionally, we found that the synchronization re-
ranking significantly boosted performance on both material
and action tasks (Tab. 1). The re-ranked model outperforms
the onset transfer method on all three action-related met-
rics. It also narrows the gap to the onset transfer method for
material-related metrics. This demonstrates the effectiveness
of the re-ranking method, as well as the advantage of posing
our approach as a generative model.
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Figure 5. Model comparison. We show conditional Foley generation results for several models, using multiple conditional sounds. We
show the result for publicly-sourced demonstration videos (Row 1–2) and the Greatest Hits dataset [42] (Row 3–4). Each of the input videos
is paired with two different conditional videos. We provide 2 samples from the model variation with no conditional example.

4.3. Automated Onset Evaluation
To evaluate the quality of the generated timbre, we seek

to evaluate whether the conditional Foley generation model
generates sounds whose onsets match those of the (held-out)
sound in the input video. We evaluate two criteria: whether
the generated sound contains the correct number of onsets,
and whether their timing matches those in the input video.

Evaluation metrics. We measure the fraction of video
clips that contain the same number of onsets as the ground
truth audio. Following Owens et al. [43], we report the
average precision of detecting the correct onset where the
relative wave amplitude provides the confidence of each
onset. A detection is correct if it lies within a 0.1-second
window of the ground truth.

Results. We notice (Tab. 1) that our model outperforms all
the generative baselines and the Style transfer method in both
metrics. It is not surprising that the onset transfer method
obtains the best performance on the onset synchronization
task, given that it is explicitly trained on a closely related
task. The success of our model in generating the correct
number of onset compared with the onset transfer model
can be explained by the extra information about the audio-
visual relation provided in the condition, which helps the
model better understand the action in the video. As shown
in Tab. 1, the accuracy in capturing the correct number of
onsets drops to the same level as the onset transfer method
if we remove conditional information. Interestingly, we find

Model Variation
Task

Material Sync.
Chosen(%) ↑ Chosen(%) ↑

Style transfer∗ [18, 55] – 9.9 (±2.3) 10.6 (±2.4)
Onset transfer – 64.7 (±3.8) 57.3 (±3.9)

SpecVQGAN [29] – 16.3 (±2.9) 18.0 (±3.0)

Ours

base 50.0 (±0.0) 50.0 (±0.0)
- cond. 35.3 (±3.8) 40.1 (±4.0)
- cond. video 46.1 (±4.0) 45.0 (±4.0)
- augment 51.3 (±3.9) 49.7 (±4.0)
w/ rand. cond. 45.5 (±4.0) 47.5 (±4.0)
+ re-rank 54.3 (±3.4) 53.8 (±3.4)

Table 2. Perceptual study results. We report the rate at which
participants chose a given method’s results over our method (base)
for the two questions in our study. For reference, we include the
rate that our base method would obtain in the study (50%). We
report results in terms of 95% confidence interval.

(Tab. 1) a drop in the performance for the re-ranked model.
This may be due to the domain shift from the VGG-Sound
dataset [4] that the synchronization network [30] was trained
on, which may make it difficult to infer the precise timing of
the sounds (rather than an overall assessment of whether the
two streams are synchronized).

4.4. Perceptual Study
We also evaluated our model using a perceptual study,

conducted using Amazon Mechanic Turk. We provide the
participant with the conditional audio-visual clip and two
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input videos whose sound was generated by different models
(our base model, plus a randomly chosen alternative).

We asked the participants to judge the generated sounds
on two criteria that are similar to the automated metrics.
Participants were asked to select: 1) in which result the
audio is better synchronized with the actions in the video, 2)
in which result the sound is most like that of the object or
material in the conditional example. The 376 participants in
our study were shown 21 sets of videos, randomly sampled
from the evaluation set, the first 5 of which were used as
practice and not counted.

Comparison to other variations of our model. We evalu-
ate the influence of different variations of our model in terms
of choosing the corresponding method in the perceptual
study (Tab. 2). Our re-ranked model performs best overall
and the base model without re-ranking also beats most of the
baselines on both metrics. The model with no conditional
example obtains poor performance on the material metric
but obtains a relatively smaller decrease in synchronization
performance. This is understandable, since the model did
not use the conditional example but still was encouraged to
be synchronized with the video. The model with no condi-
tional video incurs a small drop in the material metrics and
a relatively larger drop in synchronization, perhaps because
it is unable to observe the relationship between images and
sound in the conditional example.

Comparison to other approaches. We compare our
model to other methods. Overall, the variation with no
conditional example (which is a vision-to-sound method)
outperforms SpecVQGAN [29]. The style transfer [18, 55]
model performs poorly (and qualitatively often contains ar-
tifacts). Interestingly, the onset transfer model performs
quite well on the perceptual study, outperforming our base
model and the model with re-ranking, despite the fact that it
does not tailor its output to the actions in the scene (Tab. 1).
This is understandable, since it “copy and pastes” sounds
from the conditional example at times that are chosen to
be synchronized with impacts. Thus, the user is likely to
observe that it exactly matches the conditional sounds and
(trivially) conveys the same properties. However, this only
occurs when the audio events are cleanly separated in time,
and we expect the model to fail when sounds are not easily
divided into discrete onsets, or when onsets are ambiguous.

4.5. Qualitative Results
We provide visualizations of predicted sounds from our

test set in Fig. 4. Through this visualization, we can see
that our model successfully generates sounds that resemble
spectral properties of the conditional sound, while matching
the timing and actions in the input video’s (held out) sound.
We also present the qualitative result (Fig. 4) of our method
on the wild videos from the model trained on the CountixAV
dataset [66]. We follow the same training and generation

scheme as for the Greatest Hits [42]. The model again
generates sounds with matching conditional spectral features
and input action synchronization.

In Fig. 5, we visualize how our results vary as a function
of the conditional sound and compare our model with the
baselines on both datasets. For each input video, we show
predictions from different models. We see that our model
varies its output depending on the conditional sound (e.g.,
varying its output based on whether the conditional example
is plastic or metal). We see that the onset transfer method
“copies and pastes” sounds from the conditional example
at the correct times. We also observe the failure of the
onset transfer baseline (see Fig. 5 Video in the wild part)
in a more realistic scenario, where actions and sound in
it are more abundant and complex. We show two random
samples from the model with no conditioning. We see that
the prediction generally matches the input sound, rather than
the conditioning sound, and that there are large amounts of
variation in the generated audio’s timbre. Please refer to the
supp. to listen to our outputs and for more qualitative results.

5. Discussion
In this paper, we proposed the conditional Foley task. We

also proposed a method for solving this problem through
self-supervised learning. We evaluated our method on the
Greatest Hits dataset, finding through perceptual studies
and automated metrics that our model successfully learns
to transfer relevant information from a conditional sound,
while matching the events within the silent input video. We
also demonstrate the effectiveness of the model on more
complex and realistic data from publicly-sourced videos
with the model trained on the CountixAV dataset.

We see our work potentially opening several directions.
Our work tackled one step of the sound design process—the
process of manipulating sound to match a video. We see this
as a step toward the broader goal of semi-automated “user
in the loop” sound design. We also see our work as a step
toward synthesis methods that can learn by analogy, in the
tradition of classic work such as image analogies [27]. We
will release code and models on our project site.
Limitations and Broader Impacts. While soundtrack
generation is useful for creative applications, such as film
making, it can also be used to create videos that can po-
tentially be used to create disinformation, which can have
negative outcomes. The field of image and audio forensics
can help mitigate this outcome.
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Yoshua Bengio, and Aaron C Courville. Melgan: Generative
adversarial networks for conditional waveform synthesis. Ad-
vances in neural information processing systems, 32, 2019.
4

[37] Timothy R Langlois and Doug L James. Inverse-foley ani-
mation: synchronizing rigid-body motions to sound. ACM
Transactions on Graphics (TOG), 33(4):41, 2014. 2

[38] Seung Hyun Lee, Wonseok Roh, Wonmin Byeon, Sang Ho
Yoon, Chan Young Kim, Jinkyu Kim, and Sangpil Kim.
Sound-guided semantic image manipulation. arXiv preprint
arXiv:2112.00007, 2021. 2

[39] Tingle Li, Yichen Liu, Andrew Owens, and Hang Zhao.
Learning visual styles from audio-visual associations. arXiv,
2022. 2

[40] Javier Nistal, Stefan Lattner, and Gael Richard. Drumgan:
Synthesis of drum sounds with timbral feature condition-
ing using generative adversarial networks. arXiv preprint
arXiv:2008.12073, 2020. 2

[41] Andrew Owens and Alexei A Efros. Audio-visual scene
analysis with self-supervised multisensory features. European
Conference on Computer Vision (ECCV), 2018. 2, 4

[42] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-
ralba, Edward H Adelson, and William T Freeman. Visually
indicated sounds. CVPR, 2016. 1, 2, 5, 6, 7, 8

[43] Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-
ralba, Edward H Adelson, and William T Freeman. Visually
indicated sounds. In Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 7

[44] KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Namboodiri,
and CV Jawahar. Learning individual speaking styles for accu-
rate lip to speech synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13796–13805, 2020. 2

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsuper-
vised multitask learners. 2019. 4

[46] Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon,
Oriol Nieto, Dawen Liang, Daniel PW Ellis, and C Colin
Raffel. Mir eval: A transparent implementation of common
mir metrics. In ISMIR, pages 367–372, 2014. 2

[47] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.
4

[48] Tim Sainburg, Marvin Thielk, and Timothy Q Gentner. Find-
ing, visualizing, and quantifying latent structure across di-
verse animal vocal repertoires. PLoS computational biology,
16(10):e1008228, 2020. 1

[49] Eli Shechtman and Michal Irani. Matching local self-
similarities across images and videos. In 2007 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1–8.
IEEE, 2007. 3

[50] Kun Su, Xiulong Liu, and Eli Shlizerman. Multi-
instrumentalist net: Unsupervised generation of music from
body movements. arXiv preprint arXiv:2012.03478, 2020. 2

[51] Kun Su, Xiulong Liu, and Eli Shlizerman. How does it
sound? Advances in Neural Information Processing Systems,
34, 2021. 2

[52] Dı́dac Surı́s, Carl Vondrick, Bryan Russell, and Justin Sala-
mon. It’s time for artistic correspondence in music and video.
CVPR, 2022. 2

[53] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6450–6459, 2018. 4, 5, 2

[54] Efthymios Tzinis, Scott Wisdom, Aren Jansen, Shawn Her-
shey, Tal Remez, Daniel PW Ellis, and John R Hershey. Into
the wild with audioscope: Unsupervised audio-visual separa-
tion of on-screen sounds. arXiv preprint arXiv:2011.01143,
2020. 2

[55] Dmitry Ulyanov. Audio texture synthesis and style
transfer. https : / / dmitryulyanov . github .
io/audio- texture- synthesis- and- style-
transfer, 2016. 2, 5, 7, 8

[56] Kees Van Den Doel, Paul G Kry, and Dinesh K Pai. Fo-
leyautomatic: physically-based sound effects for interactive
simulation and animation. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
pages 537–544. ACM, 2001. 2

[57] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2, 3, 4, 1

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 2

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Neural Information
Processing Systems (NIPS), 2017. 4

2435

https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer
https://dmitryulyanov.github.io/audio-texture-synthesis-and-style-transfer


[60] Prateek Verma and Julius O Smith. Neural style transfer for
audio spectograms. arXiv preprint arXiv:1801.01589, 2018.
2

[61] Yu Wang, Nicholas J Bryan, Justin Salamon, Mark Cartwright,
and Juan Pablo Bello. Who calls the shots? rethinking few-
shot learning for audio. In 2021 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA),
pages 36–40. IEEE, 2021. 2

[62] Yu Wang, Justin Salamon, Nicholas J Bryan, and Juan Pablo
Bello. Few-shot sound event detection. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 81–85. IEEE, 2020.
2

[63] Xudong Xu, Hang Zhou, Ziwei Liu, Bo Dai, Xiaogang Wang,
and Dahua Lin. Visually informed binaural audio generation
without binaural audios. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15485–15494, 2021. 2

[64] Karren Yang, Bryan Russell, and Justin Salamon. Telling
left from right: Learning spatial correspondence of sight
and sound. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9932–9941,
2020. 2

[65] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time user-
guided image colorization with learned deep priors. arXiv
preprint arXiv:1705.02999, 2017. 2

[66] Yunhua Zhang, Ling Shao, and Cees GM Snoek. Repeti-
tive activity counting by sight and sound. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14070–14079, 2021. 2, 3, 5, 6, 8, 1

[67] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-
drick, Josh McDermott, and Antonio Torralba. The sound
of pixels. In Proceedings of the European conference on
computer vision (ECCV), pages 570–586, 2018. 2

[68] Yipin Zhou, Zhaowen Wang, Chen Fang, Trung Bui, and
Tamara L Berg. Visual to sound: Generating natural sound for
videos in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3550–3558,
2018. 1, 2

[69] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. 2017. 2

2436


	. Introduction
	. Related Work
	. Method
	. Pretext task for conditional prediction
	. Conditional sound prediction architecture

	. Experiments
	. Experiment Setup
	. Automated Timbre Evaluation
	. Automated Onset Evaluation
	. Perceptual Study
	. Qualitative Results

	. Discussion
	. VQGAN codebook loss
	. Dataset
	. Implementation details
	. Onset transfer baseline training details
	. Sound classifier training details for quantitative experiment
	. Onset detection experiment with different window size
	. Generation of longer audio
	. Re-ranking qualitative result
	. Human study details
	. Randomly selected results
	. Video Credit



